Component-conservative invertibility of links and Samsara 4-manifolds on 3-manifolds

The preprint in:

http://www.sci.osaka.cu.ac.jp/~kawauchi/index.html

Akio Kawauchi

Osaka City University Advanced Mathematical Institute

1. <u>A meaning of an invertible knot</u>

An oriented knot K in S³ is <u>invertible</u> if \exists an orientation-preserving self-homeomorphism f of S³ sending K to -K.

A topological meaning of an invertible knot has not been enough observed until now. We find here a meaning in constructing a 4-manifold. The self-homeomorphism f: $S^3 \rightarrow S^3$ induces an orientation-preserving self-homeomorphism h: $M \rightarrow M$ for the Dehn surgery 3-manifold $M = \chi(K;r)$ for any $r \in Q$ such that $h_*=-1: H_1(M;Z) \rightarrow H_1(M;Z).$ Let Σ be the mapping torus of h: $\Sigma = M \times [0,1] / \{h(x,0)=(x,1) \mid x \in M\}.$ Since $H_1(M;Z)$ is cyclic, $H_1(\Sigma;Z) = Z \oplus H_1(M;Z_2) = Z \oplus Z_2^s$ for s=0 or 1.

By Poincare duality and $\chi(\Sigma)=0$, we have

 $H_{d}(\Sigma;Z) = \begin{cases} Z & (d=0,3,4) \\ Z_{2}^{s} & (d=2) \\ Z \oplus Z_{2}^{s} & (d=1) \\ 0 & (others), \end{cases}$ where $s = \beta_1(M;Z_2) = 0$ or 1. Thus, for the subring $Z_{/2} = Z[1/2] \subset Q,$ **\Sigma** is a Z₁₂-homology S¹ × S³ and \exists an embedding k: $M \rightarrow \Sigma$ such that $k_*[M] \in H_3(\Sigma;Z)$ is a generator. Let M^0 be a punctured 3-manifold of M, i.e., $M^0 = cl(M-B^3)$ for a 3-ball B in M. Since Σ is an M-bundle over S^1 , let Σ^* be a closed 4-manifold obtained from Σ by a surgery killing a section S^1 :

$$\Sigma^{n} = cl(\Sigma - S^{1} \times D^{3}) \cup (D^{2} \times \partial D^{3})$$

Then
$$H_{d}(\Sigma^{n};Z) = \begin{cases} Z & (d=0,4) \\ Z_{2}^{s} & (d=1,2) \\ 0 & (others), \end{cases}$$

where s= $\beta_{1}(M;Z_{2}) = 0$ or 1.

Thus, M⁰ is embedded in Σ[^], a Z_{/2}-homology 4-sphere.

Let X be a connected oriented 4-manifold, and M a closed connected oriented 3-manifold. Then \exists two types of (smooth) embeddings $M \rightarrow X$.

<u>Definition</u>. An embedding f: $M \rightarrow X$ is <u>of type 1</u> if X-f(M) is connected, and <u>of type 2</u> if X-f(M) is disconnected.

Type 1Type 2

<u>Note</u>: If \exists type 1 embedding f:M \rightarrow X, then H₁(X;Z) has a direct summand Z, because \exists [C] \in H₁(X;Z) with Int_x(C,fM)=±1. For an abelian group G,

let
$$G^{(2)} = \{x \in G | 2x = 0\}.$$

For a connected oriented 4-manifold X,

let
$$\beta^{(2)}_{d}(X;Z) = H_{d}(X;Z)^{(2)}$$
.

Then we have

s=
$$\beta_1(M;Z_2) = \beta^{(2)}_2(\Sigma;Z) = \beta^{(2)}_2(\Sigma^{2};Z) = 0 \text{ or } 1.$$

Observation 1.

Every r-surgery manifold $M=\chi(K;r)$ of an invertible knot K is type 1 embedded in Σ , a $Z_{/2}$ -homology $S^1 \times S^3$ with $\beta_1(M;Z_2)=\beta^{(2)}{}_2(\Sigma;Z)=0$ or 1. Further, M^0 is embeddable in Σ^{Λ} , a $Z_{/2}$ -homology 4-sphere with $\beta_1(M;Z_2)=\beta^{(2)}{}_2(\Sigma^{\Lambda};Z)=0$ or 1. <u>Remark.</u> The $Z_{/2}$ -homology 4-sphere Σ^{Λ} cannot be replaced by S^4 in general.

