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1. A meaning of an invertible knot 

 

   An oriented  knot K in S3 is invertible if ∃ an 
orientation-preserving self-homeomorphism f of 
S3 sending K to -K.  

 

A topological meaning of an invertible knot has 
not been enough observed until now. We find 
here  a meaning in constructing a 4-manifold. 

 

 

 



The self-homeomorphism f: S3 → S3 induces an 
orientation-preserving self-homeomorphism  

h: M → M for the Dehn surgery 3-manifold  

M = χ(K;r) for any  r∈Q such that  

                h*=-1: H1(M;Z)→ H1(M;Z). 

Let Σ be the mapping torus of h: 

          Σ = M×[0,1]/{h(x,0)=(x,1)| x∈M}. 

Since H1(M;Z) is cyclic,   

              H1(Σ;Z) = Z + H1(M;Z2) =Z +  Z2
s    

for s=0 or 1. 

 

 



By Poincare duality and χ(Σ)=0, we have 

                                    Z           (d=0,3,4) 

                                    Z2
s       (d=2)                   Hd(Σ;Z)=      

                                    Z +  Z2
s  (d=1) 

                                     0           (others),  

             where s = β1(M;Z2) = 0 or 1. 

Thus, for the subring    

                              Z/2=Z[1/2]⊂Q,  

Σ is a Z/2-homology S1×S3 and ∃an embedding                 

k: M → Σ such that k*[M]∈H3(Σ;Z) is a generator.  

 



Let M0 be a punctured 3-manifold of M, i.e., 

 M0 =cl(M-B3) for a 3-ball B in M. Since Σ is an  

M-bundle over S1, let Σ* be a closed 4-manifold 
obtained from Σ by a surgery killing a section S1:  

            Σ^ =  cl(Σ - S1×D3 )∪(D2×∂D3). 

 Then                           Z     (d=0,4) 

           Hd(Σ^;Z) =        Z2
s (d=1, 2) 

                                     0     (others),  

               where s= β1(M;Z2) = 0 or 1. 

 

Thus, M0 is embedded in Σ^, a Z/2-homology  

4-sphere. 

 

{ 



 
Let X be a connected oriented 4-manifold, and  
M a closed connected oriented 3-manifold. 

Then∃two types of (smooth) embeddings  

                                M → X. 

 

Definition.  An embedding  f: M → X is of type 1  

if X-f(M) is connected, and of type 2  if X-f(M) is  

disconnected.  

 
 

 

 



 

 

 

 

 

 

 

Note: If ∃type 1 embedding f:M→X, then H1(X;Z)  

has a direct summand Z, because ∃ [C]∈ H1(X;Z)  

with IntX(C,fM)=±1. 

 

fM 

fM 

X X 

Type 1 Type 2 



For an abelian group G,  

let              G(2) = {x∈G| 2x= 0}.  

For a connected oriented 4-manifold X,                

let               β(2)
d(X;Z) = Hd(X;Z)(2).  

 

Then we have     

         s= β1(M;Z2) = β(2)
2(Σ;Z)=β(2)

2(Σ^;Z)=0 or 1. 



Observation 1.   

Every r-surgery manifold M=χ(K;r) of an invertible 
knot K is type 1 embedded in Σ, a Z/2-homology 
S1×S3 with β1(M;Z2)=β(2)

2(Σ;Z)=0 or 1. 

Further, M0 is embeddable in Σ^, a Z/2-homology  

4-sphere with β1(M;Z2)=β(2)
2(Σ^;Z)=0 or 1. 

 

 



Remark. The Z/2-homology 4-sphere Σ^ cannot be  

replaced by S4 in general. 

(1) For the lens space L(p,q)=χ(O;p/q) (p>0, even)  

for the trivial knot O which is invertible, L(p,q)0 is   

NOT embeddable in S4. 
D. B. A. Epstein, Embedding punctured manifolds, Proc. Amer. Math.  

