Superpolynomials And Super-A-polynomial for Twist Knots

Zodinmawia, IIT Bombay
Based on work done with Satoshi Nawata, P. Ramadevi, Xinyu Sun [JHEP11(2012)157, arXiv:1209.1409]

ADVANCED SCHOOL AND DISCUSSION MEETING ON KNOT THEORY AND ITS APPLICATIONS

Figure: Twist knot.

Figure: Twist knot.

p	-4	-3	-2	-1	0	1	2	3	4
knots	$\mathbf{1 0}_{\mathbf{1}}$	$\mathbf{8}_{\mathbf{1}}$	$\mathbf{6}_{\mathbf{1}}$	$\mathbf{4}_{\mathbf{1}}$	$\mathbf{0}_{\mathbf{1}}$	$\mathbf{3}_{\mathbf{1}}$	$\mathbf{5}_{\mathbf{2}}$	$\mathbf{7}_{\mathbf{2}}$	$\mathbf{9}_{\mathbf{2}}$

Figure: Twist knot.
$K_{p} \longmapsto \begin{gathered}\text { Twist knot with } \mathrm{p} \text { full } \\ \text { twist }\end{gathered}$

p	-4	-3	-2	-1	0	1	2	3	4
knots	$\mathbf{1 0}_{\mathbf{1}}$	$\mathbf{8}_{\mathbf{1}}$	$\mathbf{6}_{\mathbf{1}}$	$\mathbf{4}_{\mathbf{1}}$	$\mathbf{0}_{\mathbf{1}}$	$\mathbf{3}_{\mathbf{1}}$	$\mathbf{5}_{\mathbf{2}}$	$\mathbf{7}_{\mathbf{2}}$	$\mathbf{9}_{\mathbf{2}}$

Figure: Twist knot.
$K_{p} \longmapsto \begin{gathered}\text { Twist knot with } p \text { full } \\ \text { twist }\end{gathered}$

p	-4	-3	-2	-1	0	1	2	3	4
knots	$\mathbf{1 0}_{1}$	$\mathbf{8}_{1}$	$\mathbf{6}_{1}$	$\mathbf{4}_{1}$	$\mathbf{0}_{1}$	$\mathbf{3}_{1}$	$\mathbf{5}_{\mathbf{2}}$	$\mathbf{7}_{\mathbf{2}}$	$\mathbf{9}_{2}$

Colored HOMFLYPT polynomial

Colored HOMFLYPT polynomial $P_{R}(K ; a, q)$

$$
a^{1 / 2} P_{\square}(\nearrow)-a^{-1 / 2} P_{\square}(X)=\left(q^{1 / 2}-q^{-1 / 2}\right) P_{\square}()()
$$

Colored HOMFLYPT polynomial $\Longrightarrow \quad P_{R}(K ; a, q)$

$$
\begin{gathered}
a^{1 / 2} P_{\square}(\text { 久 })-a^{-1 / 2} P_{\square}(X)=\left(q^{1 / 2}-q^{-1 / 2}\right) P_{\square}()() \\
P_{\square}\left(\mathbf{3}_{\mathbf{1}}\right)=a q^{-1}+a q-a^{2}
\end{gathered}
$$

Colored HOMFLYPT polynomial $\Longrightarrow \quad P_{R}(K ; a, q)$

$$
a^{1 / 2} P_{\square}(\nearrow)-a^{-1 / 2} P_{\square}(X)=\left(q^{1 / 2}-q^{-1 / 2}\right) P_{\square}()()
$$

$$
P_{\square}\left(\mathbf{3}_{1}\right)=a q^{-1}+a q-a^{2}
$$

$$
R=\overbrace{\overbrace{}}^{n-1} \equiv n
$$

Colored HOMFLYPT polynomial $\Longrightarrow \quad P_{R}(K ; a, q)$

$$
a^{1 / 2} P_{\square}(\nearrow)-a^{-1 / 2} P_{\square}(X)=\left(q^{1 / 2}-q^{-1 / 2}\right) P_{\square}()()
$$

$$
P_{\square}\left(\mathbf{3}_{1}\right)=a q^{-1}+a q-a^{2}
$$

$$
R=\overbrace{\sim}^{n-1} \equiv n \quad P_{n}(\mathrm{~K})
$$

Knot homologies

sl(2) homology
Khovanov homology
$\mathcal{H}_{i, j}^{\mathfrak{s l}_{2}} \quad$ [Khovanov]

Knot homologies

sl(2) homology
Khovanov homology

$$
\mathcal{H}_{i, j}^{\mathfrak{s l}} \quad[\text { Khovanov }]
$$

Euler characteristics

$$
\sum_{i, j}(-1)^{i} q^{j} \operatorname{dim} \mathcal{H}_{i, j}^{\mathfrak{s l _ { 2 }}}(K)=J_{2}(K ; q)
$$

Knot homologies

sl(2) homology
Khovanov homology

Euler characteristics

Poincare polynomial
Khovanov polynomial

$\mathcal{H}_{i, j}^{\mathfrak{S I}_{2}} \quad$ [Khovanov]

$$
\sum_{i, j}(-1)^{i} q^{j} \operatorname{dim} \mathcal{H}_{i, j}^{\mathfrak{s l} l_{2}}(K)=J_{2}(K ; q)
$$

$$
\mathcal{P}_{2}^{\mathrm{sl}_{2}}(K ; q, t)=\sum_{i, j} t^{i} q^{j} \operatorname{dim} \mathcal{H}_{i, j}^{\mathfrak{s l}_{2}}(K)
$$

Knot homologies

sl(2) homology
Khovanov homology

Euler characteristics

$$
\sum_{i, j}(-1)^{i} q^{j} \operatorname{dim} \mathcal{H}_{i, j}^{\mathfrak{s l _ { 2 }}}(K)=J_{2}(K ; q)
$$

Poincare polynomial
Khovanov polynomial

$$
\mathcal{P}_{2}^{\mathrm{sI}_{2}}(K ; q, t)=\sum_{i, j} t^{i} q^{j} \operatorname{dim} \mathcal{H}_{i, j}^{\mathfrak{s l}_{2}}(K)
$$

Colored sI(2) homology
Categorify colored Jones polynomial

$$
\mathcal{H}_{i, j}^{\mathfrak{S I}_{2}, R}
$$

[Cooper-Krushkal] [Frenkel-Stroppel-Sussan][Webster]

Knot homologies

Knot homologies

$\mathrm{sl}(\mathrm{N})$ homology $\quad \Longrightarrow \mathcal{H}_{i, j}^{\mathfrak{s l}_{N}} \quad$ [Khovanov-Rozansky ${ }^{\text {O4] }}$

Euler characteristics

$$
\sum_{i, j}(-1)^{i} q^{j} \operatorname{dim} \mathcal{H}_{i, j}^{\mathfrak{s l} N}(K)=P_{2}\left(K ; a=q^{N}, q\right)
$$

Knot homologies

Euler characteristics

$$
\sum_{i, j}(-1)^{i} q^{j} \operatorname{dim} \mathcal{H}_{i, j}^{\mathfrak{s l}}(K)=P_{2}\left(K ; a=q^{N}, q\right)
$$

Poincare polynomial

$$
\mathcal{P}_{2}^{\mathfrak{s l}, R}(K ; q, t)=\sum_{i, j} t^{i} q^{j} \operatorname{dim} \mathcal{H}_{i, j}^{\mathfrak{s l}_{2}, R}(K)
$$

Triply graded homology which categorify HOMFLYPT polynomial

[Khovanov-Rozansky '05]

$$
H_{i, j, k}
$$

Triply graded homology which categorify
[Khovanov-Rozansky '05] HOMFLYPT polynomial

$$
H_{i, j, k}
$$

The (a, q) graded Euler Characteristics is the HOMFLYPT polynomials

$$
P_{R}(K ; a, q)=\sum_{i, j, k}(-1)^{i} q^{j} a^{k} \operatorname{dim} H_{i, j, k}(K)
$$

Triply graded homology which categorify

[Khovanov-Rozansky '05]

 HOMFLYPT polynomial$$
H_{i, j, k}
$$

The (a, q) graded Euler Characteristics is the HOMFLYPT polynomials

$$
P_{R}(K ; a, q)=\sum_{i, j, k}(-1)^{i} q^{j} a^{k} \operatorname{dim} H_{i, j, k}(K)
$$

[Dunfield-Gukov-Rasmussen '05]

A triply graded homology $\mathcal{H}_{i, j, k}$ which is equipped with a families differentials which relates it to $\mathrm{SI}(\mathrm{N})$ homology.

Colored HOMFLY homology
 $\mathcal{H}_{i, j, k}^{R}$

[Gukov-Stosic '12]

Colored HOMFLY homology $\quad \mathcal{H}_{i, j, k}^{R}$

 [Gukov-Stosic '12]Colored HOMFLYPT

$$
P_{R}(K ; a, q)=\sum_{i, j, k}(-1)^{i} q^{j} a^{k} \operatorname{dim} \mathcal{H}_{i, j, k}^{R}(K)
$$

Colored HOMFLY homology $\quad \mathcal{H}_{i, j, k}^{R}$

 [Gukov-Stosic '12]Colored HOMFLYPT

$$
P_{R}(K ; a, q)=\sum_{i, j, k}(-1)^{i} q^{j} a^{k} \operatorname{dim} \mathcal{H}_{i, j, k}^{R}(K)
$$

Colored superpolynomials

$$
\mathcal{P}_{R}(K ; a, q)=\sum_{i, j, k} t^{i} q^{j} a^{k} \operatorname{dim} \mathcal{H}_{i, j, k}^{R}(K)
$$

Example:

$$
\mathcal{P}_{\square}\left(\mathbf{3}_{1}\right)=a q^{-1} t^{0}+a q t^{2}+a^{2} q^{0} t^{3}
$$

Example:

$$
\begin{array}{r}
\mathcal{P}_{\square}\left(\mathbf{3}_{1}\right)=a q^{-1} t^{0}+a q t^{2}+a^{2} q^{0} t^{3} \\
\quad t=-1
\end{array}
$$

Example:

$$
\begin{gathered}
\mathcal{P}_{\square}\left(\mathbf{3}_{1}\right)=a q^{-1} t^{0}+a q t^{2}+a^{2} q^{0} t^{3} \\
{ }^{t=-1} \\
P_{\square}\left(\mathbf{3}_{1}\right)=a q^{-1}+a q-a^{2} q^{0}
\end{gathered}
$$

Differentials

$\mathcal{H}_{i, j, k}^{R}(K)$ is equipped with a families of differentials which relates it to sl(N) homology

Differentials

$\mathcal{H}_{i, j, k}^{R}(K)$ is equipped with a families of differentials which relates it to $\mathrm{sl}(\mathrm{N})$ homology

