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Neural Activity Control Signal ProsthesisIntention
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Neural Activity is Measured at Various Scales

Overview



Brain-computer interface (BCI) for cursor control

Overview

sensory feedback

neural signal decoder
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BCI neural decoding with linear regression
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BCI neural decoding: state space approach

Observation (neural signal ) model
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Neural signal decoder
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Srinivasan, et. al, “General Purpose Filter Design for Neuroprosthetic Devices,”
Journal of Neurophysiology, 2007



Modeling spikes: point process likelihood

Observation (neural signal) model
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Conditional intensity function,

defines the observation density

Δ ~ 10 ms

Eden, Srinivasan, Sarma, “Neural Signal Processing Tutorial II”,
Short Course - Society for Neuroscience, 2008
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Summary of Decoding Methods

• Linear Mappings
– Population vector algorithm (PVA)
– Linear regression

• Recursive Bayesian Estimation
– Kalman filter
– Approximate point process filters

Neural signal decoder
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BCI neural decoding: variants of linear regression

D. Taylor, et. al, Science, 2002L. Hochberg, et. al, Nature, 2006
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Open-loop versus closed-loop testing

Neural
Activity

Control
Signal ProsthesisIntention

Decode

Sensory Feedback

closed-loop

Neural
Activity

Control
Signal ProsthesisIntention

Decode

open-loop

L. Srinivasan, ls2@nsplab.org, 2/16/2012

BCI Algorithm Design



Four closed-loop (CL) phenomena

(1) CL error lower than OL

Cunningham & Shenoy, J. Neurophys., 2010

Empirical phenomena



Four closed-loop (CL) phenomena

(1) CL error lower than OL
(2) CL error grows with binwidth

Cunningham & Shenoy, J. Neurophys., 2010
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Four closed-loop (CL) phenomena

(3) CL bias less than OL

Chase, Schwartz, Kass, “Bias, optimal linear estimation, and the differences 
between open-loop simulation and closed-loop performance of spiking-based 
brain-computer interface algorithms” (Neural Networks, 2009)
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Four closed-loop (CL) phenomena

(4) Tuning curves shift between OL and CL

(Simulation)

Ganguly and Carmena, “Reversible large-scale 
modification of cortical networks during neuroprosthetic 
control” (Nature Neurosci 2011).

Taylor, Helms-Tillery, Schwartz, 
“Direct Cortical Control of 3D 
Neuroprosthetic Devices”
(Science 2002).

Empirical phenomena



Summary: open-loop (OL) vs. closed-loop (CL)

(1) CL error lower than OL

(2) CL error grows with binwidth

(3) CL bias less than OL

(4) Tuning curves shift between OL and CL
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Model for closed-loop neuroprosthetic operation

Reach task
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Model for closed-loop neuroprosthetic operation

Kalman
filterpoint process

model

linear quadratic
controller

k ku Lx=
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Components of the LQR neural control network

control policy k ku Lx=

linear, time-invariant
plant model

Quadratic cost
Squared distance to origin
Square of cursor speed
Square of intended cursor speed∑

Cascaded effect of:
steady-state Kalman filter
and motor neuron output

state to control

2D cursor position, velocity

1k k kx Ax ε+ = +

Book Reference: Bertsekas, 
Dynamic Programming and 
Optimal Control
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Reaching task
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Performance versus bin width
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Bias correction in closed-loop
Gaussian neural signalsOriginal model

Zero cost on controller
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Arm v. BMI operation: instant tuning curve shift

Arm vs. PVA control Arm vs. OLE control
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UCSF, U.Pitt Data
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Model Insights

• Binwidth-dependent performance is 
intrinsic to discrete time control, even 
under perfect neural decoding

• Brain incurs energetic cost associated with 
compensating decoder bias

• Tuning curve shifts reflect the brain’s 
implementation of a new control policy
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Model as Closed-Loop Simulator

[Stanford] Cunningham and Shenoy, “A 
Closed-Loop Human Simulator for 
Investigating the Role of Feedback-Control in 
Brain-Machine Interfaces” (J. Neurophys., 
2010)

Human-based closed-loop simulator In silico closed-loop simulator

Lagang & Srinivasan, 
under review
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