Soc. 16(1965), 175-176. 

(2) For the 0-surgery manifold M=χ(K;0) of the 
trefoil knot K (known to be invertible), M0 is NOT 
embeddable in S4.  
A. Kawauchi, On n-manifolds whose punctured manifolds are 
imbeddable in (n+1)-sphere and spherical manifolds, Hiroshima Math. 
J. 9(1979),47-57.  

 



2. A generalization to a component-conservatively  
invertible link 

 

Definition.  

An oriented link L with components  Ki (i=1,2,…,n)  
in S3 is component-conservatively  invertible if ∃ 
an orientation-preserving self-homeomorphism f 
of S3 sending Ki to – Ki for every i. 

 

 



The self-homeomorphism f  induces an 
orientation-preserving self-homeomorphism h  

of the r-surgery 3-manifold M=χ(L;r) for any  
r∈Qn such that h*=-1: H1(M;Z)→ H1(M;Z). 

 

Let Σ be the mapping torus of h: 

          Σ= M×[0,1]/{h(x,0)=(x,1)| x∈M}. 



Then H1(Σ;Z)= Z + H1(M;Z2)=Z + Z2
s. 

By Poincare duality and the Euler characteristic 
χ(Σ)=0, we have 

                                   Z          (d=0,3,4) 

                                  Z2
s         (d=2) 

         Hd(Σ;Z)= 
                                   Z + Z2

s (d=1) 

                                   0           (others),  

              where s= β1(M;Z2)=β(2)
2(Σ;Z). 

Σ is a Z/2-homology S1×S3 and ∃a type 1 
embedding k: M → Σ.  

 

 

{ 



Since Σ is an M-bundle over S1, let Σ be a closed  
4-manifold obtained from Σ by a surgery killing  
a section S1:  
            Σ^ =  cl(Σ-S1×D3)∪(D2×∂D3). 
 Then   
                                         Z         (d=0, 4) 
             Hd(Σ^;Z)  =         Z2

s      (d=1, 2) 
                                         0         (others),    
                 where s= β1(M;Z2) = β(2)

2(Σ^;Z). 
 
Thus, M0 is embeddable in Σ^, a Z/2-homology  
4-sphere. 

{ 



Observation 2.   

Every r-surgery manifold M=χ(L;r) of every  
component-conservatively invertible link L is 
type 1 embedded in Σ, a Z/2-homology S1×S3 
with β1(M;Z2)=β(2)

2(Σ;Z). 

Further, M0 is embeddable in a Z/2-homology  

4-sphere Σ^ with β1(M;Z2)=β(2)
2(Σ^;Z). 

 

 



3. Invertible 3-manifolds 

 

Definition.  

A closed connected oriented 3-manifold M is 
invertible  if ∃ an orientation-preserving  

self-homeomorphism h of M such that  

                 h*=-1: H1(M)→ H1(M). 

 

 



Observation 3.   
Cf. A. Kawauchi, The imbedding problem of 3-manifolds into  

4-manifolds, Osaka J. Math. 25 (1988), 171-183. 

 

Every invertible 3-manifold M is embedded in Σ,  
a  Z/2-homology S1×S3 with β1(M;Z2)=β(2)

2(Σ;Z). 

Further, M0 is embeddable in a Z/2-homology  

4-sphere Σ^ with β1(M;Z2)=β(2)
2(Σ^;Z). 

 

 



Examples of invertible 3-manifolds 
(1) Every Dehn surgery 3-manifold obtained from 

S3 along every component-conservatively 
invertible link is an invertible 3-manifold. 

(2) The double branched cover of S3 branched  
      along every link is an invertible 3-manifold.  
(3) Every closed connected orientable  
      3-manifold of Heegaard genus ≦ 2 is an 

invertible 3-manifold. 



Examples of non-invertible 3-manifolds 

(1)  A closed connected oriented hyperbolic  

3-manifold with no symmetry or with only odd 
symmetries. 

