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Introduction

A long knot ( embedding of R1 in R3 ) whose component
functions are real polynomials is called as polynomial knot.

It is proved that, each classical knot is ambient isotopic to a one
point compactification ( via an embedding of R3 is S3 ) of some
polynomial knot.
So that, each knot type is represented by a polynomial knot and
it is interesting to know, what is the minimal degree, a particular
knot type requires to be represented as polynomial knot in that
degree.
We have produced the polynomial representations of all the
knots up to 6 crossings in degree at most 7 and determined the
minimal polynomial degree for some knots.
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Introduction

For a fixed positive integer n, the set Pn of all polynomial knots
φ = (f , g, h) with deg(f ) < deg(g) < deg(h) = n can be thought of
as a subset of R3n and it is equipped with the subspace
topology induced from R3n.

In this talk we discuss about determining a lower bound on the
number of path components of P5,P6 and P7.

We define a path equivalence in the space Pn and show that it
is stronger than the topological equivalence.
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Polynomial Knot

Definition (1)

A long knot is a smooth embedding
φ : R1 → R3 such that t 7→‖ φ(t) ‖ is
strictly monotone outside a closed
interval and ‖ φ(t) ‖−→ ∞ as | t |−→ ∞.

Definition (2)

A long knot (f , g, h) : R1 → R3, where f , g and h are real
polynomials, is called as a polynomial knot.
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Degree of a Polynomial Knot

Definition (3)

A degree of a polynomial knot φ := (f , g, h) is defined as
deg(φ) = max{deg(f ), deg(g), deg(h)}.

Proposition (4)

Any polynomial knot φ of degree n is ambient isotopic to a
polynomial knot ψ := (f , g, h) with deg(f ) < deg(g) < deg(h) = n.
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Polynomial Representation

Theorem (5)

Each long knot is ambient isotopic ( topologically equivalent ) to
some polynomial knot. [ A.R. Shastri, 1992 ]

So each knot K : S1 → S3 is ambient isotopic to a one point
compactification of some polynomial knot P : R1 → R3 via an
embedding F : R3 → S3.

This P is called as a polynomial representation of the knot
type [K].
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Polynomial Degree of a Knot Type

Definition (6)

A polynomial degree p[K] of a knot type [K] is the least
positive integer n having a polynomial representation of [K] in
degree n.

• If a knot [K] is represented by a polynomial knot (f , g, h),
then (f , g,−h) represents it’s mirror image.

• Thus a knot [K] and it’s mirror image have same
polynomial degree.

• Hence the polynomial degree can not detect the chirality
of a knot.
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Representations of Some Knots

The minimal polynomial representation and polynomial degree
was known for the knots 31, 41, 51 and 819.

We have produced polynomial representations of the following
knots:

Knot Types Degree
31 5
41 6
51, 52, 61, 62, 63, 31#31, 31#3∗1 & 819 7

The representations of these knots are given below:
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Polynomial Representation of 31

x(t) := 4 t (−25 + t2) ,
y(t) := (−25 + t2) (−6 + t2) ,
z(t) := − 0.2 t (−26.8 + t2) (0.04 + t2)

Figure : 31 with degree sequence (3, 4, 5)



Polynomial Representation of 41

x(t) := (−4.8 + t) (−0.3 + t) (3.6 + t) (10 + t) ,
y(t) := (−4.8 + t) (−3.3 + t) (−0.3 + t) (2.3 + t) (4.6 + t) ,
z(t) := 0.5 t (−0.19 + t) (21.22 − 9.19 t + t2) (17.78 + 8.42 t + t2)

Figure : 41 with degree sequence (4, 5, 6)



Polynomial Representation of 51

x(t) := 4 (−24.01 + t2) (−4 + t2) ,
y(t) := t (−30.25 + t2) (−12.25 + t2) ,
z(t) := − 0.1 t (−26.8328 + t2) (−13.6702 + t2) (0.1135 + t2)

Figure : 51 with degree sequence (4, 5, 7)