Differentials

$\mathcal{H}_{i, j, k}^{R}(K)$ is equipped with a families of differentials which relates it to sI(N) homology

Differentials

$\mathcal{H}_{i, j, k}^{R}(K)$ is equipped with a families of differentials which relates it to sI(N) homology

Differentials

$\mathcal{H}_{i, j, k}^{R}(K)$ is equipped with a families of differentials which relates it to sI(N) homology

Differentials

Example: Action of d_{1}

Differentials

Example: Action of d_{1}

$$
\mathcal{P}_{\square}\left(\mathbf{3}_{\mathbf{1}}\right)=a q^{-1} t^{0}+a q t^{2}+a^{2} q^{0} t^{3}
$$

Differentials

Example: Action of d_{1}
 $$
\mathcal{P}_{\square}\left(\mathbf{3}_{\mathbf{1}}\right)=a q^{-1} t^{0}+a q t^{2}+a^{2} q^{0} t^{3}
$$

Differentials

Example: Action of d_{1}
 $$
\mathcal{P}_{\square}\left(\mathbf{3}_{\mathbf{1}}\right)=a q^{-1} t^{0}+a q t^{2}+a^{2} q^{0} t^{3}
$$

$d_{1}^{R}: \mathcal{H}_{i, j, k}^{R}(K) \longrightarrow \mathcal{H}_{i-1, j+1, k-1}^{R}(K)$

$$
a^{i} q^{j} t^{k} \longrightarrow a^{i-1} q^{j+1} t^{k-1}
$$

Differentials

Example: Action of d_{1}
 $$
\mathcal{P}_{\square}\left(\mathbf{3}_{\mathbf{1}}\right)=a q^{-1} t^{0}+a q t^{2}+a^{2} q^{0} t^{3}
$$

$$
d_{1}^{R}: \mathcal{H}_{i, j, k}^{R}(K) \longrightarrow \mathcal{H}_{i-1, j+1, k-1}^{R}(K) \quad a^{i} q^{j} t^{k} \longrightarrow a^{i-1} q^{j+1} t^{k-1}
$$

Differentials

$$
\left(\mathcal{H}^{\square}\left(\mathbf{3}_{1}\right), d_{1}\right)
$$

Differentials

Differentials

$$
\left(\mathcal{H}^{\square}\left(\mathbf{3}_{1}\right), d_{1}\right)
$$

Differentials

$$
\left(\mathcal{H}^{\square}\left(\mathbf{3}_{1}\right), d_{1}\right)
$$

Differentials

$$
\left(\mathcal{H}^{\square}\left(\mathbf{3}_{1}\right), d_{1}\right)
$$

$$
\begin{aligned}
\mathcal{P}_{\square}\left(\mathbf{3}_{1}\right)= & a^{2}\left(q^{-2}+q t^{2}+q^{2} t^{2}+q^{4} t^{4}\right) \\
& +a^{3}\left(t^{3}+q t^{3}+q^{3} t^{5}+q^{4} t^{5}\right)+a^{4} q^{3} t^{6}
\end{aligned}
$$

Differentials

Example: Action of d_{2}

$$
\mathcal{P}_{\square}\left(\mathbf{3}_{\mathbf{1}}\right)=a q^{-1} t^{0}+a q t^{2}+a^{2} q^{0} t^{3}
$$

SI(2) homological invariant

Colored Jones polynomials for Twist Knots

Colored Jones polynomials for Twist Knots

Trefoil $J_{n}\left(K_{1} ; q\right)=\sum_{k=0}^{\infty} q^{k}\left(q^{1-n} ; q\right)_{k}\left(q^{1+n} ; q\right)_{k} \quad$ [Habiro '00]

Colored Jones polynomials for Twist Knots

Trefoil $J_{n}\left(K_{1} ; q\right)=\sum_{k=0}^{\infty} q^{k}\left(q^{1-n} ; q\right)_{k}\left(q^{1+n} ; q\right)_{k} \quad$ [Habiro '00]

Colored Jones polynomials for Twist Knots

Trefoil $J_{n}\left(K_{1} ; q\right)=\sum_{k=0}^{\infty} q^{k}\left(q^{1-n} ; q\right)_{k}\left(q^{1+n} ; q\right)_{k} \quad$ [Habiro '00]

$$
n \equiv \overbrace{\square}^{n-1} \quad(a, q)_{k}=\prod_{i=0}^{k-1}\left(1-a q^{k}\right)
$$

Colored Jones polynomials for Twist Knots

Trefoil $J_{n}\left(K_{1} ; q\right)=\sum_{k=0}^{\infty} q^{k} \underbrace{n-1}_{f_{n, k}\left(q^{1-n} ; q\right)_{k}\left(q^{1+n} ; q\right)_{k}}$ [Habiro '00]

Colored Jones polynomials for Twist Knots

Trefoil $J_{n}\left(K_{1} ; q\right)=\sum_{k=0}^{\infty} q^{k} \underbrace{n-1}_{f_{n, k}\left(q^{1-n} ; q\right)_{k}\left(q^{1+n} ; q\right)_{k}}$ [Habiro '00]
$n=\overbrace{}^{n-1}$

For $K_{P}, \mathrm{p}>0$

Colored Jones polynomials for Twist Knots

Trefoil $J_{n}\left(K_{1} ; q\right)=\sum_{k=0}^{\infty} q^{k}\left(q^{1-n} ; q\right)_{k}\left(q^{1+n} ; q\right)_{k} \quad$ [Habiro '00]

$$
n \equiv \overbrace{\square}^{n-1}
$$

$$
f_{n, k}
$$

For $K_{P}, \mathrm{p}>0$

$$
J_{n}\left(K_{p>0} ; q\right)=\sum_{s_{p} \geq \cdots \geq s_{1} \geq 0}^{\infty} q^{s_{p}}\left(q^{1-n} ; q\right)_{s_{p}}\left(q^{1+n} ; q\right)_{s_{p}} \prod_{i=1}^{p-1} q^{s_{i}\left(s_{i}+1\right)}\left[\begin{array}{c}
s_{i+1} \\
s_{i}
\end{array}\right]_{q}
$$

[Masbaum '03]

Colored Jones polynomials for Twist Knots

Trefoil $J_{n}\left(K_{1} ; q\right)=\sum_{k=0}^{\infty} q^{k}\left(q^{1-n} ; q\right)_{k}\left(q^{1+n} ; q\right)_{k} \quad$ [Habiro '00]

$$
n \equiv \overbrace{\square}^{n-1}
$$

$$
f_{n, k}
$$

For $K_{P}, \mathrm{p}>0$

Colored Jones polynomials for Twist Knots

Trefoil $J_{n}\left(K_{1} ; q\right)=\sum_{k=0}^{\infty} q^{k}\left(q^{1-n} ; q\right)_{k}\left(q^{1+n} ; q\right)_{k} \quad$ [Habiro '00]

$$
n \equiv \overbrace{\square}^{n-1}
$$

$$
f_{n, k}
$$

For $K_{P}, \mathrm{p}>0$
Twisting factor

$$
\begin{gathered}
J_{n}\left(K_{p>0} ; q\right)=\sum_{s_{p} \geq \cdots \geq s_{1} \geq 0}^{\infty} q^{s_{p}} \underbrace{\left(q^{1-n} ; q\right)}_{\text {[Masbaum '03] }} s_{s_{p}}\left(q^{1+n} ; q\right)
\end{gathered} \sum_{s_{p}}^{\prod_{i=1}^{p-1} q^{s_{i}\left(s_{i}+1\right)}\left[\begin{array}{c}
s_{i+1} \\
s_{i}
\end{array}\right]_{q}}
$$

Colored Jones polynomials for Twist Knots

Trefoil $J_{n}\left(K_{1} ; q\right)=\sum_{k=0}^{\infty} q^{k}\left(q^{1-n} ; q\right)_{k}\left(q^{1+n} ; q\right)_{k} \quad$ [Habiro '00]

$$
n \equiv \overbrace{\square}^{n-1}
$$

$f_{n, k}$

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \equiv \frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}
$$

For $K_{P}, \mathrm{p}>0$

Twisting factor

Figure of eight knot

$$
J_{n}\left(K_{-1} ; q\right)=\sum_{k=0}^{\infty}(\underbrace{-1)^{k} q^{-\frac{k(k+1)}{2}}\left(q^{1-n} ; q\right)_{k}\left(q^{1+n} ; q\right)_{k}} \quad \text { [Habiro '00] }
$$

$$
g_{n, k}
$$

For $K_{P}, \mathrm{p}<0$

$$
J_{n}\left(K_{p<0} ; q\right)=\sum_{s_{|p|} \geq \cdots \geq s_{1} \geq 0}^{\infty} \overbrace{(-1)^{s_{p \mid}} q^{-\frac{\left.s_{|p|}\left|s_{p \mid}\right|+1\right)}{2}}\left(q^{1-n} ; q\right)_{s_{|p|}}\left(q^{1+n} ; q\right)_{s_{|p|}}}
$$

$$
\times \underbrace{\prod_{i=1}^{|p|-1} q^{-s_{i}\left(s_{i+1}+1\right)}\left[\begin{array}{c}
s_{i+1} \\
s_{i}
\end{array}\right]_{q}}
$$

[Masbaum '03]
Twisting factor

Colored superpolynomials for Twist Knots

Trefoil

Colored superpolynomials for Twist Knots

$$
\begin{aligned}
& \text { Trefoil } \\
& \mathcal{P}_{n}\left(K_{1} ; a, q, t\right)=(-t)^{-n+1} \sum_{k=0}^{\infty} q^{k} \frac{\left(-a t q^{-1} ; q\right)_{k}}{(q ; q)_{k}}\left(q^{1-n} ; q\right)_{k}\left(-a t^{3} q^{n-1} ; q\right)_{k}
\end{aligned}
$$

Colored superpolynomials for Twist Knots

Trefoil

[Fuji-Gukov-SulKowski '12]

$$
\mathcal{P}_{n}\left(K_{1} ; a, q, t\right)=(-t)^{-n+1} \sum_{k=0}^{\infty} q^{k} \underbrace{\frac{\left(-a t q^{-1} ; q\right)_{k}}{(q ; q)_{k}}\left(q^{1-n} ; q\right)_{k}\left(-a t^{3} q^{n-1} ; q\right)_{k}}_{F_{n, k}}
$$

Colored superpolynomials for Twist Knots

$$
\begin{aligned}
& \text { Trefoil } \\
& \mathcal{P}_{n}\left(K_{1} ; a, q, t\right)=(-t)^{-n+1} \sum_{k=0}^{\infty} q^{k} \underbrace{\frac{\left(-a t q^{-1} ; q\right)_{k}}{(q ; q)_{k}}\left(q^{1-n} ; q\right)_{k}\left(-a t^{3} q^{n-1} ; q\right)_{k}}_{F_{n, k}}
\end{aligned}
$$