(2) A closed connected oriented 3-manifold M  

such that  ∃u1,u2,u3∈H1(M;Zp)  (p odd prime) 
with   u1∪u2 ∪u3  ≠ 0 in H3(M;Zp) =Zp. 

(e. g.,  M =T3#M’). 

 

 



Proof of (1).  If M is invertible, then M has  

an even order  isometry by Mostwo rigidity. 

Proof of (2).  Suppose ∃an orientation- 

preserving self-homeomorphism h of M such 
that  h*=-1: H1(M)→ H1(M).  

Then h* =-1: H1(M;Zp)→ H1 (M;Zp), so that   

            h* (u1∪u2 ∪u3 )=(h* u1∪ h* u2 ∪ h* u3 )    

                                          = - (u1∪u2 ∪u3). 

Thus, h* =-1: H3(M;Zp)→ H3 (M;Zp) and h must 
be orientation-reversing, a contradiction.// 

 



4. Samsara 4-manifold 

Let M be a closed connected oriented  

3-manifold. 
 

Definition.   

A closed Samsara 4-manifold on M  is a  

4-manifold Σ with Z/2-homology of S1×S3  

such that ∃a type 1 embedding  k:M → Σ.  
 

 



Let T3=S1×S1×S1． 

Let LB be the Borromean rings in S3: 
 

Let    D(T3) =D4∪0-framed three 2-handles on LB 

be the 0-surgery trace on B with ∂D(T3)=χ(LB,0)=T3. 
Let D(sT3) be the disk sum of s copies of D(T3) with 
∂D(sT3)=#sT3.  Note that        

                                      Z3s     (d=2)                 

      Hd(D(sT3);Z) =       Z      (d=0) 

                                      0      (others). 

The intersection form on H2(D(sT3);Z)  is 0-form.  

 
 

{  



Definition.   

A  bounded Samsara 4-manifold on M  is a 
compact oriented 4-manifold  Σ with ∂Σ= #sT3  

such that  

(1) Σ has the Z/2-homology of S1×S3#D(sT3)  for 
some  s>0, and 

(2) ∃a type 1 embedding k:M → Σ  with 

                   k*=0: H2(M;Z/2) → H2(Σ;Z/2). 
 

 



Definition.  

A reduced closed Samsara 4-manifold on M0 is   

a Z/2-homology 4-sphere Σ^ with M0 embedded. 

 

Definition.  

A reduced bounded Samsara 4-manifold  on M0 

is a 4-manifold Σ^ with ∂Σ^= #sT3 such that  

 (1) H*(Σ^;Z/2) = H*(S4#D(sT3);Z/2) = H*(D(sT3);Z/2), 

 (2) ∃an embedding  k0: M0 → Σ^ such that  

       k0 
*=0: H2(M0;Z/2) → H2(Σ^;Z/2). 



Observation 4. 

(1) Given a  reduced Samsara 4-manifold Σ^  

      on M0,∃a Samsara 4-manifold Σ on M with 
H2(Σ;Z)=H2(Σ^;Z).   

    Conversely,  given a Samsara 4-manifold Σ  

    on M, ∃a  reduced Samsara 4-manifold Σ^  

    on M0 with H2(Σ^;Z)=H2(Σ;Z) by a surgery  

    killing a generator of H1(Σ;Z)/(2-torsion) =Z. 

 



(2) For a Samsara 4-manifold Σ on M and every    

      integer n>0, ∃a Samsara 4-manifold Σ’ on M   

       with    

                           β(2)
2(Σ’;Z)=β(2)

2(Σ;Z)+n.  

 

      For a  reduced Samsara 4-manifold Σ^ on M0  

        and every integer n>0, ∃a reduced Samsara  

      4-manifold Σ^’ on M0 with 

                           β(2)
2(Σ^’;Z)=β(2)

2(Σ^;Z)+n.  

