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Abstract

The main focus of this three hour course is outlining how to compute a
large torsion-free subgroup (i.e. of finite index) of the unit group of the inte-
gral group ring of a finite group G. To do so several topics will be handled: the
link between the isomorphism problem and the study of the unit group; con-
structions of units; examples of unit group calculations; Wedderburn decom-
position of rational group algebras, including exceptional and non-exceptional
components; generators of general linear groups over orders; large central sub-
groups and construction of central units; large subgroup constructions in unit
groups of group rings; structure theorems of unit groups; abelianisation and
amalgamation of unit groups.
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1 Introduction

Most of these notes are based on [1, 2]. For further references we refer to the bibli-
ography in these books.

Let R be a ring and G a group. The group ring RG is the free R-module with
basis G, i.e. it consists of all formal sums∑

g∈G

rgg

with only a finite number of coefficients rg different from 0, and with addition defined
as ∑

g∈G

rgg +
∑
g∈G

r′gg =
∑
g∈G

(rg + r′g)g,

and it is equipped with the natural product that extends the products of both R and
G, i.e. (∑

g∈G

rgg

) (∑
h∈G

shh

)
=
∑
x∈G

( ∑
g,h∈G, gh=x

rgsh

)
x.

The support of an element α =
∑

g∈G rgg ∈ RG is the finite set supp(α) = {g ∈
G | rg 6= 0}.

The augmentation map of RG is the ring homomorphism

aug : RG→ R :
∑
g∈G

rgg 7→
∑
g∈G

rg.

More generally, for a normal subgroup N of G, the augmentation map modulo N
(also called the relative augmentation map) is the ring homomorphism

augG,N,RRG→ R(G/N) :
∑
g∈G

rgg 7→
∑
g∈G

rg(gN).

The kernel of augG,N,R is the augmentation ideal of RG modulo N . If the ring is
clear from the context we simply denote this map as augG,N . It is readily verified
that

Ker(augG,N,R) =
∑
n∈N

(n− 1)RG =
∑
n∈N

RG(n− 1).

If, furthermore, N is finite then

Ñ =
∑
n∈N

n
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is a central element of RG and Ñ(1− n) = 0 for all n ∈ N . Hence,

Ñ2 = |N |Ñ .

Moreover,
Ker(augG,N,R = AnnRG(Ñ) = {α ∈ RG | αÑ = 0}.

If, furthermore |N | is invertible in R then

N̂ =
1

|N |
Ñ

is a central idempotent in RG and

RG = RGN̂ ⊕RG(1− N̂) and R(G/N) = RGN̂.

The unit group of a ring R, denoted U(R), is the group

U(R) = {u ∈ R | uv = 1 = vu, some v ∈ R}.

The main theme of this course is the unit group of the integral group ring ZG of a
finite group G. Of course, if α =

∑
g∈G rgg ∈ U(ZG) then aug(α) =

∑
g∈G rg = ±1.

A unit α ∈ ZG is said to be normalized if aug(α) = 1. The group consisting of
all normalized units of ZG is often denoted by V (ZG). In this text I use the more
indicative notation U1(ZG). Clearly

U(ZG) = ±U1(ZG).

Note that if R is a commutative ring then the group ring RG is endowed with an
involution ∗ (often called the classical involution)

∗ : RG→ RG :
∑
g∈G

rgg 7→
∑
g∈G

rgg
−1.

The integral group ring is the ring that links group theory to ring theory. One
hence has a natural fundamental question: the isomorphism problem for integral
group rings of finite groups G and H:

ZG ∼= ZH =⇒ G ∼= H. (ISO)

The following proposition is a remarkable fact for group rings: an integral group
ring isomorphism is equivalent with unit group isomorphisms. To prove this, we first
need a lemma. Of course ZG is a subring of the rational group algebra QG; and thus
we can talk of (Q-) independent elements in ZG.
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Lemma 1.1 Let G be a finite group. The following properties hold for a finite sub-
group H of G.

1. (Berman) If α =
∑

g∈G zgg is a unit of finite order in U1(ZG) such that z1 6= 0
(with 1 the identity of G) then α = 1. In particular, if α is a normalized central
unit of finite order then u ∈ Z(G).

2. H is a set of independent elements; in particular, |H| ≤ |G|.

3. If |H| = |G| then ZG = ZH.

Proof. (1) This will be proved in the session on torsion units.
(2) Assume that

∑
h∈H zhh = 0, with each zh ∈ Z. Let x ∈ H. Since, by

assumption, H is finite, also hx−1 is unit of finite order in U1(ZG). Clearly, hx−1 6= 1
if h 6= x. Hence, by part (1), the coefficient of 1 in hx−1 = 0. Since the coefficient of
1 in

∑
h∈H zhhx

−1 equals zx, we conclude that zx = 0. Since x is arbitrary, part (2)
follows.

(3) Assume H is a finite subgroup of U1(ZG) and |H| = |G|. By part (2) the
elements of H are independent and thus QG = QH. So, ZH ⊆ ZG and nZG ⊆ ZH
for some positive integer n. It remains to show that if g ∈ G then g ∈ ZH. So,
let g ∈ G and write ng =

∑
h∈H zhh, with each zh ∈ Z. Then ngh−1 = zh +∑

h′∈H,h′ 6=h zh(h
′h−1). As 1 6= h′h−1 is periodic, it follows from part (1) that the

coefficient of 1 of h′h−1 is 0. Therefore, the coefficient of 1 in ngh−1 equals zh. Hence
it has to be divisible by n. As h is arbitrary we have shown that for every h ∈ H in
the support of ng we have that n|h. Consequently, ng ∈ nZH and thus g ∈ ZH, as
desired.

Proposition 1.2 Let G and H be finite groups. The following statement are equiv-
alent.

1. ZG ∼= ZH (ring isomorphism),

2. U1(ZG) ∼= U1(ZH) (group isomorphism),

3. U(ZG) ∼= U(ZH) (group isomorphism).

Proof. Clearly (1) implies (3). For the other implication it is useful to turn any
isomorphism into a normalized isomorphism. This is done as follows, for any com-
mutative ring R. Let f : U(RG)→ U(RH) be a group isomorphism. Define

f ∗ : U(RG)→ U(RH) :
∑
g∈G

rgg 7→
∑
g∈G

rg (augH(f(g)))−1 f(g).
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It is readily verified that f ∗ is an isomorphism that preserves augmentation, i.e.
augH(f ∗(g)) = 1 for all g ∈ G and thus augH(f ∗(α)) = augG(α) for all α ∈ U(RG).
Hence, (3) implies (2).

Now, assume (2) holds, i.e. assume f : U1(ZH) → U1(ZG) is a group isomor-
phism. Then f(H) is a finite subgroup of U1(ZG) that is isomorphic to H. Hence,
by Lemma 1.1, |H| = |f(H)| ≤ |G|. Similarly, |G| ≤ |H| and thus |H| = |G|.
Furthermore, by Lemma 1.1, the Zf(H) = ZG and thus we obtain an isomorphism
ZH → ZG, as desired.

Hence, (ISO) is equivalent with

U(ZG) ∼= U(ZH) =⇒ G ∼= H. (ISO’)

It is a hard problem to fully describe the unit group of the integral group ring
of a finite group, and hence one often focusses on describing a large subgroup, i.e. a
subgroup of finite index. Preferably one would like a torsion-free subgroup of index
exactly |G|. In other words we have the following problem.

Problem 1.3 : Let G be a finite group. Does there exists a torsion-free subgroup of
finite index, say N such that |U1(ZG)/N | = |G|. This means that

U1(ZG) = N oG,

a semidirect product of groups (i.e the inclusion G→ U1(ZG) splits).

It easily is verified that an affirmative answer to Problem 1.3 gives an affirmative
answer to (ISO). In case G is a nilpotent group it is sufficient to check that there is
a normal complement.

Note that Roggenkamp and Scott gave a metabelian counter example to the
problem (nevertheless, Withcomb proved (ISO) holds for finite metabelian groups).
However, because of the link with (ISO), it remains a challenge to determine classes
of groups for which there is a positive answer. A positive answer to Problem 1.3 has
been proved in case G is a finite abelian group, and more general for finite groups G
having an abelian normal subgroup A such that either G/A has exponent dividing 4
or 6, or G/A is abelian of odd order (by Cliff-Sehgal-Weiss).

However, the general problem remains open. In [3] two problems in this context
are being stated.

Problem 1.4 Does Problem 1.3 have an affirmative answer if G is a finite nilpotent
group? Even in case G has nilpotency class three the answer is not known. For class
two the answer is affirmative.
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Nevertheless, using other methods, for finite groups, (ISO) has been proven for
metabelian groups (Whitcomb), nilpotent groups (Roggenkamp and Scott) and sim-
ple groups (Kimmerle, Lyons, Sandling). Hertweck has given a counter example
to the isomorphism problem. It is a group of order 2219728 , with a normal Sylow
97-subgroup and the group has derived length 4.

2 Construction of Units

In order to study the unit group U(ZG), with G a finite group, one first would like
to know some generic construction of units.

Trivial units
Clearly ±G ⊆ U(ZG). These are called the trivial units.

Unipotent units and bicyclic units
Let R be an associative ring with identity element 1. Let η be a nilpotent element
of R, i.e. ηk = 0 for some positive integer k. Then

(1− η)(1 + η + · · ·+ ηk−1) = 1 = (1 + η + · · ·+ ηk−1)(1− η).