Figure of eight knot

Colored superpolynomials for Twist Knots

Trefoil
[Fuji-Gukov-SulKowski '12]

$$
\mathcal{P}_{n}\left(K_{1} ; a, q, t\right)=(-t)^{-n+1} \sum_{k=0}^{\infty} q^{k} \underbrace{\frac{\left(-a t q^{-1} ; q\right)_{k}}{(q ; q)_{k}}\left(q^{1-n} ; q\right)_{k}\left(-a t^{3} q^{n-1} ; q\right)_{k}}_{F_{n, k}}
$$

Figure of eight knot
[Itoyama-Mironov-Morozov-Morozov '12]
$\mathcal{P}_{n}\left(K_{-1} ; a, q, t\right)=\sum_{k=0}^{\infty}\left(-a t^{2}\right)^{-k} q^{-k(k-3) / 2} \frac{\left(-a t q^{-1} ; q\right)_{k}}{(q ; q)_{k}}\left(q^{1-n} ; q\right)_{k}\left(-a t^{3} q^{n-1} ; q\right)_{k}$

Colored superpolynomials for Twist Knots

Trefoil
[Fuji-Gukov-SulKowski '12]

$$
\mathcal{P}_{n}\left(K_{1} ; a, q, t\right)=(-t)^{-n+1} \sum_{k=0}^{\infty} q^{k} \underbrace{\frac{\left(-a t q^{-1} ; q\right)_{k}}{(q ; q)_{k}}\left(q^{1-n} ; q\right)_{k}\left(-a t^{3} q^{n-1} ; q\right)_{k}}_{F_{n, k}}
$$

Figure of eight knot
[Itoyama-Mironov-Morozov-Morozov '12]

$$
\mathcal{P}_{n}\left(K_{-1} ; a, q, t\right)=\sum_{k=0}^{\infty}\left(-a t^{2}\right)^{-k} q^{-k(k-3) / 2} \frac{\left(-a t q^{-1} ; q\right)_{k}}{(q ; q)_{k}}\left(q^{1-n} ; q\right)_{k}\left(-a t^{3} q^{n-1} ; q\right)_{k}
$$

$$
G_{n, k}
$$

Colored superpolynomials for Twist Knots

$\mathcal{P}_{2}\left(\mathbf{5}_{2} ; a, q, t\right)$	$a q^{-1}+a t+a q t^{2}+a^{2} q^{-1} t^{2}+a^{2} t^{3}+a^{2} q t^{4}+a^{3} t^{5}$
$\mathcal{P}_{3}\left(\mathbf{5}_{2} ; a, q, t\right)$	$a^{2} q^{-2}+\left(a^{2} q^{-1}+a^{2}\right) t+\left(2 a^{2} q+a^{2} q^{2}+a^{3} q^{-2}+a^{3} q^{-1}\right) t^{2}$
	$+\left(a^{2} q^{2}+a^{2} q^{3}+2 a^{3}+2 a^{3} q\right) t^{3}+\left(a^{2} q^{4}+2 a^{3} q+3 a^{3} q^{2}+a^{3} q^{3}+a^{4}\right) t^{4}$
	$+\left(2 a^{3} q^{3}+2 a^{3} q^{4}+a^{4}+2 a^{4} q+a^{4} q^{2}\right) t^{5}$
	$+\left(a^{3} q^{4}+a^{3} q^{5}+a^{4} q^{2}+3 a^{4} q^{3}+a^{4} q^{4}\right) t^{6}$
	$+\left(a^{4} q^{3}+2 a^{4} q^{4}+a^{4} q^{5}+a^{5} q^{2}+a^{5} q^{3}\right) t^{7}$
	$+\left(a^{4} q^{6}+a^{5} q^{3}+a^{5} q^{4}\right) t^{8}+\left(a^{5} q^{5}+a^{5} q^{6}\right) t^{9}+a^{6} q^{5} t^{10}$
$\mathcal{P}_{2}\left(\mathbf{6}_{1} ; a, q, t\right)$	$a^{-2} t^{-4}+a^{-1} q^{-1} t^{-3}+a^{-1} t^{-2}+q^{-1} t^{-1}+a^{-1} q t^{-1}+2+q t+a t^{2}$
$\mathcal{P}_{3}\left(\mathbf{6}_{1} ; a, q, t\right)$	$a^{-4} q^{-4} t^{-8}+\left(a^{-3} q^{-5}+a^{-3} q^{-4}\right) t^{-7}+\left(a^{-2} q^{-5}+a^{-3} q^{-3}+a^{-3} q^{-2}\right) t^{-6}$
	$+\left(a^{-2} q^{-4}+2 a^{-2} q^{-3}+a^{-3} q^{-2}+a^{-2} q^{-2}+a^{-3} q^{-1}\right) t^{-5}$
	$+\left(a^{-2}+a^{-1} q^{-4}+a^{-2} q^{-3}+a^{-1} q^{-3}+3 a^{-2} q^{-2}+2 a^{-2} q^{-1}\right) t^{-4}$
	$+\left(2 a^{-2}+2 a^{-1} q^{-3}+3 a^{-1} q^{-2}+a^{-2} q^{-1}+a^{-1} q^{-1}+q a^{-2}\right) t^{-3}$
	$+\left(4 a^{-1}+q^{-3}+a^{-1} q^{-2}+4 a^{-1} q^{-1}+q a^{-2}+q a^{-1}\right) t^{-2}$
	$+\left(1+2 a^{-1}+2 q^{-2}+3 q^{-1}+3 q a^{-1}+q^{2} a^{-1}\right) t^{-1}$
	$+\left(5+q^{-1}+2 q+a^{-1} q^{2}+a^{-1} q^{3}\right)+\left(a+q^{-1} a+2 q+3 q^{2}+q^{3}\right) t$
	$+\left(a+2 a q+a q^{2}+q^{3}\right) t^{2}+\left(a q^{2}+a q^{3}\right) t^{3}+a^{2} q^{2} t^{4}$

[Dunfield-GukovRasmussen '05]
[Gukov-Stosic '12]
$5_{2} k n o t \equiv K_{2}$
$6_{1} k n o t \equiv K_{-2}$
$n=2,3 \equiv \square, \square \square$

Colored superpolynomials for Twist Knots

$$
\mathcal{P}_{2}\left(\mathbf{5}_{2} ; a, q, t\right)=F_{2,0}(a, q, t)+\left(1+a t^{2}\right) F_{2,1}(a, q, t)
$$

Colored superpolynomials for Twist Knots

$$
\mathcal{P}_{2}\left(\mathbf{5}_{\mathbf{2}} ; a, q, t\right)=F_{2,0}(a, q, t)+\left(1+a t^{2}\right) F_{2,1}(a, q, t)
$$

$$
\begin{aligned}
\mathcal{P}_{3}\left(\mathbf{5}_{2} ; a, q, t\right)= & F_{3,0}(a, q, t)+\left(1+a t^{2}\right) F_{3,1}(a, q, t) \\
& +\left(1+a t^{2}(1+q)+a^{2} t^{4} q^{2}\right) F_{3,2}(a, q, t)
\end{aligned}
$$

Colored superpolynomials for Twist Knots

$$
\mathcal{P}_{2}\left(\mathbf{5}_{\mathbf{2}} ; a, q, t\right)=F_{2,0}(a, q, t)+\left(1+a t^{2}\right) F_{2,1}(a, q, t)
$$

$$
\begin{aligned}
\mathcal{P}_{3}\left(\mathbf{5}_{2} ; a, q, t\right)= & F_{3,0}(a, q, t)+\left(1+a t^{2}\right) F_{3,1}(a, q, t) \\
& +\left(1+a t^{2}(1+q)+a^{2} t^{4} q^{2}\right) F_{3,2}(a, q, t)
\end{aligned}
$$

$$
\mathcal{P}_{2}\left(\mathbf{6}_{1} ; a, q, t\right)=G_{2,0}(a, q, t)+\left(1+a^{-1} t^{-2}\right) G_{2,1}(a, q, t)
$$

Colored superpolynomials for Twist Knots

$$
\mathcal{P}_{2}\left(\mathbf{5}_{\mathbf{2}} ; a, q, t\right)=F_{2,0}(a, q, t)+\left(1+a t^{2}\right) F_{2,1}(a, q, t)
$$

$$
\begin{aligned}
\mathcal{P}_{3}\left(\mathbf{5}_{2} ; a, q, t\right)= & F_{3,0}(a, q, t)+\left(1+a t^{2}\right) F_{3,1}(a, q, t) \\
& +\left(1+a t^{2}(1+q)+a^{2} t^{4} q^{2}\right) F_{3,2}(a, q, t)
\end{aligned}
$$

$$
\mathcal{P}_{2}\left(\boldsymbol{6}_{1} ; a, q, t\right)=G_{2,0}(a, q, t)+\left(1+a^{-1} t^{-2}\right) G_{2,1}(a, q, t)
$$

$$
\begin{aligned}
\mathcal{P}_{3}\left(\mathbf{6}_{1} ; a, q, t\right)= & G_{3,0}(a, q, t)+\left(1+a^{-1} t^{-2}\right) G_{3,1}(a, q, t) \\
& +\left(1+a^{-1} t^{-2}\left(1+q^{-1}\right)+a^{-2} t^{-4} q^{-2}\right) G_{3,2}(a, q, t)
\end{aligned}
$$

Colored superpolynomials for Twist Knots

$$
\mathcal{P}_{n}\left(\mathbf{5}_{\mathbf{2}} ; a, q, t\right)=\sum_{s_{2} \geq s_{1} \geq 0}^{n-1} F_{n, s_{2}}(a, q, t)\left(a t^{2}\right)^{s_{1}} q^{s_{1}\left(s_{1}-1\right)}\left[\begin{array}{l}
s_{2} \\
s_{1}
\end{array}\right]_{q}
$$

Colored superpolynomials for Twist Knots

$\mathcal{P}_{n}\left(\mathbf{5}_{\mathbf{2}} ; a, q, t\right)=\sum_{s_{2} \geq s_{1} \geq 0}^{n-1} F_{n, s_{2}}(a, q, t)\left(a t^{2}\right)^{s_{1}} q^{s_{1}\left(s_{1}-1\right)}\left[\begin{array}{l}s_{2} \\ s_{1}\end{array}\right]_{q}$
Twisting factor for $K_{P}, \mathrm{p}>0 \quad \prod_{i=1}^{p-1}\left(a t^{2}\right)^{s_{i}} q^{s_{i}\left(s_{i}-1\right)}\left[\begin{array}{c}s_{i+1} \\ s_{i}\end{array}\right]_{q}$