    



(3) ∃Samsara 4-manifolds Σ on M and reduced   
       Samsara 4-manifolds Σ^ on M0 for some M,    
       such that   
         β(2)

2(Σ;Z)<β1(M;Z2) and β(2)
2(Σ^;Z)<β1(M;Z2) .  

 

For example,  take M with β1(M;Z2)>0 such that   
M0  is embedded in  S4. Then S4 is a reduced  
closed Samsara 4-manifold on M0 with  
                       β(2)

2(S4 ;Z)=0<β1(M;Z2).  
By a surgery of S4 along the 2-knot S2 =∂M0,  
∃a closed Samsara 4-manifold Σ with Z-homology  
of S1×S3 on  M with β(2)

2(Σ;Z)=0<β1(M;Z2).  



Theorem.     

(1) For every closed connected oriented  

3-manifold M, ∃ a (closed or bounded) Samsara  

4-manifold Σ on M with β(2)
2(Σ;Z)=β1(M;Z2).  

(2) For every integer n>0, ∃∞-many M  

such that every (closed or bounded) Samsara  

4-manifold Σ on M has  β(2)
2(Σ;Z)≧β1(M;Z2)=n. 

 

 

 

 



Corollary.  For every closed connected oriented  

3-manifold M, ∃ a reduced (closed or bounded)  

Samsara 4-manifold Σ^ on M0 with                             

                          β(2)
2(Σ^;Z)=β1(M;Z2).  

Further, for every integer n>0, ∃∞-many M  

such that every reduced (closed or bounded)  

Samsara 4-manifold Σ^ on M0 has                       

                        β(2)
2(Σ^;Z)≧β1(M;Z2)=n. 

 

 

 



Proof of  (1) of Theorem. 

Let M=χ（L,0), the 0-surgery of S3 along  a link L  

with r components. 

By the following paper: 

 

H. Murakami and Y. Nakanishi, On a certain move  

generating link-homology, Math. Ann. 284(1989), 75-89 

 

the link –L is a fusion of a split union of L and  

some copies of the Borromean rings LBi (i=1,2,...,s). 

 



F 

L×0 

-L×1 

LB S3 ×0  

S3 ×1 

∃a proper oriented surface F consisting of  
punctured annuli  in S3 ×[0,1]  such that         
∂F=(L∪LB )×0 ∪(-L)×1, where  LB is the union of   
Borromean rings LBi (i=1,2,...,s). 



A 

L×0 

-L×1 

D(sT3) 

S3 ×0  

S3 ×1 

Attach 0-framed D2×D2
i (i=1,2,…,3s) to S3 ×0   

along LB.  Then F extends  the union A of r proper  
annuli  with ∂A=L×0∪(-L)×1 in the connected  
sum X’=S3×[0,1] # D(sT3). 

#sT3 



Let Σ’ be the “0-surgery”of X’ along  A, so that   

∂Y=#sT3∪M ×0 ∪-M ×1. A desired bounded  

Samsara 4-manifold Σ  on M with ∂Σ = #sT3 is  

obtained from X’ by identifying  M×0 with -M×1.  

M×0 

Σ’ 

M×1 

#sT3 

M 

Σ 

#sT3 



Let X = S1×S3#D(sT3)  be the manifold obtained  

from X’ by identifying S3×0 with S3×1, and Kb 

the union of r Klein bottles  obtained from A by  

identifying the boundaries. 

X 

Kb 

D(sT3) 

#sT3 

S3 

L 



(0) Σ is also the “0-surgery” of X along  Kb . 

(1) Since X’ is simply connected, every element  

of H1(X’-A) is generated by meridians of A in X’. 

Hence the natural map  

         H1(S3×0-L×0;Z) → H1(X’-A;Z)  

is onto, so that the natural map  

         H1(M×0;Z) → H1(Σ’;Z)  

is onto.  