So from nilpotent elements one can construct units. Note that the rational group
algebra QG has no non-zero nilpotent elements if and only if QG is a direct sum
of division algebras (excercise). Hence for most finite groups the group algebra has
nilpotent elements (the only exceptions being the abelian groups and the Hamiltonian
groups of order 2mt, with t an odd number such that the multiplicative order of 2
modulo t is odd).

One can construct nilpotent elements from almost idempotent elements e ∈ R
(i.e. e2 = ne for some positive integer n). For any r ∈ R,

((n− e)re)2 = 0

and thus
1 + (n− e)re

is a unipotent unit (with inverse 1− (n− e)re).
Let G be a finite group and let e be an idempotent in QG (recall that ZG only

contains 0 and 1 as idempotents, see Section 5). Let ne be the smallest positive
integer such that nee ∈ ZG. Then, for h ∈ G,

b(h, e) = 1 + n2
e(1− e)he and b(e, h) = 1 + n2

eeh(1− e)

6



are unipotent units in ZG. They are called generalized bicyclic units.
In group rings one can easily construct idempotents. Indeed, let g ∈ G be an

element of order n. Then,

ĝ = 〈̂g〉 =
1

n
〈̃g〉 =

1

n
g̃ =

1

n

∑
0≤i≤n−1

gi

is an idempotent in QG and g̃ is an almost idempotent in ZG. The units

b(h, g̃) = 1 + (1− g)hg̃ and b(g̃, h) = 1 + g̃h(1− g)

are called the bicyclic units of ZG. Obviously, b(h, g̃)−1 = b(−h, g̃). Note that a
bicyclic unit b(h, g̃) is trivial unit if and only if h ∈ NG(〈g〉); otherwise it is a unit of
infinite order.

Note that b(h, ĝ) = b(α, g̃) for some α ∈ Z〈g〉. Further note that for a bicyclic
unit it is easy to verify that such a unit either is trivial or it is of infinite order. Also
note that b(h, g̃) is a non-trivial unit precisely when h is not in the normalizer of 〈g〉.
Similarly for b(g̃, h).

Cyclotomic units and Bass units
Let R be an associative ring and x a unit of finite order n. Let k and n be relatively
prime positive integers and let m be a positive integer such that km ≡ 1 mod n.
Then

uk,m(x) = (1 + x+ · · ·+ xk−1)m +
1− km

n
(1 + x+ · · ·+ xn−1)

is an invertible element in R with inverse ul,m(xk), where l is a positive integer such
that kl ≡ 1 mod n. Note that if R is a domain and x 6= 1 then (1−x)((1 +x+ · · ·+
xn−1) = 0 implies that 1 + x+ · · ·+ xn−1 = 0 and thus, in this case, uk,m = (1 + x+

· · ·+xk−1)m. If, furthermore, R is a field then uk,m = (1+x+· · ·+xk−1)m =
(

1−xk
1−x

)m
.

The unit 1−xk
1−x is called a cyclotomic unit and is denoted

ηk(x) =
1− xk

1− x
.

Note that (ηk(x))−1 = ηl(x
k), where l is a positive integer such that lk ≡ 1 mod n.

Hence ηk(x) ∈ U(Z[x]).
We also remark that if x ∈ R is a unit of finite odd order then −x has even order

and uk,m(−x) = (1−x+x2 + · · ·+(−1)k−1)m. Such units are called alternating units
in integral group rings [3].
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Let G be a finite group. We remark that, for g ∈ G,

uk,m(g) = uk′,m(g) if k ≡ k′ mod |g|.

Hence, in the definition of uk,m(g) we may assume that 1 < k < |g|. The units
uk,m(g), with g ∈ G and (k, |g|) = 1 are called the Bass units of ZG. One can also
show that

uk,m(g)uk,m1(g) = uk,m+m1(g).

We now show that almost all Bass units are of infinite order.

Lemma 2.1 Let G be a finite group and g ∈ G. A Bass unit uk,m(g) is torsion if
and only if k ≡ ±1 mod |g|.

Proof. Let n = |g| and let u = uk,m(g). If k ≡ 1 mod n then u = 1 and the result
is clear in this case.

So, assume that k 6≡ 1 mod n and in particular n > 1. If k = n − 1 and m = 2

then u = (g̃ − gn−1)2 − 1−(n−1)2
n

g̃ = g−2. If k ≡ −1 mod n then m is a multiple of
2 and thus u = un−1,m(g) = un−1,2(g)

m
2 = g−m. This proves that if k ≡ ±1 mod n

then u is torsion.
Conversely, assume that u is torsion. Let ζ be a complex root of unity of order

n. By the Universal Property of Group Rings, the group isomorphism 〈g〉 → 〈ζ〉,
mapping g to ζ, extends to a ring homomorphism f : ZG→ C. As n > 1, f(g̃) = 0
and therefore f(u) = ηk(ζ)m. Since u is torsion, f(u) is a root of unity, hence so
is ηk(ζ). This implies that |ζk − 1| = |ζ − 1|. Thus ζ and ζk are two vertices of a
regular polygon with n vertices so that ζ and ζk are at the same distance to 1. This
implies that ζk is either ζ or ζ = ζ−1. Then k ≡ ±1 mod n, as desired.

We have so far introduced two type of units, the Bass units and the bicyclic units.
The constructions of these are based on the cyclotomic units and unipotent units.
These units are of great importance for the unit group U(ZG). The main reason
being the following results.

Theorem 2.2 Let ξ be a complex root of unity. The cyclotomic units of Z[ξ] generate
a subgroup of finite index in U(Z[ξ]).

For a ring R and positive integer n, we denote by

eij(r) ∈Mn(R)

the unipotent matrix 1 + rEij, where Eij is the elementary matrix that has only one
nonzero entry (at position (i, j)) and this entry equals 1. A useful formula is

EijEkl = δjkEil.

8



Proposition 2.3 1. The group SLn(Z) is generated by the matrices eij with i 6=
j.

2. (Sanov) Let z1, z2 ∈ C such that |z1z2| ≥ 4 then 〈e12(z1), e21(z2)〉 is a free group
of rank 2, where eij = 1 + Eij and Eij has a one on the (i, j) spot and zeroes
elsewhere.

3. The group

{(
a b
c d

)
∈ SL2(Z) | a ≡ d ≡ 1 mod 4,

}
is a free group of rank

2 generated by e12(2) and e21(2).

Let R be a commutative Noetherian domain with field of fractions F and let A be
a finite dimensional F -algebra. A full R-lattice in a finite dimensional F -vectorspace
V is a finitely generated R-submodule of V (i.e. an R-lattice in V ) that contains a
basis of V . An R-order in A is a subring of A which also is a full R-lattice in A.
A Z-order will be simply called an order. Because Z is a PID, an order contains a
Z-basis and this obviously also is a Q-basis of A. Obviously, if G is a finite group
then ZG is an order in QG and Mn(R) is an R-order in Mn(F ). Also, if O is an
order in A then Mn(O) is an order in Mn(A). The integral quaternions

(−1,−1
Z

)
is a

order in the division algbera
(
−1,−1
Q

)
(see Section 4).

With “elementary methods” one can calculate the unit group of some some well
known rings. By ξn we denote a complex root of unity of order n.

1. U(Z) = {−1, 1}.

2. U(Z[i]) = {1,−1, i,−i}.

3. U(Z[ξ3]) = {±1,±ξ3,±ξ23}.

4. U(Z[ξ6]) = 〈ξ6〉.

5. U(Z[ξ8]) = 〈ξ8〉×〈1+
√

2〉 = 〈ξ8〉×〈η3(ξ8)〉 = C8×C∞ and η3(ξ8) = 1+ξ8 +ξ28 .

6. U(ZC5) = ±C5 × 〈g + g4 − 1〉, where C5 = 〈g | g5 = 1〉.

7. U1(ZC8) = C8 × 〈u3,2(g)〉 = C8 × C∞, where C8 = 〈g | g8 = 1〉.

8. U
((−1,−1

Z

))
= Q8, where Q8 is the quaternion group of order 8.

9. (Higman) U1(ZQ8) = Q8

10. U1(ZD8) = B oD8, where B is the subgroup generated by the bicyclic units.
Furthermore, B is a free group of rank 3
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The previous list contains several examples of unit groups that are finite. Actually
all relevant groups are included in these examples as shown by the following result
of Higman.

Theorem 2.4 (Higman) The following conditions are equivalent for a finite group
G.

1. U1(ZG) is finite.

2. U1(ZG) = G.

3. G is an abelian group of exponent dividing 4 or 6, or G ∼= Q8 × E, with Q8

the quaternion group of order 8 and E an elementarry abelian 2-group (i.e. a
direct product of copies of the cyclic group C2 of order 2.

For the proof of this result one can make use of the Bass units and bicylic units
and of the fact that if U1(ZG) is finite then so is the unit group U1(|Z(G× C2)).

So, for almost all finite groups G, the unit group U1(ZG) is infinite. Actually one
can prove that if the unit group U(ZG) is infinite and G is not abelian and not a
Hamiltonian group, i.e. not all subgroups are normal, then U(ZG) contains a free
group of rank 2 generated by two bicyclic units.

To prove this result we show a more general result due to Salwa.

Theorem 2.5 Let R be a torsion-free ring and a, b ∈ R such that a2 = b2 = 0.
Then the group 〈1 + a, 1 + b〉 is free if and only if either ab is transcendental or
ab is algebraic (over Q) and one of the eigenvalues λ of ab is a free point (that is
〈e12(1), e21(λ)〉 is a free group).

