TIFR Bangalore, February 16, 2012

Model for closed-loop neuroprosthetic operation

Manuel Lagang^{1,2} and Lakshminarayan Srinivasan¹ ¹Neural Signal Processing Laboratory, Dept. of Radiology, UCLA ²California Institute of Technology

www.nsplab.org

State of Investment and Research in Neuroscience

Advances in prosthesis technology have far exceeded all neural interface technologies.

Approved for public release; distribution is unlimited.

Approved for public release; distribution is unlimited.

Brain-computer interface (BCI) for cursor control

BCI neural decoding with linear regression

BCI neural decoding: state space approach

Observation (neural signal) model

$$p(n_{L} \mid x_{L}, H_{L})$$

- k time step k
- n_k # spikes
- x_k cursor position
- H_k history of spikes

State-space (human intention) model $p(x_k \mid x_{k-1})$

Srinivasan, et. al, "General Purpose Filter Design for Neuroprosthetic Devices," *Journal of Neurophysiology*, 2007

Modeling spikes: point process likelihood

Observation (neural signal) model

$$p(n_k \mid x_k, H_k)$$

- k time step k
- n_k # spikes
- x_k cursor position
- H_k history of spikes

Δ ~ 10 ms

Conditional intensity function,

$$\lambda(x_k \mid \mathbf{H}_k)$$

defines the observation density

$$p(n_k \mid \mathbf{x}_k, \mathbf{H}_k) \approx (\lambda(\mathbf{x}_k \mid \mathbf{H}_k) \Delta)^{n_k} e^{-\lambda(\mathbf{x}_k \mid H_k) \Delta}$$

Eden, Srinivasan, Sarma, "Neural Signal Processing Tutorial II", Short Course - Society for Neuroscience, 2008

Summary of Decoding Methods

- Linear Mappings
 - Population vector algorithm (PVA)
 - Linear regression
- Recursive Bayesian Estimation
 - Kalman filter
 - Approximate point process filters

BCI neural decoding: variants of linear regression

L. Hochberg, et. al, *Nature*, 2006

D. Taylor, et. al, Science, 2002

BCI Algorithm Design

Open-loop versus closed-loop testing

<u>open-loop</u>

Four closed-loop (CL) phenomena

(1) CL error lower than OL

Cunningham & Shenoy, J. Neurophys., 2010

Four closed-loop (CL) phenomena

(1) CL error lower than OL(2) CL error grows with binwidth

Cunningham & Shenoy, J. Neurophys., 2010

Four closed-loop (CL) phenomena

(3) CL bias less than OL

Chase, Schwartz, Kass, "Bias, optimal linear estimation, and the differences between open-loop simulation and closed-loop performance of spiking-based brain-computer interface algorithms" (Neural Networks, 2009)

Four closed-loop (CL) phenomena

(4) Tuning curves shift between OL and CL

Ganguly and Carmena, "Reversible large-scale modification of cortical networks during neuroprosthetic control" (Nature Neurosci 2011).

Taylor, Helms-Tillery, Schwartz, "Direct Cortical Control of 3D Neuroprosthetic Devices" (Science 2002).

Summary: open-loop (OL) vs. closed-loop (CL)

(1) CL error lower than OL

(2) CL error grows with binwidth

(3) CL bias less than OL

(4) Tuning curves shift between OL and CL

Model for closed-loop neuroprosthetic operation

Model for closed-loop neuroprosthetic operation

Components of the LQR neural control network

state to control

$$x_k = \begin{pmatrix} p_x & p_y & v_x & v_y & 1 \end{pmatrix}^2$$

2D cursor position, velocity

linear, time-invariant plant model

$$x_{k+1} = Ax_k + \varepsilon_k$$

Cascaded effect of: steady-state Kalman filter <u>and</u> motor neuron output

Quadratic cost

3

Squared distance to origin
 Square of cursor speed
 Square of intended cursor speed

Book Reference: Bertsekas, Dynamic Programming and Optimal Control

$$u_k = Lx_k$$

Reaching task

Performance versus bin width

offline

online

300

offline

online

300

Bias correction in closed-loop

Gaussian neural signals

Zero cost on controller

L. Srinivasan, Is2@nsplab.org, 2/16/2012

Arm v. BMI operation: instant tuning curve shift

Arm vs. PVA control

Arm vs. OLE control

L. Srinivasan, Is2@nsplab.org, 2/16/2012

Model Insights

- Binwidth-dependent performance is intrinsic to discrete time control, even under perfect neural decoding
- Brain incurs energetic cost associated with compensating decoder bias
- Tuning curve shifts reflect the brain's implementation of a new control policy

Model as Closed-Loop Simulator

Human-based closed-loop simulator

[Stanford] Cunningham and Shenoy, "A Closed-Loop Human Simulator for Investigating the Role of Feedback-Control in Brain-Machine Interfaces" (J. Neurophys., 2010)

In silico closed-loop simulator

Lagang & Srinivasan, under review

Acknowledgments

- American Heart Association
- UCLA Radiology

Model for closed-loop neuroprosthetic operation Manuel Lagang^{1,2} and Lakshminarayan Srinivasan¹ ¹Neural Signal Processing Laboratory, Dept. of Radiology, UCLA ²California Institute of Technology

Contact: Is2@nsplab.org

www.nsplab.org