(1) For the lens space L(p,q)=χ(O;p/q) (p>0, even)

for the trivial knot O which is invertible, L(p,q)⁰ is

NOT embeddable in S⁴.

D. B. A. Epstein, Embedding punctured manifolds, Proc. Amer. Math. Soc. 16(1965), 175-176.

(2) For the 0-surgery manifold $M=\chi(K;0)$ of the trefoil knot K (known to be invertible), M^0 is NOT embeddable in S⁴.

A. Kawauchi, On n-manifolds whose punctured manifolds are imbeddable in (n+1)-sphere and spherical manifolds, Hiroshima Math. J. 9(1979),47-57.

2. A generalization to a component-conservatively invertible link

Definition.

An oriented link L with components K_i (i=1,2,...,n) in S³ is <u>component-conservatively invertible</u> if \exists an orientation-preserving self-homeomorphism f of S³ sending K_i to $-K_i$ for every i. The self-homeomorphism f induces an orientation-preserving self-homeomorphism h of the r-surgery 3-manifold $M=\chi(L;r)$ for any $r \in Q^n$ such that $h_*=-1: H_1(M;Z) \rightarrow H_1(M;Z)$.

Let Σ be the mapping torus of h: $\Sigma = M \times [0,1]/\{h(x,0)=(x,1) \mid x \in M\}.$

Then $H_1(\Sigma;Z) = Z \oplus H_1(M;Z_2) = Z \oplus Z_2^s$. By Poincare duality and the Euler characteristic $\chi(\Sigma)=0$, we have

 $H_{d}(\Sigma;Z) = \begin{cases} Z & (d=0,3,4) \\ Z_{2}^{s} & (d=2) \\ C \\ Z + Z_{2}^{s} & (d=1) \\ 0 & (others), \end{cases}$ where s= $\beta_1(M;Z_2) = \beta^{(2)}(\Sigma;Z)$. Σ is a Z_{/2}-homology S¹ × S³ and \exists a type 1 embedding k: $M \rightarrow \Sigma$.

Since Σ is an M-bundle over S¹, let Σ be a closed 4-manifold obtained from Σ by a surgery killing a section S¹:

 $\Sigma^{1} = cl(\Sigma - S^{1} \times D^{3}) \cup (D^{2} \times \partial D^{3}).$ Then

$$H_{d}(\Sigma^{*};Z) = \begin{cases} Z & (d=0, 4) \\ Z_{2}^{s} & (d=1, 2) \\ 0 & (others), \\ where s = \beta_{1}(M;Z_{2}) = \beta^{(2)}_{2}(\Sigma^{*};Z). \end{cases}$$

Thus, M^0 is embeddable in Σ^A , a $Z_{/2}$ -homology 4-sphere.

Observation 2.

Every r-surgery manifold $M=\chi(L;r)$ of every component-conservatively invertible link L is type 1 embedded in Σ , a $Z_{/2}$ -homology $S^1 \times S^3$ with $\beta_1(M;Z_2)=\beta^{(2)}_2(\Sigma;Z)$.

Further, M⁰ is embeddable in a $Z_{/2}$ -homology 4-sphere Σ^{1} with $\beta_{1}(M;Z_{2})=\beta^{(2)}(\Sigma^{1};Z)$.

3. Invertible 3-manifolds

Definition.

A closed connected oriented 3-manifold M is <u>invertible</u> if \exists an orientation-preserving self-homeomorphism h of M such that $h_*=-1: H_1(M) \rightarrow H_1(M).$

Observation 3.

Cf. A. Kawauchi, The imbedding problem of 3-manifolds into 4-manifolds, Osaka J. Math. 25 (1988), 171-183.

Every invertible 3-manifold M is embedded in Σ , a $Z_{/2}$ -homology $S^1 \times S^3$ with $\beta_1(M;Z_2) = \beta^{(2)}_2(\Sigma;Z)$. Further, M⁰ is embeddable in a $Z_{/2}$ -homology 4-sphere Σ^{Λ} with $\beta_1(M;Z_2) = \beta^{(2)}_2(\Sigma^{\Lambda};Z)$.

Examples of invertible 3-manifolds

- (1) Every Dehn surgery 3-manifold obtained from S³ along every component-conservatively invertible link is an invertible 3-manifold.
- (2) The double branched cover of S³ branched along every link is an invertible 3-manifold.
- (3) Every closed connected orientable 3-manifold of Heegaard genus ≤ 2 is

3-manifold of Heegaard genus ≤ 2 is an invertible 3-manifold.

