On Hempel distance of bridge splittings of links

Yeonhee Jang (joint work with Ayako Ido and Tsuyoshi Kobayashi)

Nara Women's University

December 19, 2013

Outline

- Curve complexes
- 2 Bridge splittings and Hempel distance
- Results on Hempel distance of bridge splittings
- Outline of Proof of Main Theorem

S: orientable surface of genus g with p punctures s.t. 3g + p - 4 > 0 (i.e., $(g,p) \neq (0,0), (0,1), (0,2), (0,3), (0,4), (1,0), (1,1)$).

S: orientable surface of genus g with p punctures s.t. 3g + p - 4 > 0 (i.e., $(g, p) \neq (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1)$).

Curve complex

The (1-skeleton of the) curve complex C(S) is a simplicial complex defined as follows:

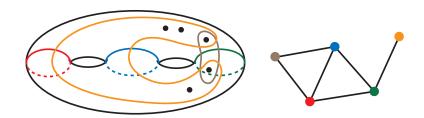
- 0-simplex \leftrightarrow (isotopy class of) an essential s. c. curve on S,
- two 0-simplexes are joined by a 1-simplex if they can be realized by disjoint curves.

S: orientable surface of genus g with p punctures s.t. 3g + p - 4 > 0 (i.e., $(g, p) \neq (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1)$).

Curve complex

The (1-skeleton of the) curve complex C(S) is a simplicial complex defined as follows:

- 0-simplex \leftrightarrow (isotopy class of) an essential s. c. curve on S,
- two 0-simplexes are joined by a 1-simplex if they can be realized by disjoint curves.



Distance in the curve complex

• For vertices a and b ($\in C^0(S)$), $d(a,b) = d_{C(S)}(a,b) :=$ (the smallest number of 1-simplexes in a path connecting a and b in C(S)),

Distance in the curve complex

- For vertices a and b ($\in C^0(S)$), $d(a,b) = d_{C(S)}(a,b) :=$ (the smallest number of 1-simplexes in a path connecting a and b in C(S)),
- For sets A and B of vertices, $d(A,B) = d_{C(S)}(A,B) := \min\{d(a,b) \mid a \in A, b \in B\}.$

Distance in the curve complex

- For vertices a and b ($\in C^0(S)$), $d(a,b) = d_{C(S)}(a,b) :=$ (the smallest number of 1-simplexes in a path connecting a and b in C(S)),
- For sets A and B of vertices, $d(A,B) = d_{C(S)}(A,B) := \min\{d(a,b) \mid a \in A, b \in B\}.$

Fact (Harvey '81, Hempel '01)

C(S): connected

(i.e., \exists a path connecting a and $b \forall a, b$: essential curves on S).

In fact, $d(a,b) \le 2 + 2\log_2 \iota(a,b)$,

where $\iota(a,b)$: geometric intersection number of a and b.

Bridge surfaces

Let L be a link in a closed orientable 3-manifold M. We call $B_+ \cup_S B_-$ a (g, n)-bridge splitting of L and S a (g, n)-bridge surface if

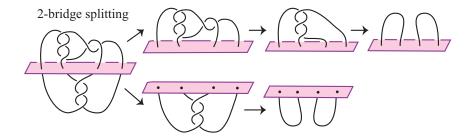
- S is a genus-g Heegaard surface of M,
- $L \cap B_{\pm}$ is "trivial" in B_{\pm} .

Bridge surfaces

Let L be a link in a closed orientable 3-manifold M. We call $B_+ \cup_S B_-$ a (g, n)-bridge splitting of L and S a (g, n)-bridge surface if

- S is a genus-g Heegaard surface of M,
- $L \cap B_+$ is "trivial" in B_+ .

When g = 0, we call $B_+ \cup_S B_-$ and S, respectively, an n-bridge splitting and an n-bridge sphere of L.



