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Overview

@ State of Investment and Research
iIn Neuroscience
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Advances in prosthsis echnology have far
exceeded all neural interface technologies.
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Overview

@ Neural Activity is Measured at Various Scales
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Overview

Brain-computer interface (BCI) for cursor control
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BCI Algorithm Design

BCIl neural decoding with linear regression
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BCI Algorithm Design

BCIl neural decoding: state space approach

p(n, | X, Hy)

State-space (human intention) model

P(X | %)

k time step k

n, # spikes

Xy cursor position
H,  history of spikes

Neural signal decoder

Y bxulH)

p(X, In.,H,)

Srinivasan, et. al, “General Purpose Filter Design for Neuroprosthetic Devices,”

Journal of Neurophysiology, 2007




BCI Algorithm Design

Modeling spikes: point process likelihood

k time step k
n, # spikes

p(nk | X, = k) X, cursor position
H,  history of spikes

A~10ms

Conditional intensity function,
A% [ H,)
defines the observation density

p(nk | Xk y Hk) ~ (/1(Xk | Hk)A)nk e_/i(xk“"k)A

Eden, Srinivasan, Sarma, “Neural Signal Processing Tutorial II”,
Short Course - Society for Neuroscience, 2008




Summary of Decoding Methods

* Linear Mappings
— Population vector algorithm (PVA)
— Linear regression

* Recursive Bayesian Estimation
— Kalman filter
— Approximate point process filters

Neural signal decoder N
k

P(% 4 [ Hy) p(X [y, Hy)




BCI Algorithm Design

BCI neural decoding: variants of linear regression
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L. Hochberg, et. al, Nature, 2006 D. Taylor, et. al, Science, 2002



BCI Algorithm Design

Open-loop versus closed-loop testing

open-loop
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Empirical phenomena

Four closed-loop (CL) phenomena

(1) CL error lower than OL
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Cunningham & Shenoy, J. Neurophys., 2010
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Empirical phenomena

Four closed-loop (CL) phenomena

(1) CL error lower than OL
(2) CL error grows with binwidth
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Empirical phenomena

Four closed-loop (CL) phenomena

(3) CL bias less than OL

Chase, Schwartz, Kass, “Bias, optimal linear estimation, and the differences
between open-loop simulation and closed-loop performance of spiking-based
brain-computer interface algorithms” (Neural Networks, 2009)




Empirical phenomena

Four closed-loop (CL) phenomena

(4) Tuning curves shift between OL and CL
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Ganguly and Carmena, “Reversible large-scale
modification of cortical networks during neuroprosthetic
control” (Nature Neurosci 2011).




Summary: open-loop (OL) vs. closed-loop (CL)

(1) CL error lower than OL
(2) CL error grows with binwidth

(3) CL bias less than OL

(4) Tuning curves shift between OL and CL
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Model for closed-loop neuroprosthetic operation

Reach task
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Model for closed-loop neuroprosthetic operation

point process
model

linear quadratic
controller

u, = LX,
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Components of the LQR neural control network

state to control

2 D CU rsor pOS iti On , VeIOCity E'H i:' ensemble action potentials (n,)

linear, time-invariant Xk+1 = AXk T Sy

plant model Cascaded effect of:
steady-state Kalman filter
motor neuron output

Quadratic cost

Squared distance to origin
Square of cursor speed
Square of intended cursor speed Book Reference: Bertsekas,

Dynamic Programming and

Optimal Control
control policy U, = |_Xk
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Reaching task
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Performance versus bin width
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Bias correction in closed-loop

Original model

Deviation of Decoded Angle From Ideal Path (rad)
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Arm v. BMI operation: instant tuning curve shift

Arm vs. PVA control Arm vs. OLE control

_ Arm Mode o
) OLE Mode®
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UCSF, U.Pitt Data
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Model Insights

* Binwidth-dependent performance is
intrinsic to discrete time control, even
under perfect neural decoding

* Brain incurs energetic cost associated with
compensating decoder bias

* Tuning curve shifts reflect the brain’s
implementation of a new control policy
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Model as Closed-Loop Simulator

Human-based closed-loop simulator In silico closed-loop simulator
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|Stanford] Cunningham and Shenoy, “A
Closed-Loop Human Simulator for
Investigating the Role of Feedback-Control in Lagang & Srinivasan,
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