Colored superpolynomials for Twist Knots

$$
\mathcal{P}_{n}\left(\mathbf{5}_{\mathbf{2}} ; a, q, t\right)=\sum_{s_{2} \geq s_{1} \geq 0}^{n-1} F_{n, s_{2}}(a, q, t)\left(a t^{2}\right)^{s_{1}} q^{s_{1}\left(s_{1}-1\right)}\left[\begin{array}{l}
s_{2} \\
s_{1}
\end{array}\right]_{q}
$$

$$
\text { Twisting factor for } K_{P}, \mathrm{p}>0 \Longleftrightarrow \prod_{i=1}^{p-1}\left(a t^{2}\right)^{s_{i}} q^{s_{i}\left(s_{i}-1\right)}\left[\begin{array}{c}
s_{i+1} \\
s_{i}
\end{array}\right]_{q}
$$

$$
\mathcal{P}_{n}\left(\mathbf{6}_{\mathbf{1}} ; a, q, t\right)=\sum_{s_{2} \geq s_{1} \geq 0}^{n-1} G_{n, s_{2}}(a, q, t)\left(a t^{2}\right)^{-s_{1}} q^{-s_{1}\left(s_{2}-1\right)}\left[\begin{array}{l}
s_{2} \\
s_{1}
\end{array}\right]_{q}
$$

Colored superpolynomials for Twist Knots

$$
\begin{gathered}
\mathcal{P}_{n}\left(\mathbf{5}_{\mathbf{2}} ; a, q, t\right)=\sum_{s_{2} \geq s_{1} \geq 0}^{n-1} F_{n, s_{2}}(a, q, t)\left(a t^{2}\right)^{s_{1}} q^{s_{1}\left(s_{1}-1\right)}\left[\begin{array}{l}
s_{2} \\
s_{1}
\end{array}\right]_{q} \\
\text { Twisting factor for } K_{P}, \mathrm{p}>0 \longrightarrow \prod_{i=1}^{p-1}\left(a t^{2}\right)^{s_{i}} q^{s_{i}\left(s_{i}-1\right)}\left[\begin{array}{c}
s_{i+1} \\
s_{i}
\end{array}\right]_{q} \\
\mathcal{P}_{n}\left(\mathbf{6}_{\mathbf{1}} ; a, q, t\right)=\sum_{s_{2} \geq s_{1} \geq 0}^{n-1} G_{n, s_{2}}(a, q, t)\left(a t^{2}\right)^{-s_{1}} q^{-s_{1}\left(s_{2}-1\right)}\left[\begin{array}{l}
s_{2} \\
s_{1}
\end{array}\right]_{q} \\
\text { Twisting factor for } K_{P}, \mathrm{p}<0 \longrightarrow \prod_{i=1}^{|p|-1}\left(a t^{2}\right)^{-s_{i}} q^{-s_{i}\left(s_{i+1}-1\right)}\left[\begin{array}{c}
s_{i+1} \\
s_{i}
\end{array}\right]_{q}
\end{gathered}
$$

Our Conjecture

For $K_{P}, \mathrm{p}>0$

Our Conjecture

For $K_{P}, \mathrm{p}>0$
$\mathcal{P}_{n}\left(K_{p>0} ; a, q, t\right)=(-t)^{-n+1} \sum_{s_{p} \geq \cdots \geq s_{1} \geq 0}^{\infty} q^{s_{p}} \frac{\left(-a t q^{-1} ; q\right)_{s_{p}}}{(q ; q)_{s_{p}}}\left(q^{1-n} ; q\right)_{s_{p}}\left(-a t^{3} q^{n-1} ; q\right)_{s_{p}}$

$$
\times \prod_{i=1}^{p-1}\left(a t^{2}\right)^{s_{i}} q^{s_{i}\left(s_{i}-1\right)}\left[\begin{array}{c}
s_{i+1} \\
s_{i}
\end{array}\right]_{q}
$$

Our Conjecture

For $K_{P}, p>0$
$\mathcal{P}_{n}\left(K_{p>0} ; a, q, t\right)=(-t)^{-n+1} \sum_{s_{p} \geq \cdots \geq s_{1} \geq 0}^{\infty} q^{s_{p}} \frac{\left(-a t q^{-1} ; q\right)_{s_{p}}}{(q ; q)_{s_{p}}}\left(q^{1-n} ; q\right)_{s_{p}}\left(-a t^{3} q^{n-1} ; q\right)_{s_{p}}$
$\times \prod_{i=1}^{p-1}\left(a t^{2}\right)^{s_{i}} q^{s_{i}\left(s_{i}-1\right)}\left[\begin{array}{c}s_{i+1} \\ s_{i}\end{array}\right]_{q}$

For $K_{P}, \mathrm{p}<0$

Our Conjecture

For $K_{P}, p>0$
$\mathcal{P}_{n}\left(K_{p>0} ; a, q, t\right)=(-t)^{-n+1} \sum_{s_{p} \geq \cdots \geq s_{1} \geq 0}^{\infty} q^{s_{p}} \frac{\left(-a t q^{-1} ; q\right)_{s_{p}}}{(q ; q)_{s_{p}}}\left(q^{1-n} ; q\right)_{s_{p}}\left(-a t^{3} q^{n-1} ; q\right)_{s_{p}}$
$\times \prod_{i=1}^{p-1}\left(a t^{2}\right)^{s_{i}} q^{s_{i}\left(s_{i}-1\right)}\left[\begin{array}{c}s_{i+1} \\ s_{i}\end{array}\right]_{q}$

For $K_{P}, \mathrm{p}<0$

$$
\begin{aligned}
& \mathcal{P}_{n}\left(K_{p<0} ; a, q, t\right) \\
& =\sum_{s_{|p|} \geq \cdots \geq s_{1} \geq 0}^{\infty}\left(-a t^{2}\right)^{-s_{|p|}} q^{-s_{|p|}\left(s_{|p|}-3\right) / 2} \frac{\left(-a t q^{-1} ; q\right)_{s_{|p|}}}{(q ; q)_{s_{|p|}}}\left(q^{1-n} ; q\right)_{s_{|p|}}\left(-a t^{3} q^{n-1} ; q\right)_{s_{|p|}} \\
& \\
& \times \prod_{i=1}^{|p|-1}\left(a t^{2}\right)^{-s_{i}} q^{-s_{i}\left(s_{i+1}-1\right)}\left[\begin{array}{c}
s_{i+1} \\
s_{i}
\end{array}\right]_{q}
\end{aligned}
$$

Our Conjecture

Convert multiple summation to double summation using Bailey chains

Our Conjecture

Convert multiple summation to double summation using Bailey chains

$$
\begin{array}{r}
\mathcal{P}_{n}\left(K_{p>0} ; a, q, t\right)=(-t)^{-n+1} \sum_{k=0}^{\infty} \sum_{\ell=0}^{k} q^{k} \frac{\left(-a t q^{-1} ; q\right)_{k}}{(q ; q)_{k}}\left(q^{1-n} ; q\right)_{k}\left(-a t^{3} q^{n-1} ; q\right)_{k} \\
\times(-1)^{\ell}\left(a t^{2}\right)^{p \ell} q^{(p+1 / 2) \ell(\ell-1)} \frac{1-a t^{2} q^{2 \ell-1}}{\left(a t^{2} q^{\ell-1} ; q\right)_{k+1}}\left[\begin{array}{c}
k \\
\ell
\end{array}\right]_{q},
\end{array}
$$

$$
\mathcal{P}_{n}\left(K_{p<0} ; a, q, t\right)=\sum_{k=0}^{\infty} \sum_{\ell=0}^{k} q^{k} \frac{\left(-a t q^{-1} ; q\right)_{k}}{(q ; q)_{k}}\left(q^{1-n} ; q\right)_{k}\left(-a t^{3} q^{n-1} ; q\right)_{k}
$$

$$
\times(-1)^{\ell}\left(a t^{2}\right)^{p \ell} q^{(p+1 / 2) \ell(\ell-1)} \frac{1-a t^{2} q^{2 \ell-1}}{\left(a t^{2} q^{\ell-1} ; q\right)_{k+1}}\left[\begin{array}{c}
k \\
\ell
\end{array}\right]_{q}
$$

Checks for the conjecture

Checks for the conjecture

For $a=q^{2}$ and $t=-1$, the formula reduces to the colored Jones polynomial

Checks for the conjecture

For $a=q^{2}$ and $t=-1$, the formula reduces to the colored Jones polynomial
$t=-1$ limit \rightarrow colored HOMFLY polynomials.

Checks for the conjecture

For $a=q^{2}$ and $t=-1$, the formula reduces to the colored Jones polynomial
$t=-1$ limit \rightarrow colored HOMFLY polynomials.
[Zodinmawia, Ramadevi '11] [] SU(N) Chern-Simons theory \rightarrow colored HOMFLY polynomials

Checks for the conjecture

For $a=q^{2}$ and $t=-1$, the formula reduces to the colored Jones polynomial
$t=-1$ limit \rightarrow colored HOMFLY polynomials.
[Zodinmawia, Ramadevi '11] [] SU(N) Chern-Simons theory \rightarrow colored HOMFLY polynomials
Twist knots upto 10 crossings for $n=2,3,4$

Checks for the conjecture

Kawagoe [arXiv:1210.7574 [math.GT]]
linear skein relation \rightarrow colored HOMFLYPT polynomials for twist knots colored by symmetric representation

This matches with the $t=-1$ limit of our formula.