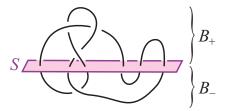
Hempel Distance of bridge surfaces

Hempel Distance of bridge surfaces

```
B_+ \cup_S B_- : (g, n)-bridge splitting of L, C(S \setminus L): curve complex of S \setminus L \mathcal{D}(B_+ \setminus L) (\mathcal{D}(B_- \setminus L)): the set of curves (\in C(S \setminus L)), which bound disks in B_+ \setminus L (B_- \setminus L)
```

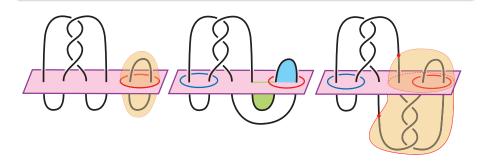
: upper/lower disk set (in this talk).

$$\leadsto d(L,S) := d_{C(S \setminus L)}(\mathcal{D}(B_+ \setminus L), \mathcal{D}(B_- \setminus L)).$$



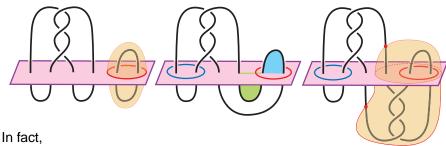
Fact

- \exists essential sphere in $S^3 \setminus L \Leftrightarrow d(L,S) = 0$
- S: "stabilized" $\Rightarrow d(L, S) \leq 1$
- $L(\subset S^3)$: "composite" link $\Rightarrow d(L,S) \leq 1$



Fact

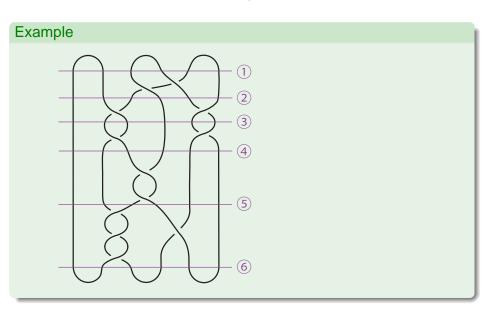
- \exists essential sphere in $S^3 \setminus L \Leftrightarrow d(L,S) = 0$
- S: "stabilized" $\Rightarrow d(L,S) \leq 1$
- $L(\subset S^3)$: "composite" link $\Rightarrow d(L,S) \leq 1$