Polynomial Representation of 52

x(t) := 20 (−17 + t) (−10 + t) (15 + t) (21 + t) ,
y(t) := t (−400 + t2) (−121 + t2) ,
z(t) := − 0.005 t (−20.1133216 + t) (−14.260128 + t) (12.2430449 + t)
(20.5785825 + t) (0.0107598 − 0.0343124 t + t2)

Figure : 52 with degree sequence (4, 5, 7)



Polynomial Representation of 61

x(t) := 60 (−43.4 + t) (−28 + t) (5 + t) (31.4 + t) (47.6 + t) ,
y(t) := (−49 + t) (−38 + t) (−8 + t) (−6 + t) (28 + t) (43.6 + t) ,
z(t) := − 0.07 (−45.995024874 + t) (5.231021635 + t) (19.036560084 + t)
(758.763745443−54.4650519227 t+ t2) (2059.948386689+90.4819595699 t+ t2)

Figure : 61 with degree sequence (5, 6, 7)



Polynomial Representation of 62

x(t) := 4 (−39 + t) (−5 + t) (35 + t) (−625 + t2) ,
y(t) := 0.1 (−39 + t) (−30 + t) (−10 + t) (20 + t) (25 + t) (41 + t) ,
z(t) := 0.005 t (−39.8753791 + t) (−27.4156408 + t) (28.436878 + t)
(37.25572585 + t) (0.002423881 − 0.005429486 t + t2)

Figure : 62 with degree sequence (5, 6, 7)



Polynomial Representation of 63

x(t) := 15 (−29 + t) (−20 + t) (10 + t) (30 + t)2 ,
y(t) := (−32 + t) (−6 + t) (4 + t) (30 + t) (−400 + t2) ,
z(t) := − 0.06 (−33.329044815 + t) (376.737563885 − 37.8892469397 t + t2)
(144.275534095 + 21.404400212 t + t2) (955.985733648 + 61.56649851 t + t2)

Figure : 63 with degree sequence (5, 6, 7)



Polynomial Representation of 31#31

x(t) := 5 t (77.3 − 17.5 t + t2)(77.3 + 17.5 t + t2) ,
y(t) := (−102.01 + t2) (−53.29 + t2) (−4.84 + t2) ,
z(t) := − 0.15 t (−99.695462027 + t2) (−68.11720396 + t2) (0.025367747 + t2)

Figure : 31#31 with degree sequence (5, 6, 7)



Polynomial Representation of 31#3∗1
x(t) := 30 (−32.5 + t) (−21.3 + t) (−3.3 + t) (16.2 + t) (28 + t) ,
y(t) := (−34 + t) (−23 + t) (−6.8 + t) (12 + t) (21.7 + t) (33.1 + t) ,
z(t) := − 0.03 t (−32.807367 + t) (−24.209735 + t) (15.257278 + t)
(28.289226 + t) (0.0043718 − 0.0082068 t + t2)

Figure : 31#3∗1 with degree sequence (5, 6, 7)



Polynomial Representation of 819

x(t) := t5 − 5.5 t3 + 4.5 t ,
y(t) := t6 − 7.35 t4 + 14 t2 ,
z(t) := t7 − 8.13297 t5 + 18.5762 t3 − 10.4337 t

Figure : 819 with degree sequence (5, 6, 7)



There are some inequalities between polynomial degree and
other knot invariants like crossing number, bridge index and
super bridge index.

Definitions of the bridge index and the super bridge index are
given below:
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Bridge Index and Super Bridge Index

6

v

K′

Figure : mv(K′) = 3

Given a knot K′ and a vector v ∈ S2.

mv(K′) := # local maxima of K′ in the
direction of v.
SK′ be a subset of S2 such that mv(K′) is
finite.
A bridge index of knot type [K] is,
b[K] := min

K′∈[K]
min
v∈SK′ mv(K′)

A super bridge index of a knot type [K] is,
sb[K] := min

K′∈[K]
max
v∈SK′ mv(K′)
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Polynomial Degree and Other Knot Invariants

Proposition (7)

For a nontrivial knot [K] :

1. 2.c[K] ≤ (p[K]− 2)(p[K]− 3)

2. 2.b[K] ≤ p[K]− 1

3. 2.sb[K] ≤ p[K] + 1

Where c[K], b[K], sb[K] and p[K] denote the crossing number,
bridge index, super bridge index and polynomial degree of [K]
respectively.