(2) For the inclusion k:M⊂Σ,∃a natural exact  

sequence  

H1(M;Z) → H1(Σ;Z) → Z → 0 

and the image Im(k*)⊂H1(Σ)  is generated by  

order 2 elements. Hence  

             H1(Σ;Z/2)=Z/2 

 and 

                 k*=0: H1(M; Z/2)→ H1(Σ; Z/2).  

For a generator [C]∈H1(Σ;Z)/(2-torsion)=Z, 

                             Int(M,C)=1. 

k* 



(3)∃a Z-basis xi∈H2(D(sT3);Z) (i=1,2,…,3s)  

with Int (xi,xj)=0(∀i,j) such that each xi  is 
represented by an embedded surface Si  

disjoint from A.  

(4) ∃a Z-basis yi∈H2(D(sT3), #sT3;Z) (i=1,2,…,3s) 
with Int (xi,yj)=δij(∀i,j) such that each yi  is 
represented by an embedded proper 2-disk Di  

transversely meeting Si with one point and  

Di∩Dｊ =φ and Di∩Sj =φ for i≠j. Also, every Di 

transversely meets A with one point in X’. 

 



(5) ∂Di (i=1,2,…,3s) forms a Z-basis of H1(#sT3;Z). 

(6) From Di and its parallel D’i, we can construct 
an annulus A(Di) in X disjoint from K with  

[∂A(Di)]=[∂Di +∂Di’]=2[∂Di]∈ H1(#sT3;Z)  

by piping them along K.  

Let yi
(2) =(1/2)[A(Di)]∈ H2(Σ,∂Σ;Z/2).  

Then ∂*: H2(Σ,∂Σ;Z/2) → H1(∂Σ;Z/2) is onto. 

 Hence the natural map H1(Σ; Z/2) → H1(Σ,∂Σ; Z/2) 
is an isomorphism and  

                         H1(Σ; Z/2)=H1(Σ,∂Σ; Z/2)= Z/2. 

 



(7)  By Poincare duality,  H3(Σ,∂Σ;Z)=Z  and  M 
represents a generator. Since H2(∂Σ;Z) is Z-free,  

the natural map H3(Σ;Z) → H3(Σ,∂Σ;Z)=Z  is an 
isomorphism. Hence [M]∈ H3(Σ;Z) is a generator. 

 



(8) χ(Σ) = χ(X) =3s-1 implies  dimQH3(Σ;Q)=3s.  

By Poincare duality, H2(Σ;Z/2) is Z/2-free. 

Regarding xi∈H2(Σ; Z/2) (i=1,2,…,3s),   

             Int (xi, yi
(2) )=δij(∀i,j). 

Hence xi(i=1,2,…,3s) form a Z(2)-basis of H2(Σ; Z/2) 

and by Poincare duality yi
(2) (i=1,2,…,3s) are a  

Z(2)-basis of H2(Σ,∂Σ; Z/2).  

In particular, H*(Σ; Z/2) = H*(X; Z/2). 

 



(9) Since M is disjoint from a 2-cycle representing  

yi
(2)∈ H2(Σ,∂Σ; Z/2)  and xi(i=1,2,…,3s) form a  

Z/2-basis of H2(Σ; Z/2), we see from Int (xi, yi
(2) ) =δij 

(∀i,j) that  k*=0: H2(M;Z/2) → H2(Σ;Z/2).    // 

 



Proof of  (2) of Theorem. 

We use the signature theorem in: 
 
(1) A. Kawauchi, On the signature invariants of infinite  
      cyclic coverings of even dimensional manifolds,  
      Advanced Studies in Pure Math. 9(1986), 177-188. 
     http://www.sci.osaka-cu.ac.jp/~kawauchi/index.html 
 

(2) A. Kawauchi, The imbedding problem of 3-manifolds into  

     4-manifolds, Osaka J. Math. 25 (1988), 171-183.   

 

 



Let Y be a compact oriented 4-manifold  with  

boundary a closed 3-manifold  B. 

Let (Y∞,B∞) be  the infinite cyclic covering of (Y,B)  

associated with  a homomorphism γ :H1(Y;Z)→Z.  