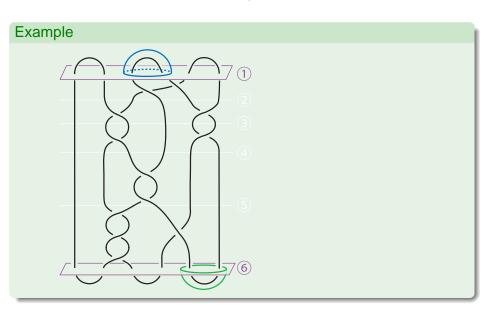


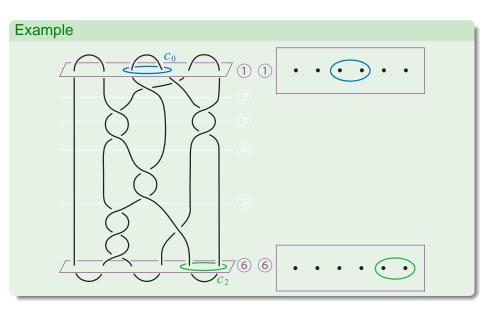
$$d(L,S)=0$$

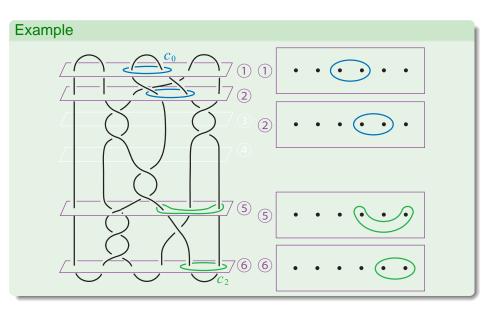
$$d(L,S)=1$$

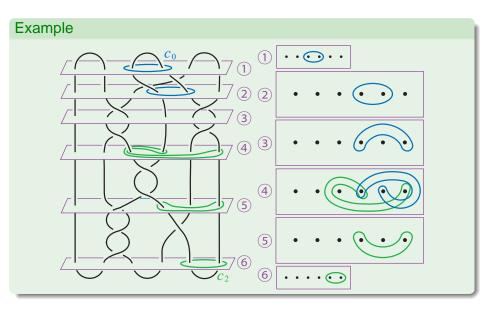
$$d(L,S)=1$$

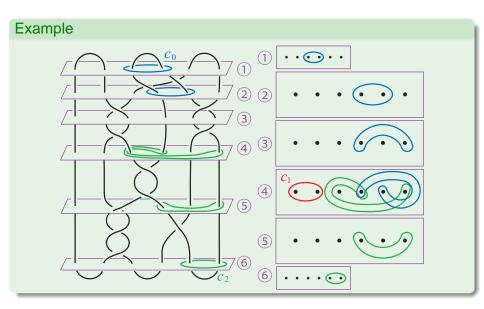


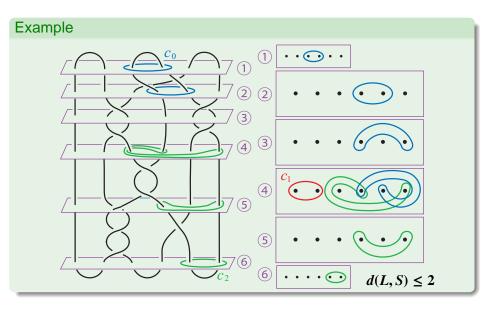


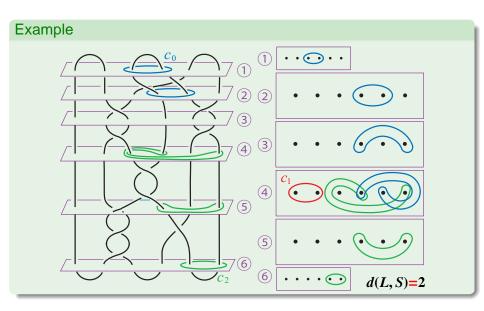


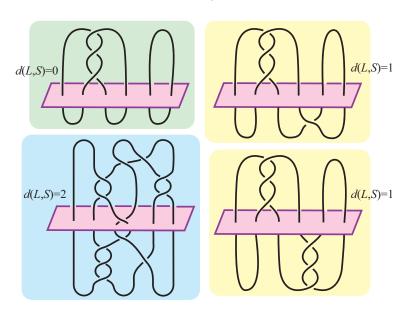












Summary of the first half

bridge splitting → Hempel distance
measures complexity
of bridge splittings

Upper bounds

- (Bachman-Schleimer '05) $\exists F$: essential surface ($\subset E(L)$) $\Rightarrow d(L,S) \leq -\chi(F) + 2$,
- (J. to appear) $\exists F : \text{essential } n (\geq 4) \text{-punctured sphere } (\subset S^3 \setminus L)$ $\Rightarrow d(L,S) \leq n - 2 (= -\chi(F)),$

Upper bounds

- (Bachman-Schleimer '05) $\exists F$: essential surface ($\subset E(L)$) $\Rightarrow d(L,S) \leq -\chi(F) + 2$,
- (J. to appear) $\exists F : \text{essential } n (\geq 4) \text{-punctured sphere } (\subset S^3 \setminus L)$ $\Rightarrow d(L, S) \leq n - 2 (= -\chi(F)),$
- (Tomova '07) S, S': distinct bridge surfaces of $L \Rightarrow d(L, S) \leq -\chi(S' \setminus L) + 2$,
- (Ido) S, S': distinct bridge spheres of $L(\subset S^3) \Rightarrow d(L, S) \leq -\chi(S' \setminus L)$.

Upper bounds

- (Bachman-Schleimer '05) $\exists F$: essential surface ($\subset E(L)$) $\Rightarrow d(L,S) \leq -\chi(F) + 2$,
- (J. to appear) $\exists F : \text{essential } n (\geq 4) \text{-punctured sphere } (\subset S^3 \setminus L)$ $\Rightarrow d(L, S) \leq n - 2 (= -\chi(F)),$
- (Tomova '07) S, S': distinct bridge surfaces of $L \Rightarrow d(L, S) \leq -\chi(S' \setminus L) + 2$,
- (Ido) S,S': distinct bridge spheres of $L(\subset S^3) \Rightarrow d(L,S) \leq -\chi(S' \setminus L)$.

Corollary to the first two results (due to Thurston)

 $d(L, S) \ge 3$ (for S: minimal bridge sphere of L)

⇒ L: hyperbolic (Bachman-Schleimer)

Upper bounds

- (Bachman-Schleimer '05) $\exists F$: essential surface ($\subset E(L)$) $\Rightarrow d(L,S) \leq -\chi(F) + 2$,
- (J. to appear) $\exists F : \text{essential } n (\geq 4) \text{-punctured sphere } (\subset S^3 \setminus L)$ $\Rightarrow d(L, S) \leq n - 2 (= -\chi(F)),$
- (Tomova '07) S, S': distinct bridge surfaces of $L \Rightarrow d(L, S) \leq -\chi(S' \setminus L) + 2$,
- (Ido) S, S': distinct bridge spheres of $L(\subset S^3) \Rightarrow d(L, S) \leq -\chi(S' \setminus L)$.