Checks for the conjecture

Action of d_{1}

Checks for the conjecture

Action of d_{1}

$$
\mathcal{P}_{n+1}\left(K_{p>0} ; a, q, t\right)=a^{n} q^{-n}+\left(1+a^{-1} q t^{-1}\right) Q_{n+1}^{\mathfrak{s l}_{1}}\left(K_{p>0} ; a, q, t\right)
$$

Checks for the conjecture

Action of d_{1}

$$
\mathcal{P}_{n+1}\left(K_{p>0} ; a, q, t\right)=a^{n} q^{-n}+(\underbrace{\left.1+a^{-1} q t^{-1}\right) Q_{n+1}^{\mathfrak{s l} 1}\left(K_{p>0} ; a, q, t\right.})
$$

Annihilated by d_{1}

Checks for the conjecture

Action of d_{1}
$\mathcal{P}_{n+1}\left(K_{p>0} ; a, q, t\right)=\underbrace{a^{n} q^{-n}}+(\underbrace{\left.1+a^{-1} q t^{-1}\right) Q_{n+1}^{\mathfrak{s l}}\left(K_{p>0} ; a, q, t\right.})$
Annihilated by d_{1}

Checks for the conjecture

Action of d_{1}
$\mathcal{P}_{n+1}\left(K_{p>0} ; a, q, t\right)=\underbrace{a^{n} q^{-n}}+(\underbrace{\left.1+a^{-1} q t^{-1}\right) Q_{n+1}^{\mathfrak{s l}}\left(K_{p>0} ; a, q, t\right.})$
Annihilated by d_{1}

$$
s\left(K_{p>0}\right)=1
$$

Checks for the conjecture

Action of d_{1}

$$
\begin{gathered}
\mathcal{P}_{n+1}\left(K_{p>0} ; a, q, t\right)=\underbrace{a^{n} q^{-n}}_{\text {Annihilated by } d_{1}}+(\underbrace{\left(1+a^{-1} q t^{-1}\right) Q_{n+1}^{\mathfrak{s l} 1}\left(K_{p>0} ; a, q, t\right)} \\
a^{n s\left(K_{p>0}\right)} q^{-n s\left(K_{p>0}\right)} t^{0} \quad s\left(K_{p>0}\right)=1
\end{gathered}
$$

Checks for the conjecture

Action of d_{1}

$$
\begin{gathered}
\mathcal{P}_{n+1}\left(K_{p>0} ; a, q, t\right)=\underbrace{a^{n} q^{-n}}_{\text {Annihilated by } d_{1}}+\underbrace{(\underbrace{\left.1+a^{-1} q t^{-1}\right) Q_{n+1}^{\mathfrak{s l} 1}\left(K_{p>0} ; a, q, t\right.})} \\
a^{n s\left(K_{p>0}\right)} q^{-n s\left(K_{p>0}\right)} t^{0} \quad s\left(K_{p>0}\right)=1 \\
\mathcal{P}_{n+1}\left(K_{p<0} ; a, q, t\right)=1+(\underbrace{\left.1+a^{-1} q t^{-1}\right) Q_{n+1}^{\mathfrak{s l}}\left(K_{p<0} ; a, q, t\right.}_{\text {Annihilated by } d_{1}}) \\
a^{n s\left(K_{p<0}\right)=0}
\end{gathered}
$$

Checks for the conjecture

$$
\mathcal{P}_{n}\left(K ; a=q^{2}, t\right)=\mathcal{P}_{n}^{\boldsymbol{s t}_{2}}(K ; q, t)
$$

Knot	$\mathcal{P}_{n=2}^{\mathfrak{s} I_{2}}(K ; q, t)$
$\mathbf{4}_{\mathbf{1}}$	$q^{2} t^{2}+\frac{1}{q^{2} t^{2}}+q t+\frac{1}{q t}+1$
$\mathbf{5}_{\mathbf{2}}$	$q+q^{2} t+2 q^{3} t^{2}+q^{4} t^{3}+q^{5} t^{4}+q^{6} t^{5}$
$\mathbf{6}_{\mathbf{1}}$	$\frac{1}{q^{4} t^{4}}+\frac{1}{q^{3} t^{3}}+q^{2} t^{2}+\frac{1}{q^{2} t^{2}}+q t+\frac{2}{q t}+2$
$\mathbf{7}_{\mathbf{2}}$	$q+q^{2} t+2 q^{3} t^{2}+2 q^{4} t^{3}+2 q^{5} t^{4}+q^{6} t^{5}+q^{7} t^{6}+q^{8} t^{7}$
$\mathbf{8}_{\mathbf{1}}$	$\frac{1}{q^{6} t^{6}}+\frac{1}{q^{5} t^{5}}+\frac{1}{q^{4} t^{4}}+\frac{2}{q^{3} t^{3}}+q^{2} t^{2}+\frac{2}{q^{2} t^{2}}+q t+\frac{2}{q t}+2$
$\mathbf{9}_{\mathbf{2}}$	$q+q^{2} t+2 q^{3} t^{2}+2 q^{4} t^{3}+2 q^{5} t^{4}+2 q^{6} t^{5}+2 q^{7} t^{6}+q^{8} t^{7}+q^{9} t^{8}+q^{10} t^{9}$
$\mathbf{1 0}_{\mathbf{1}}$	$\frac{1}{q^{8} t^{8}}+\frac{1}{q^{7} t^{7}}+\frac{1}{q^{6} t^{6}}+\frac{2}{q^{5} t^{5}}+\frac{2}{q^{4} t^{4}}+\frac{2}{q^{3} t^{3}}+q^{2} t^{2}+\frac{2}{q^{2} t^{2}}+q t+\frac{2}{q t}+2$

Checks for the conjecture

$$
\mathcal{P}_{n}\left(K ; a=q^{2}, t\right)=\mathcal{P}_{n}^{\mathfrak{s l}_{2}}(K ; q, t)
$$

Knot	$\mathcal{P}_{n=2}^{s I_{2}}(K ; q, t)$
$\mathbf{4}_{\boldsymbol{1}}$	$q^{2} t^{2}+\frac{1}{q^{2} t^{2}}+q t+\frac{1}{q^{t}}+1$
$\mathbf{5}_{\boldsymbol{2}}$	$q+q^{2} t+2 q^{3} t^{2}+q^{4} t^{3}+q^{5} t^{4}+q^{6} t^{5}$
$\mathbf{6}_{\mathbf{1}}$	$\frac{1}{q^{4} t^{\top}}+\frac{1}{q^{3} t^{3}}+q^{2} t^{2}+\frac{1}{q^{2} t^{2}}+q t+\frac{2}{q t}+2$
$\mathbf{7}_{\mathbf{2}}$	$q+q^{2} t+2 q^{3} t^{2}+2 q^{4} t^{3}+2 q^{5} t^{4}+q^{6} t^{5}+q^{7} t^{6}+q^{8} t^{7}$
$\mathbf{8}_{\boldsymbol{1}}$	$\frac{1}{q^{8} t^{6}}+\frac{1}{q^{5} t^{5}}+\frac{1}{q^{4} t^{4}}+\frac{2}{q^{3} t^{3}}+q^{2} t^{2}+\frac{2}{q^{2} t^{2}}+q t+\frac{2}{q t}+2$
$\mathbf{9}_{\mathbf{2}}$	$q+q^{2} t+2 q^{3} t^{2}+2 q^{4} t^{3}+2 q^{5} t^{4}+2 q^{6} t^{5}+2 q^{7} t^{6}+q^{8} t^{7}+q^{9} t^{8}+q^{10} t^{9}$
$\mathbf{1 0}_{\boldsymbol{1}}$	$\frac{1}{q^{8} t^{8}}+\frac{1}{q^{7} t^{7}}+\frac{1}{q^{6} t^{6}}+\frac{2}{q^{5} t^{5}}+\frac{2}{q^{4} t^{4}}+\frac{2}{q^{3} t^{3}}+q^{2} t^{2}+\frac{2}{q^{2} t^{2}}+q t+\frac{2}{q t}+2$

Match with results obtained by the Mathematica Package KnotTheory

Classical A-polynomial

Knot complement $\longrightarrow S^{3} \backslash \mathrm{~K}$

Knot group $\pi_{1}(K) \quad$ fundamental group of $S^{3} \backslash K$

Classical A-polynomial

Knot complement $\longrightarrow S^{3} \backslash \mathrm{~K}$

Knot group $\pi_{1}(K) \quad$ fundamental group of $S^{3} \backslash K$

Example: Figure-eight knot

$$
\pi_{1}(K)=<a, b ; b a b^{-1} a^{-1} b a^{-1} b^{-1} a b a^{-1}=1>
$$

Classical A-polynomial

Representation of the fundamental group in

$$
\rho: \pi_{1}(K) \rightarrow S L(2, \mathbb{C})
$$

$S L(2, \mathbb{C})$

Classical A-polynomial

Representation of the fundamental group in

$$
\rho: \pi_{1}(K) \rightarrow S L(2, \mathbb{C})
$$

$S L(2, \mathbb{C})$

$$
\rho(a)=\left(\begin{array}{cc}
x & 1 \\
0 & x^{-1}
\end{array}\right) \quad \rho(b)=\left(\begin{array}{cc}
x & 1 \\
-d & x^{-1}
\end{array}\right)
$$

Classical A-polynomial

Representation of the fundamental group in

$$
\rho: \pi_{1}(K) \rightarrow S L(2, \mathbb{C})
$$

$S L(2, \mathbb{C})$

$$
\begin{aligned}
& \rho(a)=\left(\begin{array}{cc}
x & 1 \\
0 & x^{-1}
\end{array}\right) \quad \rho(b)=\left(\begin{array}{cc}
x & 1 \\
-d & x^{-1}
\end{array}\right) \\
& b a b^{-1} a^{-1} b a^{-1} b^{-1} a b a^{-1}=1
\end{aligned}
$$

Classical A-polynomial

Representation of the fundamental group in $S L(2, \mathbb{C})$

$$
\begin{gathered}
\rho(a)=\left(\begin{array}{cc}
x & 1 \\
0 & x^{-1}
\end{array}\right) \quad \rho(b)=\left(\begin{array}{cc}
x & 1 \\
-d & x^{-1}
\end{array}\right) \\
b a b^{-1} a^{-1} b a^{-1} b^{-1} a b a^{-1}=1 \\
d^{2}+d\left(3-x^{2}-x^{-2}\right)+3-x^{2}-x^{-2}=0 \\
d=\frac{1}{2}\left(x^{2}+x^{-2}-3 \pm \sqrt{\left(x^{2}+x^{-2}+1\right)\left(x^{2}+x^{-2}-3\right)}\right.
\end{gathered}
$$

Classical A-polynomial

Longitude I

$$
l=a b^{-1} a b a^{-2} b a b^{-1} a^{-1}
$$

Classical A-polynomial

Longitude I

$$
l=a b^{-1} a b a^{-2} b a b^{-1} a^{-1}
$$

$$
\rho(l)=\left(\begin{array}{cc}
y & * \\
0 & y^{-1}
\end{array}\right)
$$

Classical A-polynomial

$$
\begin{aligned}
& \text { Longitude I } l=a b^{-1} a b a^{-2} b a b^{-1} a^{-1} \\
& \qquad \rho(l)=\left(\begin{array}{cc}
y & * \\
0 & y^{-1}
\end{array}\right) \\
& y=\frac{\left(x^{2}-x-2-x^{-1}+x^{-2}\right)}{2}+\frac{\left(x-x^{-2}\right)}{2} \sqrt{\left(x+x^{-1}+1\right)\left(x+x^{-1}-3\right)}
\end{aligned}
$$