Proof. In these notes we are interested in group rings of finite groups. Hence, we
will indicate a proof in the case ab is algebraic. Without loss of generality, we may
assume that R = Z[a, b], that is, R is a Z-module and as a ring it is generated by Z
and a and b. Let A = Q[a, b]. Let J = J(A) denote the Jacobson radical of A. By
assumption ab is algebraic over Q and thus Q[a, b] = Q[ab]+bQ[ab]+Q[ab]a+bQ[ab]a
is finite dimensional over Q and J is a nilpotent ideal. As (1 + Jn)/(1 + Jn+1) is
central in (1+J)/(1+Jn+1) we deduce that 1+J is a nilpotent group and hence so is
(1+J)∩〈1+a, 1+b〉. Thus 〈1+a, 1+b〉 is free if and only if so is 〈1+a, 1+b〉 ⊆ U(A/J).

Now, let ρ denote the regular representation of A over Q. Let λ1, . . . , λk be the
non-zero eigenvalues of ρ(ab). One then can prove that

A = A/J ∼= Qm ⊕
n∏
i=1

M2(Q(µi)),
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with {µ1, . . . , µn} = {λ1, . . . , λk} and the isomorphism associates 1+a and 1+b with
(1, . . . , 1, e12(1), . . . , e12(1)) and (1, . . . , 1, e21(µ1), . . . , e21(µk)) respectively. It follows
that 〈1 + a, 1 + b〉 is free if and only if each 〈e12(1), e21(µi)〉 is a free group and thus
the result follows.

If G is a finite group of order n and R is a commutative ring then the trace
function of RG is the map T : RG → R associating to each element of RG the
coefficient of 1, i.e. T (

∑
g∈G rgg) = r1. Let ρ denote the regular representation given

by left multiplication. Then T (x) = 1
n
tr(ρ(x)), for every x ∈ RG. So, in case R = C

then T can be considered as the restriction of 1
n
tr to CG. Salwa also proved the

following
Recall that a trace function T on a complex algebra A is a C linear map A→ C

such that T (ab) = T (ba) for a, b ∈ A, T (e) is a positive real number for all non-zero
idempotents e ∈ A and T (a) = 0 for every nilpotent element a ∈ A.

Proposition 2.6 Let A be a complex algebra and let T be a trace function on A. If
a, b ∈ A are such that a2 = b2 = 0 and |T (ab)| ≥ 2T (1) then 〈1 + a, 1 + b〉 is a free
group.

Theorem 2.7 (Marciniak-Sehgal) Let G be a finite group and let u be a non-trivial
bicyclic unit then 〈u, u∗〉 is a free group of rank 2.

Proof. Let T be the above mentioned trace map om CG and let u = b(g, h̃) 6= 1

with g, h ∈ G. Let a = u − 1 = (1 − h)gh̃ and b = a∗ = h̃g−1(1 − h−1). Then

ba = h̃g−1(2 − h − h−1)gh̃ = h̃(2 − z − z−1)h̃, with z 6∈ 〈h〉. Therefore, T (ab) =
T (ba) = 2|h| ≥ 4 = 4T (1). Hence, 〈u = 1 + 1, u∗ = 1 + b〉 is free by the previous

Proposition. This proves the result for u = b(g, h̃) 6= 1. A similar argument deals

with u = b(h̃, g).

3 Wedderburn decomposition and primitive cen-

tral idempotents

We begin by recalling the fundamental theorem describing semisimple rings.

Theorem 3.1 (Wedderburn-Artin) A ring R is semisimple if and only if R is iso-
morphic to a finite direct product of matrix rings over division rings.
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So, if R is a semisimple algebra then

R = Mn1(D1)× · · · ×Mnk(Dk) = Re1 × · · · ×Rek,

where n1, . . . , nk are positive integers, each Di is a division ring and each ei is a
primitive central idempotent.

Theorem 3.2 Let R be a ring and G a group. The group ring RG is semisimple if
and only if R is semisimple, G is finite and |G| is invertible in R (i.e. |G|r = 1 for
some r ∈ R). In case R is a field, the latter means that |G| is not a multiple of the
characteristic of R

If F is a field and G is a finite group such that FG is semisimple then

FG = Mn1(D1)× · · · ×Mnk(Dk) = FGe1 × · · · × FGek,

and each simple algebra FGei is as an F -algebra generated by the finite group
Gei = {gei | g ∈ G}. Clearly, Gei ∼= G/SG(ei), where SG(ei) = {g ∈ G | gei = ei},
the stabiliser of ei in G. In case G is abelian then, of course, each ni = 1 and Di

is a field. Since finite subgroups of a field are cyclic, we get that, in this case each
FGei = F (ξni), where ξni is a primitive ni-th root of unity in the algebraic closure
of F . One can then prove the following result.

Theorem 3.3 (Perlis-Walker) Let G be a finite abelian group and F a field of char-
acteristic 0. Let kd denote the number of cyclic subgroups of G of order d. Then

FG ∼=
∏

d, d||G|

F (ξd)
kd

[Q(ξd):Q]

[F (ξd):F ] .

In particular,

QG ∼=
∏

d, d||G|

Q(ξd)
kd .

One can also compute the primitive central idempotents of a rational group al-
gebra of a finite abelian group. To do so, we introduce some notation.

Let G be a finite group and N a normal subgroup of G. Let F be a field whose
characteristic does not divide |G|. In FG consider the elements

ε(G,N) =

{
Ĝ if G = N∏

D/N∈M(G/N)(N̂ − D̂), otherwise

Here M(G/N) denotes the set of the minimal non-trivial normal subgroups D/N of
G/N , with D a subgroup of G containing N . It easily is verified that ε(G,N) is a
central idempotent of FG.
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Lemma 3.4 If e is a primitive central idempotent of QG such that QG is a field
then e = ε(G,N) where N = SG(e) and QGe = Q(ξd), where d = |G/N |.

Corollary 3.5 Let G be a finite abelian group. The primitive central idempotents
of QG are the elements ε(G,N) with N a subgroup of G such that G/N is a cyclic
group.

Note that primitive central idempotents of a complex group CG of a finite group
also are well known. Indeed, denote by Irr(G) the set of the irreducible complex
characters of G. If χ ∈ Irr(G) then

e(χ) =
χ(1)

|G|
∑
g∈G

χ(g−1)g

is a primitive central idempotent of CG. Moreover, it is the unique primitive central
idempotent e ∈ CG such that χ(e) 6= 0. One can replace, in the above, the field
C by any splitting field F of G. That is, FG =

∏
iMni(F ). The Brauer splitting

theorem states that Q(ξ|G|) is a splitting field of G (where ξ|G| is a primitve |G|-th
root of unity). More generally, it says that if F is a field and FG is semisimple then
F (ξ|G|) is a splitting field of G.

If FG is not necessarily split then it much more complicated to describe the prim-
itive central idempotents of FG. In theory one can determine the primitive central
idempotents of FG, via Galois-descent, from the primitive central idempotents of
F (ξ|G|)G. However this does not necessarily result in some nice generic formulas.
However, for some classes of groups one can obtain nice descriptions in terms of the
group G. The class includes the abelian-by-supersolvable groups. We will explain
such formulas for QG.

We need to introduce some terminology and notation.

Proposition 3.6 Let G be a finite group and H and K subgroups of G such that K ⊆
H. Then, Lin(H,K) = {χ | χ a linear complex character with Ker(χ) = K} 6= ∅ if
and only if the following conditions hold

(S1) K CH,

(S2) H/K is cyclic.

Assume that (S1) and (S2) hold for χ ∈ Lin(H,K). Then χG is absolutely irreducible
if and only if (H,K) satisfies the following condition:
(S3) for every g ∈ G \H there exists h ∈ H such that (h, g) ∈ H \K.

A Shoda pair of a finite group G is a pair (H,K) of subgroups of G satisfying
conditions (S1), (S2) and (S3).
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Proof. The first part follows from the fact that every finite subbgroup of a field is
cyclic. The second part is due to Shoda.

Theorem 3.7 (Olivieri, del Rı́o, Simón) If (H,K) is a Shoda pair of a finite sub-
group G and χ ∈ Lin(H,K) then χG is an absolutely irreducible character and there
is a unique primitve central idempotent e of QG, denoted, eQ(χ), such that χG(e) 6= 0.
Furthermore,

eQ(χG) =
[CenG(ε(H,K)) : H]

[Q(χ) : Q(χG)]
e(G,H,K),

where
e(G,H,K) =

∑
t∈T

ε(H,K)t

and T is a right transversal of CenG(ε(H,K)) in G. The unique Wedderburn com-
ponent containing e(G,H,K) is QGe(G,H,K), it will be denoted AQ(G,H,K).

A character of a finite group is said to be monomial if it is the character afforded
by a representation induced from a linear character. One says that G is a monomial
group if every irreducible complex character of G is monomial.

Corollary 3.8 A finite group G is monomial if and only if every primitive central
idempotent of QG is of the form qe(G,H,K) for (H,K) a Shoda pair of G and
q ∈ Q.

This result allows to compute all primitive central idempotents of QG for G a
finite monomial group and this without actually computing the monomial absolutely
irreducible characters of G. It suffices to compute all the Soda pairs (H,K) of G,
compute e(G,H,K) and then compute the rational q such that qe(G,H,K) is an
idempotent. Note that different Shoda pairs can determine the same primitive central
idempotent. Janssens determined a formula for all primitive central idempotents of
QG for arbitrary finite groups G (the main tool used is Artin’s Induction Theorem).
Note that the formula yields a rational linear combination of elements of the form
e(G,C,C) where C is a cyclic subgroup of G; but in general e(G,C,C) is not an
idempotent.