Corollary to the first two results (due to Thurston)

 $d(L, S) \ge 3$ (for S: minimal bridge sphere of L)

⇒ L: hyperbolic (Bachman-Schleimer) + $M_2(L)$: hyperbolic (J.) ($M_2(L)$: double branched cover of S^3 branched over L)

$$d(L,S) \ge 3$$

L: hyperbolic

 $M_2(L)$: hyperbolic

Lower bounds

Lower bounds

- L: prime, non-split link, S: 3-bridge sphere, not stabilized
 ⇒ d(L, S) ≥ 2
- (Takao) gave a sufficient condition for d(L, S) ≥ 2 for any n-bridge sphere S of a link L(⊂ S³)
 (Ozawa-Takao) gave examples of bridge spheres which are "locally minimal" but "not globally minimal".

Lower bounds

Lower bounds

- L: prime, non-split link, S: 3-bridge sphere, not stabilized
 ⇒ d(L, S) ≥ 2
- (Takao) gave a sufficient condition for d(L, S) ≥ 2 for any n-bridge sphere S of a link L(⊂ S³)
 → (Ozawa-Takao) gave examples of bridge spheres which are "locally minimal" but "not globally minimal".

Existence of high distance knots (Saito '04, Campisi-Rathbun '12, Blair-Tomova-Yoshizawa '13, Ichihara-Saito '13)

For any integer n, there exists a knot K in some 3-manifold and a bridge surface S of K such that d(K,S) > n.

Main Theorem

Main Theorem (Ido-J.-Kobayashi)

For any integers $n \ge 2$, $g \ge 0$ and $b \ge 1$ (except for (g, b) = (0, 1), (0, 2)), \exists a (g, b)-bridge splitting of some link with distance exactly n.

Subsurface projection

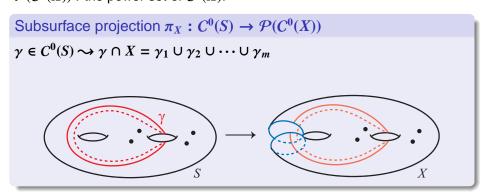
S: surface, X: essential non-simple subsurface of S,

 $\mathcal{P}(C^0(X))$: the power set of $C^0(X)$.

Subsurface projection $\pi_X : C^0(S) \to \mathcal{P}(C^0(X))$

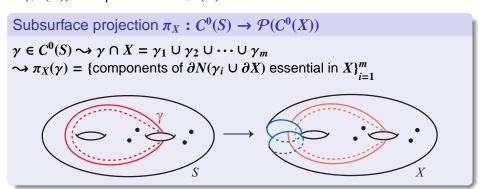
Subsurface projection

S: surface, X: essential non-simple subsurface of S, $\mathcal{P}(C^0(X))$: the power set of $C^0(X)$.

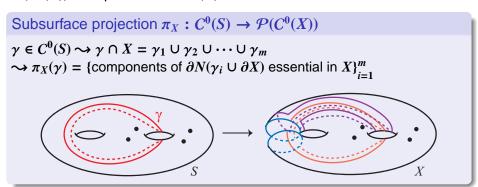


Subsurface projection

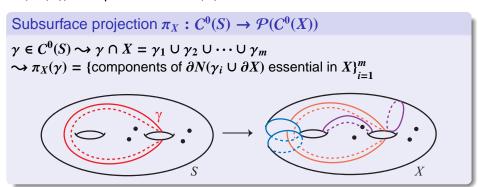
S: surface, X: essential non-simple subsurface of S, $\mathcal{P}(C^0(X))$: the power set of $C^0(X)$.



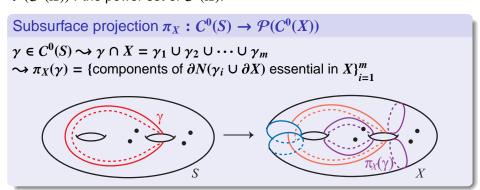
S: surface, X: essential non-simple subsurface of S, $\mathcal{P}(C^0(X))$: the power set of $C^0(X)$.



S: surface, X: essential non-simple subsurface of S, $\mathcal{P}(C^0(X))$: the power set of $C^0(X)$.



S: surface, X: essential non-simple subsurface of S, $\mathcal{P}(C^0(X))$: the power set of $C^0(X)$.