Classical A-polynomial

$$
\text { Longitude I } \quad l=a b^{-1} a b a^{-2} b a b^{-1} a^{-1}
$$

$$
\rho(l)=\left(\begin{array}{cc}
y & * \\
0 & y^{-1}
\end{array}\right)
$$

$$
y=\frac{\left(x^{2}-x-2-x^{-1}+x^{-2}\right)}{2}+\frac{\left(x-x^{-2}\right)}{2} \sqrt{\left(x+x^{-1}+1\right)\left(x+x^{-1}-3\right)}
$$

$$
y^{2}+\left(x^{2}-x-2-x^{-1}+x^{-2}\right) y+1=0
$$

Classical A-polynomial

$$
\begin{aligned}
& \text { Longitude I } l=a b^{-1} a b a^{-2} b a b^{-1} a^{-1} \\
& \qquad \rho(l)=\left(\begin{array}{cc}
y & * \\
0 & y^{-1}
\end{array}\right) \\
& y=\frac{\left(x^{2}-x-2-x^{-1}+x^{-2}\right)}{2}+\frac{\left(x-x^{-2}\right)}{2} \sqrt{\left(x+x^{-1}+1\right)\left(x+x^{-1}-3\right)} \\
& y^{2}+\left(x^{2}-x-2-x^{-1}+x^{-2}\right) y+1=0
\end{aligned}
$$

Classical A-polynomial

$$
A\left(\mathbf{4}_{1} ; x, y\right)=y^{2}+\left(x^{2}-x-2-x^{-1}+x^{-2}\right) y+1
$$

Volume conjecture

[Kashaev '95]

[H. Murakami, J. Murakami '01]

$$
\lim _{n \rightarrow \infty} \frac{2 \pi}{n} \log \left|J_{n}\left(K ; q=e^{\frac{2 \pi i}{n}}\right)\right|=\operatorname{Vol}\left(S^{3} \backslash K\right)
$$

Generalized volume conjecture [Gukov '05] [Murakami]

$$
n \longrightarrow \infty
$$

Generalized volume conjecture [Gukov '05] [Murakami]

$$
n \longrightarrow \infty \quad q=e^{\hbar} \longrightarrow 1
$$

Generalized volume conjecture [Gukov '05] [Murakami]

$$
n \longrightarrow \infty \quad q=e^{\hbar} \longrightarrow 1 \quad x=q^{n}=e^{n \hbar}=\text { fixed }
$$

Generalized volume conjecture [Gukov '05] [Murakami]

$n \longrightarrow \infty \quad q=e^{\hbar} \longrightarrow 1 \quad x=q^{n}=e^{n \hbar}=$ fixed

$$
\lim _{\substack{n \longrightarrow \infty \\ \hbar \longrightarrow 0}} J_{n}\left(K ; q=e^{\hbar}\right)=\exp \left(\frac{1}{\hbar} S_{0}(x)+\ldots\right)
$$

Generalized volume conjecture [Gukov '05]
 [Murakami]

$$
n \longrightarrow \infty \quad q=e^{\hbar} \longrightarrow 1 \quad x=q^{n}=e^{n \hbar}=\text { fixed }
$$

$$
\begin{aligned}
& \lim _{\substack{n \rightarrow \infty \\
\hbar \rightarrow 0}} \quad J_{n}\left(K ; q=e^{\hbar}\right)=\exp \left(\frac{1}{\hbar} S_{0}(x)+\ldots\right) \\
& S_{0}(x)=\operatorname{Vol}\left(S^{3} \backslash K\right)+i C S\left(S^{3} \backslash K\right)+\int_{1}^{x} \frac{d x}{x} \log y
\end{aligned}
$$

Generalized volume conjecture [Gukov '05]
 [Murakami]

$n \longrightarrow \infty \quad q=e^{\hbar} \longrightarrow 1 \quad x=q^{n}=e^{n \hbar}=$ fixed

$$
\begin{aligned}
& \lim _{\substack{n \rightarrow \infty \\
\hbar \rightarrow 0}} J_{n}\left(K ; q=e^{\hbar}\right)=\exp \left(\frac{1}{\hbar} S_{0}(x)+\ldots\right) \\
& S_{0}(x)=\operatorname{Vol}\left(S^{3} \backslash K\right)+i C S\left(S^{3} \backslash K\right)+\int_{1}^{x} \frac{d x}{x} \log y
\end{aligned}
$$

Integration done the zero locus of the A-polynomial: $A(K ; x, y)=0$

Generalized volume conjecture [Gukov '05] [Murakami]

$$
\log y=-x \frac{d}{d x}\left[\lim _{\substack{n \rightarrow \infty, q=e^{\hbar} \rightarrow 1 \\ x=e^{n \hbar}=\text { fixed }}} \log J_{n}\left(K ; q=e^{\hbar}\right)\right]
$$

$$
A(K ; x, y)=0
$$

Super-A-polynomials

[Fuji-Gukov-Sulkowski -Awata '12]
Asymptotic behavior

$$
\text { of } \mathcal{P}_{n}(K ; a, q, t)
$$

Super-A-polynomials

[Fuji-Gukov-Sulkowski -Awata '12]

Asymptotic behavior

$$
\text { of } \mathcal{P}_{n}(K ; a, q, t)
$$

Classical-super-A-polynomial

$$
A^{\text {super }}(K ; x, y ; a, t)
$$

Super-A-polynomials

[Fuji-Gukov-Sulkowski -Awata '12]
Asymptotic behavior

$$
\text { of } \mathcal{P}_{n}(K ; a, q, t)
$$

Classical-super-A-polynomial

$$
A^{\text {super }}(K ; x, y ; a, t)
$$

$$
n \longrightarrow \infty \quad q=e^{\hbar} \longrightarrow 1 \quad x, a, t=\text { fixed }
$$

Super-A-polynomials

[Fuji-Gukov-Sulkowski -Awata '12]

Asymptotic behavior

$$
\text { of } \mathcal{P}_{n}(K ; a, q, t)
$$

Classical-super-A-polynomial

$$
A^{\text {super }}(K ; x, y ; a, t)
$$

$$
n \longrightarrow \infty \quad q=e^{\hbar} \longrightarrow 1 \quad x, a, t=\text { fixed }
$$

$$
\lim _{n \longrightarrow \infty} \mathcal{P}_{n}\left(K ; a, q=e^{\hbar}, t\right)=\exp \left(\frac{1}{\hbar} \int_{1}^{x} \frac{d x}{x} \log y+\ldots\right)
$$

$$
A^{\text {super }}(K ; x, y ; a, t)=0
$$

Classical super-A-polynomials

$$
\begin{array}{r}
\mathcal{P}_{n}\left(K_{p>0} ; a, q, t\right)=(-t)^{-n+1} \sum_{k=0}^{\infty} \sum_{\ell=0}^{k} q^{k} \frac{\left(-a t q^{-1} ; q\right)_{k}}{(q ; q)_{k}}\left(q^{1-n} ; q\right)_{k}\left(-a t^{3} q^{n-1} ; q\right)_{k} \\
\times(-1)^{\ell}\left(a t^{2}\right)^{p \ell} q^{(p+1 / 2) \ell(\ell-1)} \frac{1-a t^{2} q^{2 \ell-1}}{\left(a t^{2} q^{\ell-1} ; q\right)_{k+1}}\left[\begin{array}{c}
k \\
\ell
\end{array}\right]_{q}
\end{array}
$$

Classical super-A-polynomials

$$
\begin{gathered}
\mathcal{P}_{n}\left(K_{p>0} ; a, q, t\right)=(-t)^{-n+1} \sum_{k=0}^{\infty} \sum_{\ell=0}^{k} q^{k} \frac{\left(-a t q^{-1} ; q\right)_{k}}{(q ; q)_{k}}\left(q^{1-n} ; q\right)_{k}\left(-a t^{3} q^{n-1} ; q\right)_{k} \\
\times(-1)^{\ell}\left(a t^{2}\right)^{p \ell} q^{(p+1 / 2) \ell(\ell-1)} \frac{1-a t^{2} q^{2 \ell-1}}{\left(a t^{2} q^{\ell-1} ; q\right)_{k+1}}\left[\begin{array}{c}
k \\
\ell
\end{array}\right]_{q} \\
z=e^{\hbar k} \quad \omega=e^{\hbar \ell}
\end{gathered}
$$

Classical super-A-polynomials

$$
\begin{gathered}
\mathcal{P}_{n}\left(K_{p>0} ; a, q, t\right)=(-t)^{-n+1} \sum_{k=0}^{\infty} \sum_{\ell=0}^{k} q^{k} \frac{\left(-a t q^{-1} ; q\right)_{k}}{(q ; q)_{k}}\left(q^{1-n} ; q\right)_{k}\left(-a t^{3} q^{n-1} ; q\right)_{k} \\
\times(-1)^{\ell}\left(a t^{2}\right)^{p \ell} q^{(p+1 / 2) \ell(\ell-1)} \frac{1-a t^{2} q^{2 \ell-1}}{\left(a t^{2} q^{\ell-1} ; q\right)_{k+1}}\left[\begin{array}{c}
k \\
\ell
\end{array}\right]_{q} \\
z=e^{\hbar k} \quad w=e^{\hbar \ell} \\
(\lambda ; q)_{k} \sim e^{\frac{1}{\hbar}\left(\operatorname{Li}_{2}(\lambda)-\operatorname{Li}_{2}\left(\lambda q^{k}\right)\right)}
\end{gathered}
$$

Classical super-A-polynomials

$$
\begin{gathered}
\mathcal{P}_{n}\left(K_{p>0} ; a, q, t\right)=(-t)^{-n+1} \sum_{k=0}^{\infty} \sum_{\ell=0}^{k} q^{k} \frac{\left(-a t q^{-1} ; q\right)_{k}}{(q ; q)_{k}}\left(q^{1-n} ; q\right)_{k}\left(-a t^{3} q^{n-1} ; q\right)_{k} \\
\times(-1)^{\ell}\left(a t^{2}\right)^{p \ell} q^{(p+1 / 2) \ell(\ell-1)} \frac{1-a t^{2} q^{2 \ell-1}}{\left(a t^{2} q^{\ell-1} ; q\right)_{k+1}}\left[\begin{array}{c}
k \\
\ell
\end{array}\right]_{q} \\
z=e^{\hbar k} \quad w=e^{\hbar \ell} \\
(\lambda ; q) k \sim e^{\frac{1}{\hbar}\left(\operatorname{Li}_{2}(\lambda)-\operatorname{Li}_{2}\left(\lambda q^{k}\right)\right)} \\
\mathcal{P}_{n}\left(K_{p} ; a, q, t\right) \sim \int d z d w e^{\frac{1}{\hbar}\left(\widetilde{\mathcal{W}}\left(K_{p} ; z, w\right)+\mathcal{O}(\hbar)\right)}
\end{gathered}
$$