So, for some classes of groups one can compute explicitly the primitive central
idempotents e. A next step is to determine a description of the simple component
QGe. In order to compute the unit group U(ZG) one would like to obtain a concrete
description that yields control on the rational representations (without having to
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calculate the character table of G). We now show how this can be done for e(G,H,K)
provided the Shoda Pair satisfies some additional conditions.

A useful lemma is the following.

Lemma 3.9 Let H and K be subgroups of a finite group G such that K C H and
H/K is cyclic. Assume ε(H,K)ε(H,K)g = 0 for all g ∈ G \ CenG(ε(H,K)). Then
CenG(ε(H,K)) = NG(K) = {g ∈ G | g−1Kg = K}.

Proposition 3.10 Let G be a finite group and let H and K be subgroups such that
K ⊆ H. The following conditions are equivalent.

1. (H,K) is a Shoda pair of G, H C NG(K) and the different G-conjugates of
ε(H,K) are orthognal.

2. (H,K) is a strong Shoda pair, that is,

(SS1) H CNG(K),

(SS2) H/K is cyclic and maximal abelian subgroup of NG(K)/K and

(SS3) for every g ∈ G \NG(K), ε(H,K)ε(H,K)g = 0

3. The following conditions hold

(SS1’) H C Cen(ε(H,K)),

(SS2’) H/K is cyclic and a maximal abelian subgroup of Cen(ε(H,K)) and

(SS3’) for every g ∈ G \ Cen(ε(H,K)), ε(H,K)ε(H,K)g = 0.

A finite group is said to be strongly monomial if every irreducible complex character
of G is strongly monomial, i.e. it is of the form χG for χ ∈ Lin(H,K) and (H,K) a
strong Shoda pair of G. Note that for such a group every primitive central idempotent
of QG is of the form e(G,H,K) with (H,K) a strong Soda pair of G.

Theorem 3.11 Every abelian-by-supersolvable finite group is strongly monomial.

A useful fact to prove this result is the following. If G is finite supersolvable
group and N a maximal abelian normal subgroup of G then N is a maximal abelian
subgroup of G. Prove this as an excercise.

Proposition 3.12 Let (H,K) be a pair of subgroups of a finite group G such that
KCHCG and satisfying (SS2) (i.e. H/K is cyclic and a maximal abelian subgroup
of NG(K)/K). Then (H,K) is a strong Shoda pair of G.
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Theorem 3.13 Let G be a finite metabelian group and let A be a maximal abelian
subgroup of G containing the commutator subgroup G′. The primitive central idem-
potents of QG are the elements of the form e(G,H,K) where (H,K) is a pair of
subgroups of G satisfying the following conditions:

1. H is a maximal element in the set {B ≤ G | A ≤ B and B′ ⊆ K ⊆ B} and

2. H/K is cyclic.

One can describe the simple components of QG for G a finite strongly monomial
group.

Theorem 3.14 Let (H,K) be a strong Shoda pair of the finite group G and χ ∈
Lin(H,K), N = NG(K), n = [G : N ], h = [H : K] and x = xK a generator of the
group H/K. The following properties hold.

1. N = CenG(ε(H,K)),

2. eQ(χG) = e(G,H,K),

3. The mapping σ : N/H → Gal(Q(ξh)/Q(χG)) defined by y 7→ σy, for y ∈ N/H,
with

σy(ξh) = ξih

where i is such that yxy−1 = xi, is an isomorphism.

4. AQ(G,H,K) ∼= Mn (Q(ξh) ∗ (N/H)) ∼= Mn(Q(ξh)/Q(χG), f), where f is the
element of H2(N/H,H/K) associated to the extension

1→ H/K
χ∼= 〈ξh〉 → N/K → N/H

σ∼= Gal(Q(ξh)/Q(χG))→ 1.

More precisely, for every a ∈ N/H fix a preimage ua of a ∈ N/K. Then,

f(a, b) = ξjh,

where j is such that uaub = xjuab. More explicit, choose a right transversal T
of H in N . Then

Q(ξh) ∗ (N/H) =
∑
t∈T

Q(ξh)ut

The action α : N/H → Aut(Q(ξh)) is defined in part (3) as follows. For
y ∈ N/H, αy = σy. The twisting f : N/H × N/H → U(Q(ξh)) is defined
by f(x, y) = ξjh if txty = xjkxytxy with tx, ty ∈ T so that txH = x, tyH = y,
kxy ∈ K and j ∈ Z.

16



5. Let F be a field of characteristic zero and let GF = Gal(F (χ)/F (χG)). Consider
GF as a subgroup of GQ via the restriction GF → GQ. Then

AF (χG) = Mnd(F (ξh)/F (χG), f ′),

where d = [Q(ξh):Q(χG)]
[F (ξh):F (χG)]

and f ′(σ, τ) = f(σ|Q(ξh), τ |Q(ξh)) (and this is the unique

simple component FGe with χG(e) 6= 0).

structure of unit group of abelian group rings, Higman page 228

4 Rational Wedderburn decomposition

Let F be a field of characteristic different from 2. Recall that an F -algebra A is said
to be a quaternion algebra over F if there exists a, b ∈ U(F ) such that

A =

(
a, b

F

)
=

F 〈i, j〉
(i2 = a, j2 = b, ij = −ji)

= F1 + Fi+ Fj = Fk,

where k = ij. Recall the norm map N :
(
a,b
F

)
→ F , defined by x = x0 + x1i+ x2j +

x3k 7→ x = x0 − x1i − x2j − x3k, (with x0, x1, x2, x3 ∈ F ). The latter defines an
involution on

(
a,b
F

)
, called the quaternion conjugation.

Note that A =
(
a,b
F

)
is a simple algebra with center F (i.e. it is a central simple

F -algebra) and thus it is either a division algebra or it is isomorphic to M2(F ). The
following conditions are equivalent:

1. A = M2(F ),

2. N(x) = 0 for some 0 6= x ∈ A,

3. u2 = av2 + bw2 for some 0 6= (u, v, w) ∈ F 3.

Definition 4.1 A simple finite dimensional rational algebra is said to be exceptional
if it is one of the following types:

type 1: a non-commutative division algebra other then a totally definite quaternion
algebra

(
a,b
F

)
over a number field F , that is, F is totally real and a, b < 0.

type 2: a 2× 2-matrix ring over the rationals, a quadratic imaginary extension of the
rationals or over a totally definite quaternion algebra over Q.
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Amitsur described the finite subgroups that are contained in an exceptional simple
component of type 1. Note that, because of Dirichlet’s unit theorem (see below) and
a result of Kleinert, the exceptional simple components of type 2 are precisely those
M2(D) for which an order O in D has only finitely many units. Further, all finite
dimensional rational non-commutative division algebras are of type 1 except those
for which the unit group of an order has a central subgroup of finite index.

For a field F and a A a finite dimensional semisimple rational algebra A, we
denote by rF (A) the number of of simple Wedderburn components of F ⊗Q A.

Theorem 4.2 (Dirichlet’s Unit Theorem) Let F be a number field and assume that
F has r real embeddings and s pairs of complex non-real embedding. If R is the ring
of integers of F then

U(R) = T × A,

where T is a finite group formed by roots of units in F and A is a free abelian group
of rank r + s− 1. Note that this rank equals rR(F )− rQ(F ) and F ⊗Q R ∼= Rr ×Cs.

We recall some notions concerning the rational group algebra QG. Let e1, . . . , en
be the primitive central idempotents of QG, then

QG = QGe1 ⊕ · · · ⊕QGen,

where each QGei is identified with the matrix ring Mni(Di) for some division algebra
Di. For every i, let Oi be an order in Di. Then Mni(Oi) is an order in QGei. Denote
by GLni(Oi) the group of invertible matrices in Mni(Oi).

Let O be an order in a finite dimensional rational division algebra D. Then

SLn(O) = {x ∈ GLn(O) : nr(x) = 1},

where nr is the reduced norm, and for subset I in O we put

E(I) = 〈I + xElm | x ∈ I, 1 ≤ l,m ≤ ni, l 6= m, Elm a matrix unit〉 ⊆ SLn(O).

Theorem 4.3 (Bass-Vaserštĕın-Liehl-Venkataramana)
Let O be an order in a finite dimensional rational division algebra D. Assume that
n is an integer and n ≥ 2. If the simple algebra Mn(D) is not exceptional then
[SLn(O) : E(I)] <∞ for any non-zero ideal I of O.

In this section we restrict the type of 2 × 2-matrices which can occur as simple
components in the Wedderburn decomposition of QG for finite groups G. We also
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give a classification of those finite groups which have a faithful exceptional 2 × 2-
matrix ring component (i.e. G embeds naturally into the simple component).

Surprisingly, if one assumes M2(D) to be an exceptional component of QG, then

the possible parameters d (resp. (a, b)) of D = Q(
√
−d) (resp.

(
a,b
Q

)
) are very limited.

It was proven by Eisele, Kiefer and Van Gelder that only a finite number of division
algebras can occur and, moreover, the possible parameters were described.