Examples of non-invertible 3-manifolds

- (1) A closed connected oriented <u>hyperbolic</u>
- 3-manifold with no symmetry or with only odd symmetries.
- (2) A closed connected oriented 3-manifold M such that $\exists u_1, u_2, u_3 \in H^1(M; Z_p)$ (p odd prime) with $u_1 \cup u_2 \cup u_3 \neq 0$ in $H^3(M; Z_p) = Z_p$. (e. g., $M = T^3 \# M'$).

Proof of (1). If M is invertible, then M has an even order isometry by Mostwo rigidity. **Proof of (2).** Suppose \exists an orientationpreserving self-homeomorphism h of M such that $h_*=-1: H_1(M) \rightarrow H_1(M)$. Then $h^* = -1$: $H^1(M; Z_p) \rightarrow H^1(M; Z_p)$, so that $h^{*}(u_{1} \cup u_{2} \cup u_{3}) = (h^{*}u_{1} \cup h^{*}u_{2} \cup h^{*}u_{3})$ $= - (u_1 \cup u_2 \cup u_3).$ Thus, $h^* = -1$: $H^3(M; Z_p) \rightarrow H^3(M; Z_p)$ and h must be orientation-reversing, a contradiction.//

4. Samsara 4-manifold

Let M be a closed connected oriented 3-manifold.

Definition.

A <u>closed Samsara 4-manifold</u> on M is a 4-manifold Σ with $Z_{/2}$ -homology of $S^1 \times S^3$ such that \exists a type 1 embedding k:M $\rightarrow \Sigma$. Let $T^3 = S^1 \times S^1 \times S^1$.

Let L_B be the Borromean rings in S³:

- Let $D(T^3) = D^4 \cup 0$ -framed three 2-handles on L_B
- be the 0-surgery trace on B with $\partial D(T^3)=\chi(L_B,0)=T^3$. Let D(sT³) be the disk sum of s copies of D(T³) with $\partial D(sT^3)=#sT^3$. Note that

$$H_d(D(sT^3);Z) = \begin{cases} Z^{3s} & (d=2) \\ Z & (d=0) \\ 0 & (others) \end{cases}$$

The intersection form on $H_2(D(sT^3);Z)$ is 0-form.

Definition.

A <u>bounded Samsara 4-manifold</u> on M is a compact oriented 4-manifold Σ with $\partial \Sigma = #sT^3$ such that

(1) Σ has the Z_{/2}-homology of S¹ × S³#D(sT³) for some s>0, and

(2) \exists a type 1 embedding k:M $\rightarrow \Sigma$ with

 $k_*=0: H_2(M;Z_{/2}) → H_2(Σ;Z_{/2}).$

Definition.

A <u>reduced closed Samsara 4-manifold</u> on M⁰ is

a $Z_{/2}$ -homology 4-sphere Σ^{Λ} with M⁰ embedded.

Definition.

A <u>reduced bounded Samsara 4-manifold</u> on M⁰ is a 4-manifold $\Sigma^{\text{with}} \partial \Sigma^{\text{manifold}} = \#sT^3$ such that (1) $H_*(\Sigma^{\text{manifold}} Z^{\text{manifold}}) = H_*(S^4 \#D(sT^3);Z_{/2}) = H_*(D(sT^3);Z_{/2}),$ (2) \exists an embedding $k^0: M^0 \rightarrow \Sigma^{\text{manifold}}$ such that $k^0 = 0: H_2(M^0;Z_{/2}) \rightarrow H_2(\Sigma^{\text{manifold}};Z_{/2}).$

Observation 4.

(1) Given a reduced Samsara 4-manifold Σ^

- on M⁰, \exists a Samsara 4-manifold Σ on M with H₂(Σ ;Z)=H₂(Σ ^;Z).
- Conversely, given a Samsara 4-manifold Σ
- on M, \exists a reduced Samsara 4-manifold Σ^{Λ}
- on M^0 with $H_2(\Sigma^2;Z) = H_2(\Sigma;Z)$ by a surgery
- killing a generator of $H_1(\Sigma;Z)/(2$ -torsion) =Z.