Classical super-A-polynomials

$$
\left.\begin{array}{c}
\mathcal{P}_{n}\left(K_{p>0} ; a, q, t\right)=(-t)^{-n+1} \sum_{k=0}^{\infty} \sum_{\ell=0}^{k} q^{k} \frac{\left(-a t q^{-1} ; q\right)_{k}}{(q ; q)_{k}}\left(q^{1-n} ; q\right)_{k}\left(-a t^{3} q^{n-1} ; q\right)_{k} \\
\times(-1)^{\ell}\left(a t^{2}\right)^{p \ell} q^{(p+1 / 2) \ell(\ell-1)} \frac{1-a t^{2} q^{2 \ell-1}}{\left(a t^{2} q^{\ell-1} ; q\right)_{k+1}}\left[\begin{array}{c}
k \\
\ell
\end{array}\right]_{q} \\
z=e^{\hbar k} \quad w=e^{\hbar \ell} \\
(\lambda ; q)_{k} \sim e^{\frac{1}{\hbar}\left(\operatorname{Li}_{2}(\lambda)-\operatorname{Li}_{2}\left(\lambda q^{k}\right)\right)} \\
\mathcal{P}_{n}\left(K_{p} ; a, q, t\right)
\end{array}\right) \sim \int d z d w e^{\frac{1}{\hbar}\left(\widetilde{\mathcal{W}}\left(K_{p} ; z, w\right)+\mathcal{O}(\hbar)\right)}
$$

$$
\begin{aligned}
\widetilde{\mathcal{W}}\left(K_{p>0} ; z, w\right)= & -\log x \log (-t)-\frac{\pi^{2}}{3}+i \pi \log w+p(\log a+2 \log t) \log w+\left(p+\frac{1}{2}\right)(\log w)^{2} \\
& +\operatorname{Li}_{2}\left(x^{-1}\right)-\operatorname{Li}_{2}\left(x^{-1} z\right)+\operatorname{Li}_{2}(-a t)-\operatorname{Li}_{2}(-a t z)+\operatorname{Li}_{2}\left(-a t^{3} x\right) \\
& -\operatorname{Li}_{2}\left(-a t^{3} x z\right)-\operatorname{Li}_{2}\left(a t^{2} w\right)+\operatorname{Li}_{2}\left(a t^{2} w z\right)+\operatorname{Li}_{2}(w)+\operatorname{Li}_{2}\left(z w^{-1}\right)
\end{aligned}
$$

Classical super-A-polynomials

$$
\begin{aligned}
\widetilde{\mathcal{W}}\left(K_{p<0} ; z, w\right)= & -\frac{\pi^{2}}{3}+i \pi \log w+p(\log a+2 \log t) \log w+\left(p+\frac{1}{2}\right)(\log w)^{2} \\
& +\operatorname{Li}_{2}\left(x^{-1}\right)-\operatorname{Li}_{2}\left(x^{-1} z\right)+\operatorname{Li}_{2}(-a t)-\operatorname{Li}_{2}(-a t z)+\operatorname{Li}_{2}\left(-a t^{3} x\right) \\
& -\operatorname{Li}_{2}\left(-a t^{3} x z\right)-\operatorname{Li}_{2}\left(a t^{2} w\right)+\operatorname{Li}_{2}\left(a t^{2} w z\right)+\operatorname{Li}_{2}(w)+\operatorname{Li}_{2}\left(z w^{-1}\right)
\end{aligned}
$$

Classical super-A-polynomials

$$
\begin{aligned}
\widetilde{\mathcal{W}}\left(K_{p<0} ; z, w\right)= & -\frac{\pi^{2}}{3}+i \pi \log w+p(\log a+2 \log t) \log w+\left(p+\frac{1}{2}\right)(\log w)^{2} \\
& +\operatorname{Li}_{2}\left(x^{-1}\right)-\operatorname{Li}_{2}\left(x^{-1} z\right)+\operatorname{Li}_{2}(-a t)-\operatorname{Li}_{2}(-a t z)+\operatorname{Li}_{2}\left(-a t^{3} x\right) \\
& -\operatorname{Li}_{2}\left(-a t^{3} x z\right)-\operatorname{Li}_{2}\left(a t^{2} w\right)+\operatorname{Li}_{2}\left(a t^{2} w z\right)+\operatorname{Li}_{2}(w)+\operatorname{Li}_{2}\left(z w^{-1}\right)
\end{aligned}
$$

The leading behavior with respect to \hbar comes from the saddle points

Classical super-A-polynomials

$$
\begin{aligned}
\widetilde{\mathcal{W}}\left(K_{p<0} ; z, w\right)= & -\frac{\pi^{2}}{3}+i \pi \log w+p(\log a+2 \log t) \log w+\left(p+\frac{1}{2}\right)(\log w)^{2} \\
& +\operatorname{Li}_{2}\left(x^{-1}\right)-\operatorname{Li}_{2}\left(x^{-1} z\right)+\operatorname{Li}_{2}(-a t)-\operatorname{Li}_{2}(-a t z)+\operatorname{Li}_{2}\left(-a t^{3} x\right) \\
& -\operatorname{Li}_{2}\left(-a t^{3} x z\right)-\operatorname{Li}_{2}\left(a t^{2} w\right)+\operatorname{Li}_{2}\left(a t^{2} w z\right)+\operatorname{Li}_{2}(w)+\operatorname{Li}_{2}\left(z w^{-1}\right)
\end{aligned}
$$

The leading behavior with respect to \hbar comes from the saddle points

$$
\left.\frac{\partial \widetilde{\mathcal{W}}\left(K_{p} ; z, w, x\right)}{\partial z}\right|_{(z, w)=\left(z_{0}, w_{0}\right)}=0=\left.\frac{\partial \widetilde{\mathcal{W}}\left(K_{p} ; z, w, x\right)}{\partial w}\right|_{(z, w)=\left(z_{0}, w_{0}\right)}
$$

Classical super-A-polynomials

$$
\begin{aligned}
\widetilde{\mathcal{W}}\left(K_{p<0} ; z, w\right)= & -\frac{\pi^{2}}{3}+i \pi \log w+p(\log a+2 \log t) \log w+\left(p+\frac{1}{2}\right)(\log w)^{2} \\
& +\operatorname{Li}_{2}\left(x^{-1}\right)-\operatorname{Li}_{2}\left(x^{-1} z\right)+\operatorname{Li}_{2}(-a t)-\operatorname{Li}_{2}(-a t z)+\operatorname{Li}_{2}\left(-a t^{3} x\right) \\
& -\operatorname{Li}_{2}\left(-a t^{3} x z\right)-\operatorname{Li}_{2}\left(a t^{2} w\right)+\operatorname{Li}_{2}\left(a t^{2} w z\right)+\operatorname{Li}_{2}(w)+\operatorname{Li}_{2}\left(z w^{-1}\right)
\end{aligned}
$$

The leading behavior with respect to \hbar comes from the saddle points
$\left.\frac{\partial \widetilde{\mathcal{W}}\left(K_{p} ; z, w, x\right)}{\partial z}\right|_{(z, w)=\left(z_{0}, w_{0}\right)}=0=\left.\frac{\partial \widetilde{\mathcal{W}}\left(K_{p} ; z, w, x\right)}{\partial w}\right|_{(z, w)=\left(z_{0}, w_{0}\right)}$
super-A-polynomials $\quad y=\exp \left(x \frac{\partial \widetilde{\mathcal{W}}\left(K_{p} ; z_{0}, w_{0}, x\right)}{\partial x}\right)$

Classical super-A-polynomials

For $p>0$

$$
\begin{aligned}
& 1=\frac{w_{0}\left(x-z_{0}\right)\left(1+a t z_{0}\right)\left(1+a t^{3} x z_{0}\right)}{x\left(w_{0}-z_{0}\right)\left(1-a t^{2} w_{0} z_{0}\right)} \\
& 1=-\frac{a^{p} t^{2 p} w_{0}^{2 p}\left(w_{0}-z_{0}\right)\left(1-a t^{2} w_{0}\right)}{\left(1-w_{0}\right)\left(1-a t^{2} w_{0} z_{0}\right)} \\
& y=-\frac{(x-1)\left(1+a t^{3} x z_{0}\right)}{t\left(x-z_{0}\right)\left(1+a t^{3} x\right)}
\end{aligned}
$$

For $p<0$

$$
\begin{aligned}
& 1=\frac{w_{0}\left(x-z_{0}\right)\left(1+a t z_{0}\right)\left(1+a t^{3} x z_{0}\right)}{x\left(w_{0}-z_{0}\right)\left(1-a t^{2} w_{0} z_{0}\right)}, \\
& 1=-\frac{a^{p} t^{2 p} w_{0}^{2 p}\left(w_{0}-z_{0}\right)\left(1-a t^{2} w_{0}\right)}{\left(1-w_{0}\right)\left(1-a t^{2} w_{0} z_{0}\right)} \\
& y=\frac{(x-1)\left(1+a t^{3} x z_{0}\right)}{\left(x-z_{0}\right)\left(1+a t^{3} x\right)}
\end{aligned}
$$

Classical super-A-polynomials

For $p>0$

$$
\begin{aligned}
& 1=\frac{w_{0}\left(x-z_{0}\right)\left(1+a t z_{0}\right)\left(1+a t^{3} x z_{0}\right)}{x\left(w_{0}-z_{0}\right)\left(1-a t^{2} w_{0} z_{0}\right)}, \\
& 1=-\frac{a^{p} t^{2 p} w_{0}^{2 p}\left(w_{0}-z_{0}\right)\left(1-a t^{2} w_{0}\right)}{\left(1-w_{0}\right)\left(1-a t^{2} w_{0} z_{0}\right)}, \\
& y=-\frac{(x-1)\left(1+a t^{3} x z_{0}\right)}{t\left(x-z_{0}\right)\left(1+a t^{3} x\right)},
\end{aligned}
$$

For $p<0$

$$
\begin{aligned}
& 1=\frac{w_{0}\left(x-z_{0}\right)\left(1+a t z_{0}\right)\left(1+a t^{3} x z_{0}\right)}{x\left(w_{0}-z_{0}\right)\left(1-a t^{2} w_{0} z_{0}\right)}, \\
& 1=-\frac{a^{p} t^{2 p} w_{0}^{2 p}\left(w_{0}-z_{0}\right)\left(1-a t^{2} w_{0}\right)}{\left(1-w_{0}\right)\left(1-a t^{2} w_{0} z_{0}\right)}, \\
& y=\frac{(x-1)\left(1+a t^{3} x z_{0}\right)}{\left(x-z_{0}\right)\left(1+a t^{3} x\right)}
\end{aligned}
$$