Theorem 4.4 Let G be a finite group and e a primitive central idempotent of QG
such that QGe is exceptional. Then

1. If QGe is of type 2 over a field Q(
√
−d), then d ∈ {0,−1,−2,−3},

2. If QGe is of type 2 over a quaternion algebra
(
a,b
Q

)
,

then (a, b) ∈ {(−1,−1), (−1,−3), (−2,−5)},

3. If G is cut, i.e. all central units are trivial, and QGe ∼= M2

(
−1,−3
Q

)
or QGe ∼=

M2(Q(
√
−2)) then there exists another primitive central idempotent e′ such that

QGe′ ∼= M2(Q) or QGe′ ∼= M2(Q(i)),

4. There exists a primitive central idempotent e of QG such that QGe ∼= M2

(
−2,−5
Q

)
if and only if G maps onto G240,90,

5. If G is solvable and cut, then QGe � M2

(
−2,−5
Q

)
,

6. If G is cut, then QGe cannot be of type 1.

Definition 4.5 Let R be a domain. One calls R a left Euclidean ring if there exists
a map δ : R \ {0} → N such that

∀ a, b ∈ R with b 6= 0, ∃ q, r ∈ R : a = qb+ r with δ(r) < δ(b) or r = 0.

One calls R a right Euclidean ring if there exists a map δ : R \ {0} → N such that

∀ a, b ∈ R with b 6= 0, ∃ q, r ∈ R : a = bq + r with δ(r) < δ(b) or r = 0.

All the fields and division algebras appearing in the previous theorem have the
peculiar property to contain a Euclidean order O which therefore is maximal and
unique up to conjugation. This yields that also all the 2× 2-matrix algebras in the
Thoerem have, up to conjugation, a unique maximal order, namely M2(O). Recall
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that in case of Q(
√
−d), with d ∈ {0, 1, 2, 3}, the unique maximal order is their

respective ring of integers Id and in case of H2,H3,H5 the respective maximal orders
can easily be described. Recall that we use the following shorthands for quaternion
algebras appe aring:

H2 =

(
−1,−1

Q

)
, H3 =

(
−1,−3

Q

)
and H5 =

(
−2,−5

Q

)
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SmallGroupID Structure cut d` c` exceptional components of type (II) quotients

[6, 1] S3 X 2 ∞ 1×M2(Q)
[8, 3] D8 X 2 2 1×M2(Q)
[12, 4] D12 X 2 ∞ 2×M2(Q) [6, 1]
[16, 6] C8 : C2 X 2 2 1×M2(Q(i))
[16, 8] QD16 X 2 3 1×M2(Q), 1×M2(Q(

√
−2)) [8, 3]

[16, 13] (C4 × C2) : C2 X 2 2 1×M2(Q(i))
[18, 3] C3 × S3 X 2 ∞ 1×M2(Q), 1×M2(Q(

√
−3)) [6, 1]

[24, 1] C3 : C8 × 2 ∞ 1×M2(Q), 1×M2(Q(i)) [6, 1]
[24, 3] SL(2, 3) X 3 ∞ 1×M2(Q(

√
−3))

[24, 5] C4 × S3 X 2 ∞ 2×M2(Q), 1×M2(Q(i)) [6, 1], [12, 4]
[24, 8] (C6 × C2) : C2 X 2 ∞ 3×M2(Q), 1×M2(Q(

√
−3)) [6, 1], [8, 3], [12, 4]

[24, 10] C3 ×D8 X 2 2 1×M2(Q), 1×M2(Q(
√
−3)) [8, 3]

[24, 11] C3 ×Q8 X 2 2 1×M2(Q(
√
−3))

[32, 8] (C2 × C2).(C4 × C2) X 2 3 2×M2(Q), 1×M2(H2) [8, 3]
[32, 11] (C4 × C4) : C2 X 2 3 2×M2(Q), 2×M2(Q(i)) [8, 3]
[32, 44] (C2 ×Q8) : C2 X 2 3 2×M2(Q) [8, 3]
[32, 50] (C2 ×Q8) : C2 X 2 2 1×M2(H2)
[36, 6] C3 × (C3 : C4) × 2 ∞ 1×M2(Q), 2×M2(Q(

√
−3)) [6, 1], [18, 3]

[36, 12] C6 × S3 X 2 ∞ 2×M2(Q), 2×M2(Q(
√
−3)) [6, 1], [12, 4], [18, 3]

[40, 3] C5 : C8 × 2 ∞ 1×M2(H5)
[48, 16] (C3 : Q8) : C2 X 2 ∞ 3×M2(Q), 1×M2(Q(

√
−2)), 1×M2(Q(

√
−3)), 1×M2(H2) [6, 1], [8, 3], [12, 4], [16, 8], [24, 8]

[48, 18] C3 : Q16 × 2 ∞ 3×M2(Q), 1×M2(Q(
√
−3)), 1×M2(H3) [6, 1], [8, 3], [12, 4], [24, 8]

[48, 28] SL(2, 3).C2 × 4 ∞ 1×M2(Q), 1×M2(H3) [6, 1]
[48, 29] GL(2, 3) X 4 ∞ 1×M2(Q), 1×M2(Q(

√
−2)) [6, 1]

[48, 33] ((C4 × C2) : C2) : C3 × 3 ∞ 1×M2(Q(i))
[48, 39] (C4 × S3) : C2 X 2 ∞ 4×M2(Q), 1×M2(Q(i)), 1×M2(H3) [6, 1], [12, 4], [16, 13]
[48, 40] Q8 × S3 X 2 ∞ 4×M2(Q), 1×M2(H2) [6, 1], [12, 4]
[64, 37] (C4 × C2).(C4 × C2) X 2 4 2×M2(Q), 2×M2(H2) [8, 3]
[64, 137] (C4 : Q8) : C2 X 2 3 6×M2(Q), 2×M2(H2) [8, 3]
[72, 19] (C3 × C3) : C8 × 2 ∞ 2×M2(H3)
[72, 20] (C3 : C4)× S3 X 2 ∞ 4×M2(Q), 1×M2(Q(i)), 1×M2(H3) [6, 1], [12, 4], [24, 5]
[72, 22] (C6 × S3) : C2 X 2 ∞ 5×M2(Q), 2×M2(Q(

√
−3)), 1×M2(H3) [6, 1], [8, 3], [12, 4], [24, 8]

[72, 24] (C3 × C3) : Q8 × 2 ∞ 4×M2(Q), 1×M2(H3) [6, 1], [12, 4]
[72, 25] C3 × SL(2, 3) X 3 ∞ 4×M2(Q(

√
−3)) [24, 3]

[72, 30] C3 × ((C6 × C2) : C2) X 2 ∞ 3×M2(Q), 6×M2(Q(
√
−3)) [6, 1], [8, 3], [12, 4], [18, 3], [24, 8], [24, 10], [36, 12]

[96, 67] SL(2, 3) : C4 X 4 ∞ 1×M2(Q), 2×M2(Q(i)) [6, 1]
[96, 190] (C2 × SL(2, 3)) : C2 X 4 ∞ 2×M2(Q) [6, 1], [12, 4]
[96, 191] SL(2, 3).C2) : C2 × 4 ∞ 2×M2(Q) [6, 1], [12, 4]
[96, 202] ((C2 ×Q8) : C2) : C3 X 3 ∞ 1×M2(H2)
[120, 5] SL(2, 5) × ∞ 1×M2(H3)
[128, 937] (Q8 ×Q8) : C2 X 3 4 6×M2(Q), 4×M2(H2) [8, 3]
[144, 124] SL(2, 3).C2) × 4 ∞ 4×M2(Q), 4×M2(H3) [6, 1], [48, 28]
[144, 128] S3 × SL(2, 3) X 3 ∞ 1×M2(Q), 3×M2(Q(

√
−3)), 1×M2(H2) [6, 1], [18, 3], [24, 3]

[144, 135] (C3 × C3) : (C8 : C2) X 2 ∞ 1×M2(Q(i)), 4×M2(H3) [16, 6]
[144, 148] (C3 × C3) : ((C4 × C2) : C2) X 2 ∞ 8×M2(Q), 1×M2(Q(i)), 4×M2(H3) [6, 1], [12, 4], [16, 13], [48, 39]
[160, 199] ((C2 ×Q8) : C2) : C5 × 3 ∞ 1×M2(H2)
[192, 989] (SL(2, 3) : C4) : C2 X 4 ∞ 3×M2(Q), 1×M2(Q(

√
−3)), 2×M2(H2) [6, 1], [8, 3], [12, 4], [24, 8]

[240, 89] SL(2, 5).C2 × ∞ 1×M2(H5)
[240, 90] SL(2, 5) : C2 X ∞ 1×M2(H5)
[288, 389] (C3 × C3) : ((C4 × C4) : C2) X 3 ∞ 2×M2(Q), 2×M2(Q(i)), 2×M2(H3) [8, 3], [32, 11]
[320, 1581] (((C2 ×Q8) : C2) : C5).C2 × 4 ∞ 2×M2(H2)
[384, 618] ((Q8 ×Q8) : C2) : C3 X 3 ∞ 1×M2(H2)
[384, 18130] ((Q8 ×Q8) : C3) : C2 X 4 ∞ 1×M2(Q), 1×M2(H2) [6, 1]
[720, 409] SL(2, 9) × ∞ 2×M2(H3)
[1152, 155468] (((Q8 ×Q8) : C3) : C2) : C3 X 4 ∞ 1×M2(Q), 1×M2(Q(

√
−3)), 1×M2(H2) [6, 1], [18, 3]

[1920, 241003] C2.((C2 × C2 × C2 × C2) : A5) × ∞ 1×M2(H2)
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5 Generators for a subgroup of finite index

Let G be a finite group. We know that ZG is an order in QG and that ZG only has
trivial idempotents.