The polynomial representations of the knots 31, 41, 51, 31#31,
31#3∗1 & 819 are minimal, but the representations of the knots
52, 61, 62 & 63 may be reduced further.
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Polynomial Degree

We have proved the following theorem.

Theorem (8)

If a polynomial knot φ has a regular projection ( f , g ) with n
transversal double points and the crossing data of the knot is
such that there are m changes from under crossing to over
crossing or vice-versa, then there is a polynomial h with
deg(h) ≤ min{n + 2,m} such that the polynomial knots φ and
ψ := ( f , g, h ) are topologically equivalent.



Polynomial Degree

For an alternating knot K with minimal number of crossings, we
have c[K] number of transversal double points and 2.c[K]− 1
number of crossing changes. Hence the following corollary
follows immediately from the previous theorem.

Corollary (8.1)

If a knot type [K] is represented by an alternating knot K, then
p[K] ≤ c[K] + 2.

Where c[K] and p[K] denote the crossing number and
polynomial degree of [K] respectively.
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Spaces of Polynomial Knots

• For a fixed positive integer n, the set Pn of all polynomial
knots φ = (f , g, h) with deg(f ) < deg(g) < deg(h) = n can be
thought of as a subset of R3n and it is equipped with the
subspace topology induced from R3n.

• The set P = ∪nPn of all polynomial knots can be given the
inductive limit topology.

• So Pn and P are topological spaces.
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Polynomial Isotopy

Definition (9)

Two polynomial knots φ and ψ are said to be polynomially
isotopic if there exists a one parameter family of polynomial
knots {Pt|t ∈ [0, 1]} such that P0 = φ and P1 = ψ.

• Being polynomially isotopic is an equivalence relation in P
for which it is easy to note that the equivalence classes are
nothing but the path components of the space P.

• It was proved that, two polynomial knots are ambient
isotopic ( topologically equivalent ) as long knots if and only
if they are polynomially isotopic. [ Rama Mishra, 1994 ]

• Thus two knots lie in the same path component of P if and
only if they are ambient isotopic.
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Path Equivalence in Pn

Two polynomial knots of different degree may represent
equivalent long knots and the polynomial isotopy may pass
through polynomial knots of various degrees. For the spaces
Pn, there is another equivalence defined as:

Definition (10)

Two polynomial knots in Pn are said to be path equivalent if
they belong to the same path component of Pn.

It is obvious that if two polynomial knots in Pn are path
equivalent then they are topologically equivalent. However the
converse is not true.
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We have proved the following theorem.

Theorem (11)

Suppose (f , g, h) is a minimal degree polynomial representation
of a knot [K] with deg(f ) < deg(g) < deg(h) = n. Then (f , g, h)
and it’s mirror image given by (f , g,−h) belong to the distinct
path components of Pn.



Remarks (12)

If (f , g, h) is a minimal degree polynomial representation of a
knot [K] with deg(f ) < deg(g) < deg(h) = n, then the following
hold :

1. If the degree of f is minimal in the sense that, by reducing
the degree of f results in a knot with less than c[K] number
of crossings, then (f , g, h), (−f , g,−h), (−f , g, h) and
(f , g,−h) are lie in 4 distinct path components of Pn.

2. Similarly, if the degree of g is minimal in the above sense,
then there are at least 4 distinct path components of Pn

corresponding to [K].
3. If the degree of each of f and g is minimal in the sense

that, by reducing the degree of any one of them results in a
knot with less than c[K] number of crossings, then there
are at least 8 distinct path components of Pn

corresponding to [K].
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1. If the degree of f is minimal in the sense that, by reducing
the degree of f results in a knot with less than c[K] number
of crossings, then (f , g, h), (−f , g,−h), (−f , g, h) and
(f , g,−h) are lie in 4 distinct path components of Pn.