Eliminate z_{0} and w_{0} to find classical super-A-polynomial

Classical super-A-polynomials

Knot	$A^{\text {super }}(K ; x, y ; a, t)$
$\mathbf{5}_{\mathbf{2}}$	y^{4}
	$-\frac{a}{1+a t^{3} x}\left(2-x+t x-2 t^{2} x+3 t^{2} x^{2}+a t^{2} x^{2}+4 a t^{3} x^{2}-2 a t^{3} x^{3}+2 a t^{4} x^{3}+2 a t^{5} x^{3}-a t^{5} x^{4}+2 a^{2} t^{5} x^{4}+\right.$
	$\left.2 a^{2} t^{6} x^{4}-a^{2} t^{6} x^{5}+a^{2} t^{7} x^{5}+a^{3} t^{8} x^{6}\right) y^{3}$
	$-\frac{a^{2}(-1+x)}{\left(1+a t^{3} x\right)^{2} y^{4}}\left(1+t x-2 t^{2} x+2 t^{2} x^{2}-2 t^{3} x^{2}+4 a t^{3} x^{2}+t^{4} x^{2}-3 t^{4} x^{3}+a t^{4} x^{3}-2 a t^{5} x^{3}+4 a t^{5} x^{4}-\right.$
	$4 a t^{6} x^{4}+6 a^{2} t^{6} x^{4}-4 a t^{7} x^{4}+3 a t^{7} x^{5}-a^{2} t^{7} x^{5}+2 a^{2} t^{8} x^{5}+2 a^{2} t^{8} x^{6}-2 a^{2} t^{9} x^{6}+4 a^{3} t^{9} x^{6}+a^{2} t^{10} x^{6}-$
	$\left.a^{3} t^{10} x^{7}+2 a^{3} t^{11} x^{7}+a^{4} t^{12} x^{8}\right) y^{2}$
	$+\frac{a^{3} t^{3}(-1+x)^{2} x^{2}}{\left(1+a t^{3} x\right)^{2}}\left(1+t x-t^{2} x-t^{3} x^{2}+2 a t^{3} x^{2}+2 a t^{4} x^{2}+2 a t^{4} x^{3}-2 a t^{5} x^{3}-2 a t^{6} x^{3}+3 a t^{6} x^{4}+\right.$
	$\left.a^{2} t^{6} x^{4}+4 a^{2} t^{7} x^{4}+a^{2} t^{7} x^{5}-a^{2} t^{8} x^{5}+2 a^{2} t^{9} x^{5}+2 a^{3} t^{10} x^{6}\right) y$
	$-\frac{a^{5} t^{11}(-1+x)^{3} x^{7}}{\left(1+a t^{3} x\right)^{3}}$

At $\dagger=-1 a=1$, it reduces to the classical A-polynomial

Classical super-A-polynomials

Knot	$A^{\text {super }}(K ; x, y ; a, t)$
$\mathbf{5}_{\mathbf{2}}$	y^{4}
	$-\frac{a}{1+a t^{3} x}\left(2-x+t x-2 t^{2} x+3 t^{2} x^{2}+a t^{2} x^{2}+4 a t^{3} x^{2}-2 a t^{3} x^{3}+2 a t^{4} x^{3}+2 a t^{5} x^{3}-a t^{5} x^{4}+2 a^{2} t^{5} x^{4}+\right.$
	$\left.2 a^{2} t^{6} x^{4}-a^{2} t^{6} x^{5}+a^{2} t^{7} x^{5}+a^{3} t^{8} x^{6}\right) y^{3}$
	$-\frac{a^{2}(-1+x)}{\left(1+a t^{3} x\right)^{2} y^{4}}\left(1+t x-2 t^{2} x+2 t^{2} x^{2}-2 t^{3} x^{2}+4 a t^{3} x^{2}+t^{4} x^{2}-3 t^{4} x^{3}+a t^{4} x^{3}-2 a t^{5} x^{3}+4 a t^{5} x^{4}-\right.$
	$4 a^{6} x^{4}+6 a^{2} t^{6} x^{4}-4 a t^{7} x^{4}+3 a t^{7} x^{5}-a^{2} t^{7} x^{5}+2 a^{2} t^{8} x^{5}+2 a^{2} t^{8} x^{6}-2 a^{2} t^{9} x^{6}+4 a^{3} t^{9} x^{6}+a^{2} t^{10} x^{6}-$
	$\left.a^{3} t^{10} x^{7}+2 a^{3} t^{11} x^{7}+a^{4} t^{12} x^{8}\right) y^{2}$
	$+\frac{a^{3} t^{3}(-1+x)^{2} x^{2}}{\left(1+a t^{3} x^{3}\right.}\left(1+t x-t^{2} x-t^{3} x^{2}+2 a t^{3} x^{2}+2 a t^{4} x^{2}+2 a t^{4} x^{3}-2 a t^{5} x^{3}-2 a t^{6} x^{3}+3 a t^{6} x^{4}+\right.$
	$\left.a^{2} t^{6} x^{4}+4 a^{2} t^{7} x^{4}+a^{2} t^{7} x^{5}-a^{2} t^{8} x^{5}+2 a^{2} t^{9} x^{5}+2 a^{3} t^{10} x^{6}\right) y$
	$-\frac{a^{5} t^{11}(-1+x)^{3} x^{7}}{\left(1+a t^{3} x\right)^{3}}$

At $\dagger=-1 a=1$, it reduces to the classical A-polynomial

$$
A^{\text {super }}(K ; x, y ; t=-1, a=1)=A(K ; x, y)
$$

Quantum A-polynomials

[Stavros '04][Gukov '04]

$$
\hat{x} J_{n}(K ; q)=q^{n} J_{n}(K ; q) \quad \hat{y} J_{n}(K ; q)=J_{n+1}(K ; q)
$$

Quantum A-polynomials

[Stavros '04][Gukov '04]

$$
\hat{x} J_{n}(K ; q)=q^{n} J_{n}(K ; q) \quad \hat{y} J_{n}(K ; q)=J_{n+1}(K ; q)
$$

Quantum A-polynomials \longmapsto

Quantum A-polynomials

[Stavros '04][Gukov '04]

$$
\hat{x} J_{n}(K ; q)=q^{n} J_{n}(K ; q) \quad \hat{y} J_{n}(K ; q)=J_{n+1}(K ; q)
$$

Quantum A-polynomials $\Longrightarrow \widehat{A}(K ; \hat{x}, \hat{y} ; q) J_{n}(K ; q)=0$

Quantum A-polynomials

[Stavros '04][Gukov '04]

$$
\hat{x} J_{n}(K ; q)=q^{n} J_{n}(K ; q) \quad \hat{y} J_{n}(K ; q)=J_{n+1}(K ; q)
$$

Quantum A-polynomials $\Longrightarrow \widehat{A}(K ; \hat{x}, \hat{y} ; q) J_{n}(K ; q)=0$

$$
b_{k}(\hat{x}, q) J_{n+k}(K ; q)+\cdots+b_{0}(\hat{x}, q) J_{n}(K ; q)=0
$$

Quantum A-polynomials

[Stavros '04][Gukov '04]

$$
\hat{x} J_{n}(K ; q)=q^{n} J_{n}(K ; q) \quad \hat{y} J_{n}(K ; q)=J_{n+1}(K ; q)
$$

Quantum A-polynomials $\Longrightarrow \widehat{A}(K ; \hat{x}, \hat{y} ; q) J_{n}(K ; q)=0$

$$
b_{k}(\hat{x}, q) J_{n+k}(K ; q)+\cdots+b_{0}(\hat{x}, q) J_{n}(K ; q)=0
$$

$$
\widehat{A}(K ; \hat{x}, \hat{y} ; q)=\sum_{j=0}^{k} b_{j}(\hat{x}, q) \hat{y}^{j}
$$

Quantum A-polynomials

[Stavros '04][Gukov '04]
$\hat{x} J_{n}(K ; q)=q^{n} J_{n}(K ; q) \quad \hat{y} J_{n}(K ; q)=J_{n+1}(K ; q)$

Quantum A-polynomials $\Longrightarrow \widehat{A}(K ; \hat{x}, \hat{y} ; q) J_{n}(K ; q)=0$

$$
b_{k}(\hat{x}, q) J_{n+k}(K ; q)+\cdots+b_{0}(\hat{x}, q) J_{n}(K ; q)=0
$$

$$
\widehat{A}(K ; \hat{x}, \hat{y} ; q)=\sum_{j=0}^{k} b_{j}(\hat{x}, q) \hat{y}^{j}
$$

$$
\widehat{A}(K ; \hat{x}, \hat{y} ; q=1)=A(K ; x, y)
$$

Quantum super-A-polynomials

[Fuji-Gukov-Sulkowski -Awata '12]

$$
\hat{x} \mathcal{P}_{n}(K ; a, q, t)=q^{n} \mathcal{P}_{n}(K ; a, q, t)
$$

$$
\hat{y} \mathcal{P}_{n}(K ; a, q, t)=\mathcal{P}_{n+1}(K ; a, q, t)
$$

Quantum super-A-polynomials

[Fuji-Gukov-Sulkowski -Awata '12]

$$
\hat{x} \mathcal{P}_{n}(K ; a, q, t)=q^{n} \mathcal{P}_{n}(K ; a, q, t)
$$

$$
\hat{y} \mathcal{P}_{n}(K ; a, q, t)=\mathcal{P}_{n+1}(K ; a, q, t)
$$

$$
\widehat{A}(K ; \hat{x}, \hat{y} ; a, q, t) \mathcal{P}_{n}(K ; a, q, t)=0
$$

Quantum super-A-polynomials

[Fuji-Gukov-Sulkowski -Awata '12]
$\hat{x} \mathcal{P}_{n}(K ; a, q, t)=q^{n} \mathcal{P}_{n}(K ; a, q, t)$

$$
\hat{y} \mathcal{P}_{n}(K ; a, q, t)=\mathcal{P}_{n+1}(K ; a, q, t)
$$

$$
\widehat{A}(K ; \hat{x}, \hat{y} ; a, q, t) \mathcal{P}_{n}(K ; a, q, t)=0
$$

Quantum super-A-polynomials

Knot	$\widehat{A^{\text {super }}(K ; \hat{x}, \hat{y} ; a, q, t)}$
52	$\left(1+a t^{3} \hat{x}\right)\left(1+a q t^{3} \hat{x}\right)\left(1+a q^{2} t^{3} \hat{x}\right)\left(1+a t^{3} \hat{x}^{2}\right)\left(q+a t^{3} \hat{x}^{2}\right)\left(1+a q t^{3} \hat{x}^{2}\right)$

Colored Kauffman homology

Colored Kauffman homology for trefoil and figure of eight knot colored by symmetric representation

arXiv:1310.220
[Satoshi,Rama,Z '13]

Thank you