Indeed,

Lemma 5.1 Let K be a field extension of Q and let e =
∑

g∈G egg ∈ KG, with each

eg ∈ K. If e2 = e 6∈ {0, 1} then e1 is a rational number in the interval (0, 1).

Proof. This will be proven in the lectures on torsion units.

Now if e1, . . . , en are the primitive central idempotents ofQG then also
∑n

i=1 ZGei
is an order in QG that contains ZG. Their unit groups, however, do not differ a lot
in size. Indeed we have the following properties.

Lemma 5.2 Let A be a semisimple finite dimensional rational algebra. Let e1, . . . , en
be the primitive central idempotents of A.

1. Every element of an order O in A is integral over Z.

2. The intersection of two orders of A is again an order in A.

3. Every order of A is contained in a maximal order of A, say M. Furthermore,
M =

∑n
i=1Mei and each Mei is a maximal order in Aei.

4. Suppose O1 ⊆ O2 are two orders in A. Then

(a) u ∈ O1 is invertible in O2 if u−1 ∈ O2.

(b) the index of the unit groups (U(O2) : U(O1)) is finite.

Proof. We only prove part (4).
(a) Let u ∈ O1 and assume u−1 ∈ O2. Using indices of additive subgroups, we

get [O2 : uO1] = [uO2 : uO1] ≤ [O2 : O1]. Hence, uO2 = O1 and thus u is invertible
in O1. The converse is obvious.

(b) Since O2 is a free Z-module containing O1, they both have equal Z-rank,
say n. Thus the index of the addtive groups satisfies [O2 : O1] = m < ∞. Hence,
mO2 ⊆ O1. Suppose now that u, v ∈ U(O2) such that u + mO2 = v + mO2. Then
u−1v−1 ∈ mO2 ⊆ O1 and thus u−1v ∈ O1. Similarly, v−1u ∈ O1. So, u−1v ∈ U(O1).
Hence, we have shown that (U(O2) : U(O1) ⊆ [O2 : mO2] <∞.
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Hence, to compute a subgroup of finite index in U(ZG) it is sufficient to construct
for each primitive central idempotent ei of QG units of U(ZG), that belong to ZGei,
and that generate a subgroup of finite index in U(ZGei). The next proposition shows
that for the latter we have to describe units that contribute to a large subgroup of
the center of U(ZGei) and to a large subgroup of the units of reduced norm one in
ZGei.

Proposition 5.3 Let O be an order in a simple finite dimensional rational algebra
A. Then GLn(O) contains a subgroup of finite which is isomorphic to a subgroup of
finite index in SLn(O) × U(R), where R is the unique maximal order in the center
of A.

Let us now focus on the units of reduced norm one. For this a crucial and well
known lemma is the following.

Lemma 5.4 Let D be a finite dimensional rational division algebra and let n be an
integer with n > 1. If f is a non-central idempotent in Mn(D) then there exist matrix
units Ei,j, with 1 ≤ i, j ≤ n (that is,

∑n
i=1Ei,i = 1 and Ei,jEk,l = δj,kEi,l) such that

f = E1,1 + · · ·+ El.l,

with 0 < l < n. Moreover, Mn(D) = Mn(D′), with D′ the centraliser of all Ei,j.

One can then prove the following result.
LetA be a semisimple finite dimensional rational algebra such thatAG is semisim-

ple. Let R be an order in A and let x1, . . . , xm be a generating set of of R as an
Z-module. For a given set of idempotents F of AG we put

GBicF(RG) = 〈b(xig, f), b(f, xig) | f ∈ F , g ∈ G, 1 ≤ i ≤ m〉.

If R = Z then we simply put
GBicF(G).

If, furthermore, F = {ĝ | g ∈ G} then we put

Bic(G)

for this group.
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Theorem 5.5 (Jespers-Leal) Let G be a finite group and R an order in a semisimple
finite dimensional algebra A. Assume AG is semisimple, e is a primitive central
idempotent of AG and O is an order in AGe. Assume the simple component AGe
is not exceptional. If f is an idempotent of AG such that ef is non-central (in
AGe) then GBic{e}(RG) contains a subgroup of finite index in the reduced norm one
elements of 1− e+O.

Proof. Let nf be the minimal positive integer such that nff ∈ RG. Let x1, . . . , xm
be a generating set of R as a Z-module. As AGe = Mn(D), for some division algebra
D, by Lemma 5.4 there is a set of matrix units {Ei,j : 1 ≤ i, j ≤ n} of AGe with
f = E1,1 + · · ·+El,l for some 0 < l < n. Recall from Lemma 5.2 that the unit groups
of two orders in AGe are commensurable. Hence, without loss of generality, we may
assume that Mn(O) is the order chosen in the statement, with O an order in D. Let
J = GBic{f}(RG). Note that[

1 + n2
ffxig(1− f)

]k [
1 + n2

ffxjh(1− f)
]l

=
[
1 + n2

ff(kxig + lxjh)(1− f)
]
,

for every k, l ∈ Z, g, h ∈ G and 1 ≤ i, j ≤ m. So, the group generated by these units
contains all elements of the form

1 + n2
ffα(1− f), and 1 + n2

f (1− f)αf,

with α ∈ RG.
Since {

1 + n2
ffα(1− f), 1 + n2

f (1− f)αf : α ∈ RG
}
⊆ J,

it follows that{
1 + nen

2
ffα(1− f)e, 1 + nen

2
f (1− f)αfe : α ∈ RG

}
⊆ J.

Let i ≤ l and l + 1 ≥ j ≥ n. Then,

fOEi,j(1− f)e = OEi,j.

Hence, as O is a finitely generated Z-module, there exists a positive integer ni,j such
that

1 + ni,jOEi,j ⊆ J ∩ SLn(O).

And similarly,
1 + nj,iOEj,i ⊆ J ∩ SLn(O),

for some positive integer nj,i.
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So we have shown the existence of a positive integer x with

1 + xOEi,j ⊆ J ∩ SLn(O) and 1 + xOEj,i ⊆ J ∩ SLn(O),

for all 1 ≤ i ≤ l and l + 1 ≤ j ≤ n.
Now let 1 ≤ i, j ≤ l, i 6= j and α ∈ O. Then one easily verifies that

1 + x2αEi,j = (1 + xαEi,l+1, 1 + xEl+1,j) ∈ J ∩ SLn(O).

Similarly, for l + 1 ≤ i, j ≤ ni, i 6= j, it follows that

1 + x2OEi,j ⊆ J ∩ SLn(O).

Because of the assumptions, the result now follows from Theorem 4.3.

The next step is to construct in a simple component QGe a non-central idempo-
tent. This can be done if Ge is not fixed point free and one can show that this can
be done with an idempotent of the type ĝe. Recall that a finite group is said to be
fixed point free if it has an (irreducible) complex representation ρ such that 1 is not
an eigenvalue of ρ(g) for all 1 6= g ∈ G. Such groups show up naturally, as every
non-trivial finite subgroup of a division algebra is fixed point free.

Indeed, Let e be a primitive central idempotent of Q(ξ)G with Ge not commuta-
tive and Ge not fixed point free. Thus, there exists a primitive central idempotent
e1 of CGe such that the non-linear complex representation ρ : G→ (CG)e1 mapping
x onto xe1 has eigenvalue 1 for some ρ(g), with g ∈ G and ge1 6= e1. Since ρ(g) is
diagonalizable one may assume that

ρ(g) =

(
Ij 0
0 D

)
with 1 ≤ j < n and D = diag(ξj+1, . . . , ξn)

and ξj+1, . . . , ξn are roots of unity different from 1. Consequently

ρ(ĝ) =

(
Ij 0
0 0

)
.

Hence ĝe1 is a non-central idempotent of CG. It follows that ĝe is a non-zero idem-
potent in Q(ξ)Ge. Furthermore ĝe 6= e, because otherwise ĝe1 = ĝe1e = e1e = e1, a
contradiction.

Now it remains to find units that cover the center of U(ZG). This is done via
a beautiful result of Bass-Milnor. It says that the units of Z(R)C, where C runs
through the cyclic subgroups of G, give a subgroup of finite index in K1(RG). Now
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another beautiful result of Bass-Milnor says that the Bass units uk,m(ξig) generate a
subgroup of finite index in U(Z[ξ]〈g〉). One knows even specific Bass units that are
a basis of free abelian subgroup of finite index..

All the above mentioned results then give the following result.

Theorem 5.6 Let G be a finite group and ξ a root of unity. Suppose that Q(ξ)G
does not have exceptional simple components. Let C = {ĝ | g ∈ G}. Suppose that
for every primitive central idempotent e of QG the group Ge is not fixed point free.
Then

〈GBicC(Z[ξ]G) ∪ Bass (Z[ξ]G)〉

is of finite index in U(Z[ξ]G).

The result also implies that the unit group is finitely generated. One has a much
stronger result due to Siegel.

Theorem 5.7 Let O be an order in a finite dimensional semisimple rational algebra
A. Then U(O) is finitely presented.

We give some examples of finite 2-groups G such that the Bass units together
with the bicyclic units do not generate a subgroup of finite index in U(ZG). The
following result is due to Jespers and Parmenter.

Theorem 5.8 Let D8 = 〈a, b | a4 = 1, b2 = 1, ba = a3b〉, the quaternion group
of order 8. Let G be a finite 2-group and suppose there exists an epimorphism f :
G → D8. If at least two of the elements b, ab, a2b, a3b do note have preimages in G
of order 2, then the Bass units together with the bicyclic units in ZG do not generate
a subgroup of finite index in U(ZG).