2. Similarly, if the degree of g is minimal in the above sense,
then there are at least 4 distinct path components of Pn

corresponding to [K].
3. If the degree of each of f and g is minimal in the sense

that, by reducing the degree of any one of them results in a
knot with less than c[K] number of crossings, then there
are at least 8 distinct path components of Pn

corresponding to [K].



Main Questions

In connection with polynomial representation of knots, two
important questions are of interest namely:

1. Given a knot, what is its polynomial degree?

2. Given a positive integer n, what are the knots which have a
polynomial representation in Pn?

Both questions are equally interesting and are not answered
completely, and answer to each question helps in answering
the other question.
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• We have partially answered the Question 2 for the spaces
P6 & P7, and estimated some lower bounds on the number
of path components of each of the spaces P5,P6 & P7.

• The number of topologically distinct knots in Pn together
with Theorem 11 and Remarks 12.1, 12.2 & 12.3 provide
us a lower bound on the number of path components of Pn.

• All the knots that are realized in degree n are also realized
in degree n + 1.
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The Spaces Pn for n ≤ 4

Question 2 has been addressed for n ≤ 4 and the known
theorems are:

Proposition (13)

The trivial knot is the only knot that can be realized in Pn for
n ≤ 4.

In fact for n ≤ 4 there is a stronger result:

Theorem (14)

The space Pn for n ≤ 4 is path connected.
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The Space P5

• Any knot with polynomial degree 5 has at most 3 crossings.

• The knots 01, 31 & 3∗1 are the only knots those can be
realized in P5.

• The polynomial degree of 31 is 5.
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The Space P5

Lower bound on the number of path components of P5 :

s.n. knot type # of path components corre-
sponding to the knot type

1. 01 at least 1
2. 31 at least 4
3. 3∗1 at least 4

# of path compo-
nents of P5

at least 9

Thus, the space P5 has at least 9 path components.
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The Space P7

• Any knot with polynomial degree 7 has at most 10
crossings.

• All the knots up to 6 crossings ( including 819 and 8∗19 ) can
be realized in P7.

• The polynomial degree of each of the knot 51, 31#31, 31#3∗1
and 819 is 7.

• The polynomial degree of each of the knot 52, 61, 62 and 63
is either 6 or 7.
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crossings.
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be realized in P7.

• The polynomial degree of each of the knot 51, 31#31, 31#3∗1
and 819 is 7.
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The Space P7

Lower bound on the number of path components of P7 :

s.n. knot type # of path components corre-
sponding to the knot type

1. 01 at least 1
2. 31 at least 1
3. 3∗1 at least 1
4. 41 at least 1
5. 51 at least 2
6. 5∗1 at least 2
7. 52 at least 1
8. 5∗2 at least 1
9. 61 at least 1
10. 6∗1 at least 1



The Space P7

11. 62 at least 1
12. 6∗2 at least 1
13. 63 at least 1
14. 31#31 at least 2
15. 3∗1#3∗1 at least 2
16. 31#3∗1 at least 2
17. 819 at least 2
18. 8∗19 at least 2

# of path compo-
nents of P7

at least 25

Thus, the space P7 has at least 25 path components.
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11. 62 at least 1
12. 6∗2 at least 1
13. 63 at least 1
14. 31#31 at least 2
15. 3∗1#3∗1 at least 2
16. 31#3∗1 at least 2
17. 819 at least 2
18. 8∗19 at least 2

# of path compo-
nents of P7

at least 25

Thus, the space P7 has at least 25 path components.



Conjecture

We have conjectured the following:

Conjecture (15)

The polynomial degree of each of the knot 52, 61, 62 and 63 is 7.

• However it is conjectured that, the only three super bridge
knots are 31 and 41. If this is proved, then it will imply the
above conjecture.

• Once conjecture 15 is proved, it will bring at least 7 more
path components in P7.

• On the contrary, if the conjecture 15 is disproved, then it
will produce example of a three super bridge knot other
than 31 & 41 and will bring more path components in P6.
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Thank You !