Let     :H1(Y;Z)→Z  be the restriction of  γ.  

Consider the Γ-intersection form  

            IntΓ: H2(Y∞;Q)×H2(Y∞;Q) → Γ. 

 

  

. 
γ 



Let A(t) be a Γ-Hermitian matrix representing the    

Γ-intersection form IntΓ on  H2(Y∞;Q)/(Γ-torsions). 

Let a, x∈(-1, 1).  

Define    

           τa±0(Y∞) =         sign A(x+(1-x2)1/2i). 

The signature invariants σx(B∞), x∈(-1, 1), of B∞  

is defined on the quadratic form  

              b:TorΓH1(B∞;Q)×TorΓH1(B∞;Q)→Q 

 so that  

               σ(a,1](B∞) =          σx(B∞).  

 

 

 lim 
x→a±0 

      ∑  
  a<x<1 



     Signature Theorem. 

τa-0(Y∞)-sign Y =σ[a,1](B∞), 

 τa+0(Y∞)-sign Y =σ(a,1](B∞). 

 

   Corollary . For ∀a∈(-1,1),   

                   |σ[a,1](B∞)| - κ1(B∞) ≦2   2(Y;Z) 

  where  

          κ1(B∞) =Z-rank of Ker(t-1:H1(B∞)→H1(B∞)). 

            2(Y;Z)= rank of  Int: H2(Y; Z)×H2(Y;Z) →Z. 

 

 

 

^  β 

^  β 



For every integer n>0, take n knots Ki (1≦i≦ n)  

whose signatures σ(Ki )(1≦i≦ n) have: 

|σ(K1 )|> 0 and |σ(Ki )|> |∑     σ(Kj )| (i=2,3,...,n).  

Let Mi = χ(Ki,0) and M=M1#M2#...#Mn.  

Call M an efficient 3-manifold of rank  n. 

 

Fact: For every integer n>0, ∃∞-many efficient  

3-manifolds of rank n.  

i-1 
j=1 



Claim: For every efficient M of any rank n ≧1  

and every reduced Samsara 4-manifold Σ^ on M0,  

we have   β(2)
2(Σ^;Z)≧ β1(M;Z2)=n.   

 

(∵) If β(2)
2(Σ^;Z)< β1(M;Z2), then apply Signature  

Theorem for Y=cl(Σ^＼M0×I) and B=∂Y ⊃DM0 

to obtain a  Z2-asymmetric homomorphism     

    : H1(DM0;Z)→Z  with σ(-1,1](DM0
∞)=0,  

contradicting  that  M  is efficient. // 

. 
γ 



5. A meaning of a Samsara 4-manifold 

 cf. A. Kawauchi, On 4-dimensional universe for  every     

      3-dimensional manifold, preprint. 
 
Definition. 

A (4-dimensional) universe = a boundary-less 
orientable 4-manifold U with every M embedded. 

 
Problem.  Characterize the topological shape of   
a universe. 

 



  
 
 
 
 
  Cf. A. Kawauchi, The imbedding problem of 3-manifolds  
         into 4-manifolds, Osaka J. Math. 25 (1988), 171-183.  

 
Thus,  a universe must be  an open 4-manifold. 
 
 
 

Fact.  For∀closed orientable 4-manifold X, ∃M  
such that M0 is not embeddable in X, so that M 
is not embeddable in X.  



 
Let   Σi  (i=1,2,3,…)  be bounded Samsara  

4-manifolds on all M.  

A Samsara universe is:  USM= int (R4
+∪   Σi ), 

where  ∪ denotes the boundary disk sums. 

 

(1) Int=0: H2(USM; Z)×H2(USM ; Z) →Z. 

(2) For ∀M, ∃a type 1 embedding  k:M  → USM   

      with k*=0: Hd(M;Z/2) → Hd(USM;Z/2), d=1, 2. 

 

 

+∞ 
 i=1 