(2) For a Samsara 4-manifold Σ on M and every integer n>0, ∃ a Samsara 4-manifold Σ' on M with

$$\beta^{(2)}_{2}(\Sigma';Z) = \beta^{(2)}_{2}(\Sigma;Z) + n.$$

For a reduced Samsara 4-manifold Σ° on M^{0} and every integer n>0, \exists a reduced Samsara 4-manifold Σ° on M^{0} with $\beta^{(2)}{}_{2}(\Sigma^{\circ};Z)=\beta^{(2)}{}_{2}(\Sigma^{\circ};Z)+n.$

(3) ∃ Samsara 4-manifolds Σ on M and reduced Samsara 4-manifolds Σ^ on M⁰ for some M, such that β⁽²⁾₂(Σ;Z)<β₁(M;Z₂) and β⁽²⁾₂(Σ^;Z)<β₁(M;Z₂).

For example, take M with $\beta_1(M;Z_2)>0$ such that M⁰ is embedded in S⁴. Then S⁴ is a reduced closed Samsara 4-manifold on M⁰ with $\beta^{(2)}_2(S^4;Z)=0<\beta_1(M;Z_2)$. By a surgery of S⁴ along the 2-knot S² = ∂ M⁰, \exists a closed Samsara 4-manifold Σ with Z-homology of S¹ × S³ on M with $\beta^{(2)}_2(\Sigma;Z)=0<\beta_1(M;Z_2)$.

Theorem.

(1) For every closed connected oriented 3-manifold M, \exists a (closed or bounded) Samsara 4-manifold Σ on M with $\beta^{(2)}_2(\Sigma;Z)=\beta_1(M;Z_2)$. (2) For every integer n>0, $\exists \infty$ -many M such that every (closed or bounded) Samsara 4-manifold Σ on M has $\beta^{(2)}_2(\Sigma;Z) \ge \beta_1(M;Z_2)=n$. **<u>Corollary.</u>** For every closed connected oriented 3-manifold M, \exists a reduced (closed or bounded) Samsara 4-manifold Σ[^] on M⁰ with $β^{(2)}_{2}(Σ^{2};Z)=β_{1}(M;Z_{2}).$ Further, for every integer n>0, $\exists \infty$ -many M such that every reduced (closed or bounded) Samsara 4-manifold Σ^{Λ} on M⁰ has $\beta^{(2)}(\Sigma^{;Z}) \geq \beta_1(M;Z_2) = n.$

Proof of (1) of Theorem.

Let $M=\chi(L,0)$, the 0-surgery of S³ along a link L with r components.

By the following paper:

H. Murakami and Y. Nakanishi, On a certain move generating link-homology, Math. Ann. 284(1989), 75-89

the link –L is a fusion of a split union of L and some copies of the Borromean rings L_{B_i} (i=1,2,...,s).

∃ a proper oriented surface F consisting of punctured annuli in S³ × [0,1] such that ∂ F=(LUL_B) × 0 U(-L) × 1, where L_B is the union of Borromean rings L_{Bi} (i=1,2,...,s).

Attach 0-framed $D^2 \times D^2_i$ (i=1,2,...,3s) to $S^3 \times 0$ along L_B. Then F extends the union A of r proper annuli with $\partial A=L \times 0 \cup (-L) \times 1$ in the connected sum X'=S³ × [0,1] # D(sT³).

Let Σ' be the "0-surgery" of X' along A, so that $\partial Y = \#sT^3 \cup M \times 0 \cup -M \times 1$. A desired bounded Samsara 4-manifold Σ on M with $\partial \Sigma = \#sT^3$ is obtained from X' by identifying $M \times 0$ with $-M \times 1$.

Let $X = S^1 \times S^3 \# D(sT^3)$ be the manifold obtained from X' by identifying $S^3 \times 0$ with $S^3 \times 1$, and Kb the union of r Klein bottles obtained from A by identifying the boundaries.

(0) Σ is also the "0-surgery" of X along Kb.
 (1) Since X' is simply connected, every element of H₁(X'-A) is generated by meridians of A in X'. Hence the natural map

 $H_1(S^3 \times 0 - L \times 0; Z) \rightarrow H_1(X' - A; Z)$

is onto, so that the natural map

 $H_1(M \times 0; Z) \rightarrow H_1(\Sigma'; Z)$

is onto.

(2) For the inclusion k: $M \subseteq \Sigma$, \exists a natural exact sequence $H_1(M;Z) \xrightarrow{k_*} H_1(\Sigma;Z) \rightarrow Z \rightarrow 0$ and the image $Im(k_*) \subseteq H_1(\Sigma)$ is generated by order 2 elements. Hence

 $H_1(\Sigma;Z_{/2})=Z_{/2}$

and

k_{*}=0: H₁(M; Z_{/2})→ H₁(Σ; Z_{/2}).
For a generator [C]
$$\in$$
 H₁(Σ;Z)/(2-torsion)=Z,
Int(M,C)=1.