Lemma 1 (cf. Masur-Minsky '00)

S: surface, X: essential non-simple subsurface of S,

 $[\alpha_0, \alpha_1, \dots, \alpha_n]$: a path in C(S) such that $\alpha_i \cap X \neq \emptyset$ for $\forall i$

```
Lemma 1 (cf. Masur-Minsky '00)
```

S: surface, X: essential non-simple subsurface of S,

 $[\alpha_0, \alpha_1, \dots, \alpha_n]$: a path in C(S) such that $\alpha_i \cap X \neq \emptyset$ for $\forall i$

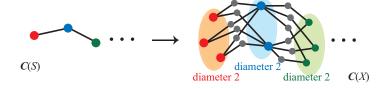
 $\Rightarrow \operatorname{diam}_{C(X)}(\pi_X(\alpha_0) \cup \pi_X(\alpha_n)) \leq 2n.$

Lemma 1 (cf. Masur-Minsky '00)

S: surface, X: essential non-simple subsurface of S,

 $[\alpha_0, \alpha_1, \dots, \alpha_n]$: a path in C(S) such that $\alpha_i \cap X \neq \emptyset$ for $\forall i$

 $\Rightarrow \operatorname{diam}_{C(X)}(\pi_X(\alpha_0) \cup \pi_X(\alpha_n)) \leq 2n.$

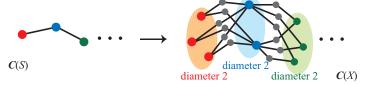


Lemma 1 (cf. Masur-Minsky '00)

S: surface, X: essential non-simple subsurface of S,

 $[\alpha_0, \alpha_1, \dots, \alpha_n]$: a path in C(S) such that $\alpha_i \cap X \neq \emptyset$ for $\forall i$

 $\Rightarrow \operatorname{diam}_{C(X)}(\pi_X(\alpha_0) \cup \pi_X(\alpha_n)) \leq 2n.$



Lemma 2

Let $[\alpha_0, \alpha_1, \dots, \alpha_n]$: a path in C(S) $(n \ge 3)$ s.t.

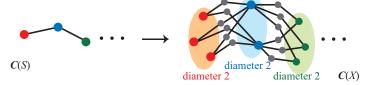
- $[\alpha_0, \ldots, \alpha_i], [\alpha_i, \ldots, \alpha_n]$: geodesics,
- α_i cuts S into a twice-punctured disk and the other component X_i ,
- $\operatorname{diam}_{C(X_i)}(\pi_{X_i}(\alpha_0) \cup \pi_{X_i}(\alpha_n)) > 2n$.

Lemma 1 (cf. Masur-Minsky '00)

S: surface, X: essential non-simple subsurface of S,

 $[\alpha_0, \alpha_1, \dots, \alpha_n]$: a path in C(S) such that $\alpha_i \cap X \neq \emptyset$ for $\forall i$

 $\Rightarrow \operatorname{diam}_{C(X)}(\pi_X(\alpha_0) \cup \pi_X(\alpha_n)) \leq 2n.$



Lemma 2

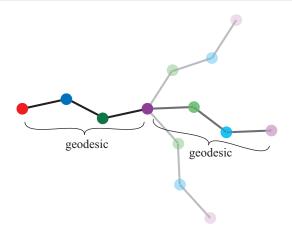
Let $[\alpha_0, \alpha_1, \dots, \alpha_n]$: a path in C(S) $(n \ge 3)$ s.t.

- $[\alpha_0, \ldots, \alpha_i], [\alpha_i, \ldots, \alpha_n]$: geodesics,
- ullet $lpha_i$ cuts S into a twice-punctured disk and the other component X_i ,
- $\operatorname{diam}_{C(X_i)}(\pi_{X_i}(\alpha_0) \cup \pi_{X_i}(\alpha_n)) > 2n$.

Then $[\alpha_0, \alpha_1, \dots, \alpha_n]$ is a geodesic in C(S).

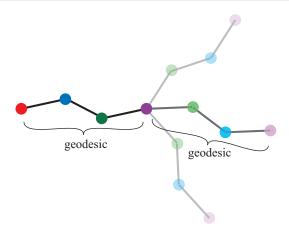
Extending geodesics

By using Lemma 2, we can "construct" a geodesic $[\alpha_0, \alpha_1, \ldots, \alpha_n] \ \forall n$.