In particular, this applies to the groups Q16, 〈a, b mod a8 = 1, b2 = 1, ba = a3b〉,
C4 o C2 and (〈z〉2 × 〈a〉4)o 〈b〉2, with z central and ab = za.

Proof. The Z-linear extension of f to a ring epimorphism ZG → ZD8, as well as
the induced group homomorphism U(ZG)→ U(ZD8), we also denote by f .

Since every Bass unit of ZD8 belongs to D8, every Bass unit in ZG must map to
an element of D8.

Next consider a bicyclic unit b(g, h̃) in ZG. Then either f(b(g, h̃)) = 1 or

f(b(g, h̃)) = 1 + c(1− f(g))f(h)f̃(g) = (1 + (1− f(g))f(h)f̃(g))c,

where c = o(g)
o(f(g))

.

26



The bicyclic units of ZD8 are u1 = b(a, b̃), u2 = b(a, ãb), u3 = b(a, ã2b) and

u4 = b(a, ã3b). Further u4 = u−13 u−12 u−11 . It is easily verified that the given condition
on G yields that at least two of these bicyclic units are not images of bicyclic units
in ZG.

It is known that

V = U(ZD8) ∩ (1 + Ker(aug)(1− a2)) = U(ZD8) ∩ (1 + Ker(aug)(1− a))

is a normal complement of the trivial units ±D8 and it is a free group of rank three,
generated by the bicyclic units of the type b(g, h̃). Let B be the subgroup of U(ZG)

generated by the Bass units and the bicyclic units of the type b(g, h̃). Since G is
a 2-group, it follows from the remarks above that f(B) is a proper subgroup of V
requiring at most 4 generators. Since V is a free group of rank 3, we conclude that
f(B) must be of infinite index in V . Indeed, by the Nielsen-Schreier, if f(B) has
index n in V then f(B) is free of rank 2n + 1. As f(B) is generated by at most 4
elements, necessarily n = 1 and hence f(B) = V , a contradiction.

For a positive integer i, let Vi denote the subgroup of V consisting of those units
which can be written in the form 1 + 2iβ(1 − a2) for some β ∈ ZD8. Because
(1 − a2)2 = 2(1 − a2), it follows that each Vi ⊆ V . Also note that for all i, Vi is a
normal subgroup of V and that the groups V/V1 and Vi/Vi+1 are of exponent 2 and
thus abelian. Since U(ZD8) is finitely generated, so is the group V . Consequently,
V/V1 and all Vi/Vi+1 are finite. So, each V/Vi is finite.

Let K = Ker(f). Obviously, |K| = 2l for some l ≥ 1. We claim that Vl ⊆
f(U(ZG)). Indeed, let 1 + 2lβ(1− a2) ∈ Vl. Choose a1, β1 ∈ ZG such that f(a1) = a

and f(β1) = β. Put u = 1 + K̃β1(1 − a21). Clearly uK̂ = K̂(1 + 2lβ1(1 − a21)) is a

unit in ZGK̂ ∼= ZD8. Since u(1− K̂) = 1− K̂ is a unit in ZG(1− K̂), we get that

u ∈ ZG is a unit in the order ZGK̂ ⊕ ZG(1 − K̂). Hence, because of Lemma 5.2,
u ∈ U(ZG). Obviously, f(u) = 1 + 2lβ(1− a2). So, u ∈ f(U(ZG)) and the claim has
been proved.

Suppose that f(B) is of finite index in f(U(ZG)). Since f(B) ⊆ V , this yields
f(B) is of finite index in f(U(ZG))∩V . Because Vl ⊆ f(U(ZG))V and Vl is of finite
index in V , it follows that f(B) is of finite index V . However this contradicts the
earlier fact that f(B) is of infinite index in V . Therefore, we have shown that f(B)
is of infinite index in f(U(ZG)).

To finish the proof we note that if f(b(g, h̃)) 6= 1 then it is a power of a bi-

cyclic unit b(f̃(h), f(g)) = 1 + (1 + f(h))f(g)(1 − f(h)). Since b(f̃(h), f(g)) =

b(f(g), ã2f(h)), we obtain that f(Bix(G)) = f
(
〈b(g, h̃) | g, h ∈ G〉〉

)
. So, from the
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previous, f (〈Bix(G) ∪ Bass(G)〉) is of infinite index in f(U(ZG)) and thus 〈Bix(G)∪
Bass(G)〉 is of infinite index in U(ZG).

6 Constructions of central units from Bass units

The rank of the central units also can be determined.

Theorem 6.1 Let A be a finite dimensional semisimple rational algebra and O an
order in A. Then

U(Z(O)) = T × F,
where T is a finite group and F is a free abelian group of rank rR(A)− rQ(A).

If G is a finite group then for any finite field extension F of Q, rF (FG) is the
number of irreducible F -characters of G and it also equals the number of Wedderburn
components of FG.

Hence
Z(U(ZG)) = ±Z(G)× F,

where F is a free abelian group of rank rR(RG)− rQ(QG).
In particular, if G is a finite abelian group of order n. Then F has rank

n+ 1 + k2 − 2c

2
=

∑
d|n, d>2

kd

(
ϕ(d)

2
− 1

)
,

where c is the number of cyclic subgroups of G and kd is the number of cyclic subgroups
of G of order d.

A result of Artin says that if G is a finite group then rQ(QG), the number
of irreducible Q-characters of G, equals the number of conjugacy classes of cyclic
subgroups of G.

As a consequence one obtains the following formula for the rank of the central
units in a group ring.

Corollary 6.2 Let G be a finite group. Then, the rank of Z(U(ZG)) is

c+ c′

2
− d,

where c′ is the number of conjugacy classes of G closed under taking inverses and d
is the number of conjugacy classes of cyclic subgroups of G
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Ritter and Sehgal determined necessary and sufficient conditions for all central
units to be trivial. A proof relies on the following lemma.

The following notation is used. Let G be a finite group and K a field. One says
that two elements g and h of G are K-conjugate in G if there exists r ∈ UK(n) =
{r ∈ Zn | σ(ξn) = ξrn, for some σ ∈ Gal(K(ξn)/K)} (ξn a primitive n-th root of
unity in an extension of K) such that g and hr are conjugate in G; where n is the
exponent of G. This defines an equivalence relation ∼K in G. The equivalence class
containing g ∈ G is called the K-conjugacy class of g in G and it is denoted gGK . The
conjugacy class of g in G is simply denoted gG. Hence,

gGK = ∪r∈UK(n)(g
r)G.

Note that if K contains a primitive n-th root of unity, then gGK = gG. Further note
that g ∼Q h if and only if g is conjugate of hr in G for some r coprime with n;
equivalently 〈g〉 is a conjugate of 〈h〉 in G. One can also easily verify that g ∼R h if
and only if g is a conjugate of h or h−1, that is gGR = gG ∪ (g−1)G.

Lemma 6.3 Let G be a finite group of exponent n and let g ∈ G. Then gGQ = gGR if
and only if g is conjugate to gm or g−m for every integer m with (m,n) = 1.

Corollary 6.4 For a finite group the following properties are equivalent.

1. Z(U(ZG)) is finite, i.e. all central units are trivial.

2. For every g ∈ G and every integer m with (m, |G|) = 1 the elements gm and
g−m are conjugate.

Also for strongly monomial groups one can determine a formula for the rank of
the central units and, with some restriction, one can determine an independent set
of central units that generates a subgroup of finite index.

We have seen that for many finite groups the group generated by the Bass units
and the bicyclic units generate a subgroup of finite index in U(ZG). In particular,
the subgroup contains a subgroup of finite index in the center Z(U(ZG)). As the
bicyclic units contain a subgroup of finite index in reduced norm one subgroups of
orders in the simple components, one might be tempted to think that the Bass units
contain a subgroup of finite index in the center of U(ZG). Note, however, that Bass
units in general are not central elements.

Jespers, Parmenter and Sehgal showed that for finite nilpotent groups the group
generated by the Bass units contains a subgroup of finite index in the unit group of
the center. To do so, one needs, in first instance, a method to construct from a Bass
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unit a central unit. Jespers, Olteanu, Van Gelder and del Ŕıo proved that this also
can be done for the class of abelian-by-supersolvable groups G such that every cyclic
subgroup of order not a divisor of 4 or 6 is subnormal inG. Obviously, dihedral groups
are examples of such groups. Also nilpotent finite groups N are examples. Indeed,
let Z=Zi(N) denote the i-th center of N , i.e Z0 = {1} and Zi/Zi−1 = Z(G/Zi−1) for
i ≥ 1. Then, for x ∈ N , the series 〈x〉C 〈Z1, x〉C · · ·C 〈Zn, x〉 = N (for some integer
n) is a subnormal series in N .

So, suppose G is an finite abelian-by-supersolvable group such that every cyclic
subgroup of order not a divisor of 4 or 6 is subnormal in G. Let g ∈ G be of order
not a divisor or 4 or 6 and let

N : N=〈g〉CN1 CN2 C · · ·CNm = G

be a subnormal series in G. For u ∈ U(Z〈g〉) put

cNo (u) = u

and
cNi (u) =

∏
h∈Ti

cNi−1(u)h,

where Ti is a transversal for Ni−1 in Ni, i ≥ 1. That this construction is well defined
follows from the following lemma.

Lemma 6.5 With notation as above.

1. cNi−1(u)x ∈ ZNi−1 for x ∈ Ni,

2. cNi−1(u)x = cNi−1(u) for x ∈ Ni−1,

3. cNi (u) is independent of the chosen transversal Ti.