(3) \exists a Z-basis $x_i \in H_2(D(sT^3);Z)$ (i=1,2,...,3s) with Int $(x_i,x_j)=0(\forall i,j)$ such that each x_i is represented by an embedded surface S_i

disjoint from A.

(4) $\exists a Z$ -basis $y_i \in H_2(D(sT^3), \#sT^3;Z)$ (i=1,2,...,3s) with Int $(x_i, y_j) = \delta_{ij} (\forall i, j)$ such that each y_i is represented by an embedded proper 2-disk D_i transversely meeting S_i with one point and $D_i \cap D_j = \phi$ and $D_i \cap S_j = \phi$ for $i \neq j$. Also, every D_i transversely meets A with one point in X'. (5) ∂D_i (i=1,2,...,3s) forms a Z-basis of H₁(#sT³;Z).
(6) From D_i and its parallel D'_i, we can construct an annulus A(D_i) in X disjoint from K with

 $[\partial A(D_i)] = [\partial D_i + \partial D_i'] = 2[\partial D_i] \in H_1(\#sT^3;Z)$ by piping them along K.

Let $y_i^{(2)} = (1/2)[A(D_i)] \in H_2(\Sigma, \partial \Sigma; Z_{/2}).$

Then ∂_* : $H_2(\Sigma, \partial \Sigma; Z_{/2}) \rightarrow H_1(\partial \Sigma; Z_{/2})$ is onto.

Hence the natural map $H_1(\Sigma; Z_{/2}) \rightarrow H_1(\Sigma, \partial \Sigma; Z_{/2})$ is an isomorphism and

$$H_1(Σ; Z_{/2})=H_1(Σ, ∂Σ; Z_{/2})=Z_{/2}.$$

(7) By Poincare duality, $H_3(\Sigma,\partial\Sigma;Z)=Z$ and M represents a generator. Since $H_2(\partial\Sigma;Z)$ is Z-free, the natural map $H_3(\Sigma;Z) \rightarrow H_3(\Sigma,\partial\Sigma;Z)=Z$ is an isomorphism. Hence $[M] \subseteq H_3(\Sigma;Z)$ is a generator.

(8) $\chi(\Sigma) = \chi(X) = 3s-1$ implies dim₀H₃(Σ;Q)=3s. By Poincare duality, $H_2(\Sigma;Z_{/2})$ is $Z_{/2}$ -free. Regarding $x_i \in H_2(\Sigma; Z_{/2})$ (i=1,2,...,3s), Int $(x_i, y_i^{(2)}) = \delta_{ii} (\forall i, j).$ Hence $x_i(i=1,2,...,3s)$ form a $Z_{(2)}$ -basis of $H_2(\Sigma; Z_{/2})$ and by Poincare duality y_i⁽²⁾ (i=1,2,...,3s) are a Z₍₂₎-basis of H₂(Σ, ∂ Σ; Z_{/2}). In particular, $H_*(\Sigma; Z_{/2}) = H_*(X; Z_{/2})$.

(9) Since M is disjoint from a 2-cycle representing $y_i^{(2)} \in H_2(\Sigma, \partial \Sigma; Z_{/2})$ and $x_i(i=1,2,...,3s)$ form a $Z_{/2}$ -basis of $H_2(\Sigma; Z_{/2})$, we see from Int $(x_i, y_i^{(2)}) = \delta_{ij}$ $(\forall i,j)$ that $k_*=0: H_2(M;Z_{/2}) \rightarrow H_2(\Sigma;Z_{/2})$. //

Proof of (2) of Theorem.

We use the signature theorem in:

- (1) A. Kawauchi, On the signature invariants of infinite cyclic coverings of even dimensional manifolds, Advanced Studies in Pure Math. 9(1986), 177-188. http://www.sci.osaka-cu.ac.jp/~kawauchi/index.html
- (2) A. Kawauchi, The imbedding problem of 3-manifolds into 4-manifolds, Osaka J. Math. 25 (1988), 171-183.

- Let Y be a compact oriented 4-manifold with boundary a closed 3-manifold B.
- Let (Y_{∞}, B_{∞}) be the infinite cyclic covering of (Y,B)associated with a homomorphism $\gamma : H_1(Y;Z) \rightarrow Z$. Let $\dot{\gamma} : H_1(Y;Z) \rightarrow Z$ be the restriction of γ . Consider the Γ -intersection form $Int_{\Gamma}: H_2(Y_{\infty};Q) \times H_2(Y_{\infty};Q) \rightarrow \Gamma$.