Extending geodesics

By using Lemma 2, we can "construct" a geodesic $[\alpha_0, \alpha_1, \ldots, \alpha_n] \, \forall n$. Moreover, we can choose a geodesic so that each of α_0 and α_n cuts off a twice-punctured disk from S.



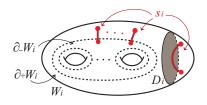
Let S be a surface with genus g and 2b punctures. Let $[\alpha_0,\alpha_1,\ldots,\alpha_n]$ be a geodesic in C(S)s.t. each of α_0 and α_n cuts off a twice-punctured disk from S.

Let S be a surface with genus g and 2b punctures.

Let $[\alpha_0, \alpha_1, \dots, \alpha_n]$ be a geodesic in C(S)

s.t. each of α_0 and α_n cuts off a twice-punctured disk from S.

For i = 1, 2, let W_i be a compression-body, s_i the union of arcs in W_i and D_i the essential disk in $W_i \setminus s_i$ as follows:

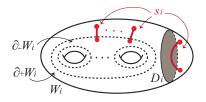


Let S be a surface with genus g and 2b punctures.

Let $[\alpha_0, \alpha_1, \dots, \alpha_n]$ be a geodesic in C(S)

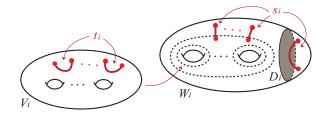
s.t. each of α_0 and α_n cuts off a twice-punctured disk from S.

For i = 1, 2, let W_i be a compression-body, s_i the union of arcs in W_i and D_i the essential disk in $W_i \setminus s_i$ as follows:

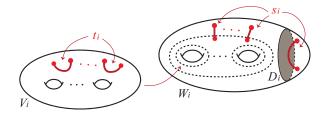


Identify $\partial_+ W_1$ and $\partial_+ W_2$ with S so that $\partial D_1 = \alpha_0$ and $\partial D_2 = \alpha_n$.

For i = 1, 2, let V_i be a handlebody, t_i the union of trivial arcs in V_i . Glue (V_i, t_i) to $\partial_- W_i$, and let $(V_i^*, t_i^*) := (W_i, s_i) \cup (V_i, t_i)$.

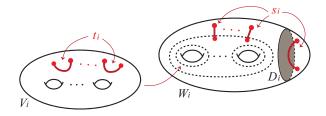


For i = 1, 2, let V_i be a handlebody, t_i the union of trivial arcs in V_i . Glue (V_i, t_i) to $\partial_- W_i$, and let $(V_i^*, t_i^*) := (W_i, s_i) \cup (V_i, t_i)$.



Then $(V_1^*, t_1^*) \cup_S (V_2^*, t_2^*)$ is a (g, b)-bridge splitting.

For i = 1, 2, let V_i be a handlebody, t_i the union of trivial arcs in V_i . Glue (V_i, t_i) to $\partial_- W_i$, and let $(V_i^*, t_i^*) := (W_i, s_i) \cup (V_i, t_i)$.



Then $(V_1^*, t_1^*) \cup_S (V_2^*, t_2^*)$ is a (g, b)-bridge splitting.

If we choose the gluing homeomorphisms "complicated enough", then we can see that the distance of the bridge splitting $(V_1^*, t_1^*) \cup_S (V_2^*, t_2^*)$ is n, which is realized by $d(\partial D_1, \partial D_2)$.

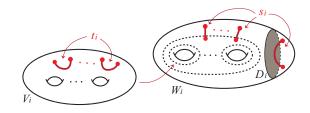
How complicated must the gluing map be?

 S_i : component of $S \setminus \partial D_i$ that is not a twice-punctured disk,

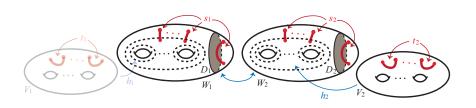
 $\pi_{S_i}: C^0(S) \to \mathcal{P}(C^0(S_i))$: the subsurface projection,

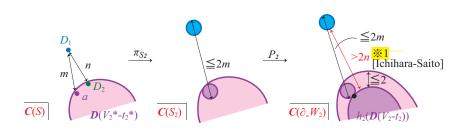
 $P_i: S_i \to S_i \cup D_i \to \partial_- W_i$: the natural map,

 $\mathcal{D}(V_i \setminus t_i), \, \mathcal{D}(V_i^* \setminus t_i^*)$: the disk complexes



How complicated must the gluing map be?





How complicated must the gluing map be?