In particular, cNm(u) ∈ Z(U(ZG)).

Because the class of abelian-by-supersolvable groups is is closed under taking
subgroups (a property that does not hold for the larger class of consisting of strongly
monomial groups) one can prove the following result.

Theorem 6.6 Let G be a finite abelian-by-supersolvable group such that every cyclic
subgroup of order not a divisor of 4 or 6 is subnormal in G. Let g ∈ G be of order
not a divisor or 4 or 6. Then, the group generated by the Bass units of ZG contain
a subgroup of finite index in Z(Z(U(ZG))).
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Acrtually, for each subgroup 〈g〉, of order not dividing 4 or 6, fix a subnormal
series Ng from 〈g〉 to G. Then

〈cNg(bg) | bg a Bass unit based on g, g ∈ G〉,

is of finite index in Z(U(ZG)).

7 Structure theorems of unit groups

The exceptional simple components are an obstruction for the construction of finitely
many generators for a subgroup of finite index in the unit group of ZG for a finite
group G. Maybe surprisingly, many of these components are not an obstruction for
proving a “structure theorem”, on the contrary.

According to Kleinert[4] a “Unit Theorem” for the unit group U(ZG) is a state-
ment that should at least consist, in purely group theoretical terms, of a class of
groups G such that almost all torsionfree subgroups of finite index in U(ZG) are
members of G.

So one can pose the following general problem.

Problem 7.1 For a class of groups G , classify the finite groups G, such that U(ZG)
constains a subgroup of finite index in G.

In the following results we state the answer for the class of groups G that consists
of direct products of free products of abelian groups (Jespers and del Ŕıo) and for
the class of groups that consists of the direct products of free-by-free groups (Jespers,
Pita, del Ŕıo, Ruiz, P. Zalesskii).

Theorem 7.2 The following properties are equivalent for a finite group G.

1. U(ZG) is either virtually abelian or virtually nonabelian free.

2. U(ZG) is virtually a free product of abelian groups.

3. QG is a direct product of fields, division rings of the form
(
−1,−3
Q

)
, or H(K)

with K = Q, Q(
√

2) or Q(
√

3) and at most one copy of M2(Q).

4. One of the following conditions hold:

(a) G = Q8 × Cn
2 ,
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(b) G is abelian,

(c) G is one of the following groups: D6, D8, Q12 = 〈a, b | a6 = 1, b2 =
a3, ba = a5b〉, P = 〈a, b | a4 = 1, b4 = 1, aba−1b−1 = a2〉 (in this case
U(ZG) is virtually nonabelian free).

Note that he respective Wedderburn decomposition of mentioned rational group
algebras is as follows (prove this as en excercise).

is (cf. [?, ?, ?]:

QD6
∼= 2Q⊕M2(Q),

QD8
∼= 4Q⊕M2(Q),

QQ8
∼= 4Q⊕H(Q),

QP ∼= 4Q⊕ 2Q(i)⊕H(Q)⊕M2(Q)

QQ12
∼= 2Q⊕Q(

√
−3) +

(
−1,−3

Q

)
⊕M2(Q),

Theorem 7.3 The following properties are equivalent for a finite group G.

1. U(ZG) is virtually a direct product of free-by-free groups.

2. For every simple component A of QG and some (every) order O in A, the
group of reduced norm one elements in O is virtually free-by-free.

3. Every simple component of QG is either a field, a totally definite quaternion
algebra, or M2(K) where K is either Q(i), Q(

√
−2), Q(

√
−3).

4. G is either abelian or an epimorphic image of A × H, where A is an abelian
group and one of the following conditions holds:

(a) A has exponent 6 and H is one of the groups W, W1n or W2n.

(b) A has exponent 4 and H is one of the groups V, V1n, V2n, U1 or U2.

(c) A has exponent 2 and H is one of the group T , T1n, T2n or T3n.

(d) H = MoP = (M×Q) : 〈u〉2, where M is an elementary abelian 3-group,
P = Q : 〈u〉2, mu = m−1 for every m ∈ M , and one of the following
conditions holds:

- A has exponent 4 and P = C8,

- A has exponent 6, P = W1n and Q = 〈y1, . . . , yn, t1, . . . , tn, x2〉,
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- A has exponent 2, P = W21 and Q = 〈y21, x〉.

The non-nilpotent groups are those listed in (4) with M non-trivial.

The first class consists of the following groups.

W =
(
〈t〉2 × 〈x2〉2 × 〈y2〉2

)
: (〈x〉2 × 〈y〉2) ,

with t = (x, y) and Z(W) = 〈x2, y2, t〉.

W1n =

(
n∏
i=1

〈ti〉2 ×
n∏
i=1

〈yi〉2

)
o 〈x〉4,

with ti = (x, yi) and Z(W1n) = 〈t1, . . . , tn, x2〉.

W2n =

(
n∏
i=1

〈yi〉4

)
o 〈x〉4,

with ti = (x, yi) = y2i and Z(W2n) = 〈t1, . . . , tn, x2〉.

The second class of groups consists of the following groups.

V =
(
〈t〉2 × 〈x2〉4 × 〈y2〉4

)
: (〈x〉2 × 〈y〉2) ,

with t = (x, y) and Z(V) = 〈x2, y2, t〉.

V1n =

(
n∏
i=1

〈ti〉2 ×
n∏
i=1

〈yi〉4

)
o 〈x〉8,

with ti = (x, yi) and Z(V1n) = 〈t1, . . . , tn, y21, . . . , y2n, x2〉.

mathcalV2n =

(
n∏
i=1

〈yi〉8

)
o 〈x〉8,

with ti = (x, yi) = y4i and Z(V2n) = 〈t1, . . . , tn, x2〉.

The third class consists of the following groups.
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U1 =

( ∏
1≤i<j≤3

〈tij〉2

)
:

(
3∏

k=1

〈yk〉4

)
,

with Z(U1) = 〈t12, t13, t23, y21, y22, y23〉, tij = (yi, yj) and y4i = 1.

U2 =

( ∏
1≤i<j≤3

〈tij〉2

)
:

(
3∏

k=1

〈yk〉4

)
,

with Z(U2) = 〈t12, t13, t23, y21, y22, y23〉, tij = (yi, yj),

y41 = 1, y42 = t12 and y43 = t13.

The following groups form part of the fourth class of groups.

T1n =

(
n∏
i=1

〈ti〉4 ×
n∏
i=1

〈yi〉4

)
o 〈x〉8,

with ti = (x, yi), (x, ti) = t2i and Z(T1n) = 〈t21, . . . , t2n, x2〉.

A major issue remains the lack of knowledge of constructung large subgroups of
the unit group of an order in a finite dimensional rational division algebra (so dealing
with orders in exceptional components of type 1).

Problem 7.4 Discover generic constructions of units in orders of division algebras
that are simple components of a rational group algebra QG of a finite group. Discover
generators of large subgroups in such orders.

Problem 7.5 Describe finitely many generators for the following unit groups:

U(Z(Q8 × C3)) and U(Z(Q8 × C7)).

8 Exercises

1. Prove with elementary methods that the following unit groups are as described.

(a) U(Z[i]) = {1,−1, i,−i}.
(b) U(Z[ξ3]) = {±1,±ξ3,±ξ23}.
(c) U(Z[ξ6]) = 〈ξ6〉.
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(d) U
((−1,−1

Z

))
= Q8, where Q8 is the quaternion group of order 8.

2. Compute with elementary methods the Wedderburn decomposition of QC8 and
QC5. Then prove that the following unit groups are as described.

(a) U(Z[ξ8]) = 〈ξ8〉 × 〈1 +
√

2〉 = 〈ξ8〉 × 〈η3(ξ8)〉 = C8 × C∞
where η3(ξ8) = 1 + ξ8 + ξ28 .

(b) U(ZC5) = ±C5 × 〈g + g4 − 1〉, where C5 = 〈g | g5 = 1〉. Hint, first show
that ZC5 ⊆ Z⊕ Z[ξ5].

(c) U1(ZC8) = C8 × 〈u3,2(g)〉 = C8 ×C∞, where C8 = 〈g | g8 = 1〉. Hint, first
prove that ZC8 ⊆ Z2 ⊕ Z[i]⊕ Z[ξ8] and then use part (a).

3. Compute the Wedderburn decomposition of QQ8 and prove that U1(ZQ8) = Q8

(Higman).

4. Compute the Wedderburn decomposition of QD8 and prove that U1(ZD8) =
BoD8, where B is the subgroup generated by the bicyclic units. Furthermore,
B is a free group of rank 3

5. Prove that if U1(ZG) is finite then so is the unit group U1(|Z(G× C2)).

6. Let G be a finite group and N a normal subgroup of G. Let F be a field whose
characteristic does not divide |G|. Prove that the following element is a central
idempotent.

ε(G,N) =

{
Ĝ if G = N∏

D/N∈M(G/N)(N̂ − D̂), otherwise

7. Let F be a field of characteristic different from 2. Prove that a quaternion
algebra A =

(
a,b
F

)
is a simple algebra with center F . Prove that the following

conditions are equivalent:

(a) A = M2(F ),

(b) N(x) = 0 for some 0 6= x ∈ A,

(c) u2 = av2 + bw2 for some 0 6= (u, v, w) ∈ F 3.

8. Compute for some groups of small order a complete set of primitive central
idempotents and a complete set of primitive idempotents of QG.

9. Prove Lemma 6.5.

35



References
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