Let A(t) be a Γ -Hermitian matrix representing the **Γ**-intersection form Int_{Γ} on $H_2(Y_{\infty};Q)/(\Gamma$ -torsions). Let a, $x \in (-1, 1)$.

Define

 $\tau_{a\pm 0}(Y_{\infty}) = \lim_{x \to a\pm 0} \text{sign } A(x+(1-x^2)^{1/2}i).$ The signature invariants $\sigma_x(B_{\infty})$, $x \in (-1, 1)$, of B_{∞} is defined on the quadratic form b:Tor_rH₁(B_{∞};Q) × Tor_rH₁(B_{∞};Q) \rightarrow Q

so that

$$\sigma_{(a,1]}(B_{\infty}) = \sum_{a < x < 1} \sigma_{x}(B_{\infty}).$$

Signature Theorem.

$$\tau_{a-0}(Y_{\infty})-\text{sign }Y = \sigma_{[a,1]}(B_{\infty}),$$

$$\tau_{a+0}(Y_{\infty})-\text{sign }Y = \sigma_{(a,1]}(B_{\infty}).$$

Corollary. For
$$\forall a \in (-1,1)$$
,
 $|\sigma_{[a,1]}(B_{\infty})| - \kappa_1(B_{\infty}) \leq 2\hat{\beta}_2(Y;Z)$
where

 $κ_1(B_\infty) = Z - rank of Ker(t-1:H_1(B_\infty) → H_1(B_\infty)).$ $^{\land}_{\beta_2}(Y;Z) = rank of Int: H_2(Y; Z) × H_2(Y;Z) → Z.$ For every integer n>0, take n knots K_i ($1 \le i \le n$) whose signatures $\sigma(K_i)(1 \le i \le n)$ have: $|\sigma(K_1)| > 0$ and $|\sigma(K_i)| > |\sum_{j=1}^{i-1} \sigma(K_j)|$ (i=2,3,...,n). Let $M_i = \chi(K_i,0)$ and $M=M_1\#M_2\#...\#M_n$. Call M an <u>efficient 3-manifold of rank</u> n.

Fact: For every integer n>0, ∃∞-many efficient 3-manifolds of rank n. <u>Claim</u>: For every efficient M of any rank n ≥ 1 and every reduced Samsara 4-manifold Σ° on M⁰, we have $\beta^{(2)}_{2}(\Sigma^{\circ};Z) \geq \beta_{1}(M;Z_{2})=n$.

('.') If $\beta^{(2)}_2(\Sigma^{2},Z) < \beta_1(M;Z_2)$, then apply Signature Theorem for Y=cl($\Sigma^{\Lambda} \cap M^0 \times I$) and B= $\partial Y \supset DM^0$ to obtain a Z_2 -<u>asymmetric</u> homomorphism $\dot{\gamma}: H_1(DM^0;Z) \rightarrow Z$ with $\sigma_{(-1,1]}(DM^0_{\infty})=0$, contradicting that M is efficient. //

5. A meaning of a Samsara 4-manifold

cf. A. Kawauchi, On 4-dimensional universe for every 3-dimensional manifold, preprint.

Definition.

<u>A (4-dimensional) universe</u> = a boundary-less orientable 4-manifold U with every M embedded.

<u>Problem</u>. Characterize the topological shape of a universe.

<u>Fact</u>. For \forall closed orientable 4-manifold X, \exists M such that M⁰ is not embeddable in X, so that M is not embeddable in X.

Cf. A. Kawauchi, The imbedding problem of 3-manifolds into 4-manifolds, Osaka J. Math. 25 (1988), 171-183.

Thus, a universe must be an open 4-manifold.

Let Σ_i (i=1,2,3,...) be bounded Samsara 4-manifolds on all M.

<u>A Samsara universe</u> is: $U_{SM} = int (R_{+}^{4} U_{i=1}^{+\infty} \Sigma_{i})$, where U denotes the boundary disk sums.

(1) Int=0: H₂(U_{SM}; Z) × H₂(U_{SM}; Z) →Z. (2) For \forall M, ∃ a type 1 embedding k:M → U_{SM} with k_{*}=0: H_d(M;Z_{/2}) → H_d(U_{SM};Z_{/2}), d=1, 2.