Discussion Meeting

Component-conservative invertibility of links and Samsara 4-manifolds on 3-manifolds

The preprint in:
http://www.sci.osaka.cu.ac.jp/~kawauchi/index.html

Akio Kawauchi

Osaka City University Advanced Mathematical Institute

1. A meaning of an invertible knot

An oriented knot K in $S^{\mathbf{3}}$ is invertible if \exists an orientation-preserving self-homeomorphism f of S^{3} sending K to $-K$.

A topological meaning of an invertible knot has not been enough observed until now. We find here a meaning in constructing a 4-manifold.

The self-homeomorphism f: $\mathbf{S}^{\mathbf{3}} \boldsymbol{\rightarrow} \mathbf{S}^{\mathbf{3}}$ induces an orientation-preserving self-homeomorphism $h: M \rightarrow M$ for the Dehn surgery 3-manifold $\mathrm{M}=\chi(\mathrm{K} ; \mathrm{r})$ for any $\mathrm{r} \in \mathrm{Q}$ such that

$$
h_{*}=-1: H_{1}(M ; Z) \rightarrow H_{1}(M ; Z) .
$$

Let Σ be the mapping torus of h :

$$
\Sigma=M \times[0,1] /\{h(x, 0)=(x, 1) \mid x \in M\} .
$$

Since $H_{1}(M ; Z)$ is cyclic,

$$
\mathrm{H}_{1}(\Sigma ; \mathrm{Z})=\mathrm{Z} \oplus \mathrm{H}_{1}\left(\mathrm{M} ; \mathrm{Z}_{2}\right)=\mathrm{Z} \oplus \mathrm{Z}_{2}^{\mathrm{s}}
$$

for $\mathrm{s}=0$ or 1 .

By Poincare duality and $\chi(\Sigma)=0$, we have

$$
\begin{aligned}
& H_{d}(\Sigma ; Z)= \begin{cases}Z & (d=0,3,4) \\
Z_{2}^{s} & (d=2) \\
z \oplus Z_{2}^{s} & (d=1) \\
0 & \text { (others), }\end{cases} \\
& \text { where } s=\beta_{1}\left(M ; Z_{2}\right)=0 \text { or } 1 .
\end{aligned}
$$

Thus, for the subring

$$
z_{/ 2}=Z[1 / 2] \subset Q,
$$

Σ is a $Z_{/ 2}$-homology $\mathrm{S}^{1} \times \mathrm{S}^{3}$ and \exists an embedding $k: M \rightarrow \Sigma$ such that $k_{*}[M] \in H_{3}(\Sigma ; Z)$ is a generator.

Let M^{0} be a punctured 3-manifold of M, i.e., $M^{0}=c l\left(M-B^{3}\right)$ for a 3-ball B in M. Since Σ is an M-bundle over S^{1}, let Σ^{*} be a closed 4-manifold obtained from Σ by a surgery killing a section S^{1} :

$$
\begin{gathered}
\Sigma^{\wedge}=c l\left(\Sigma-S^{1} \times D^{3}\right) \cup\left(D^{2} \times \partial D^{3}\right) . \\
H_{d}\left(\Sigma^{\wedge} ; Z\right)= \begin{cases}Z & (d=0,4) \\
Z_{2}^{s}(d=1,2) \\
0 & \text { (others) } \\
\text { where } s=\beta_{1}\left(M ; Z_{2}\right)=0 \text { or } 1 .\end{cases}
\end{gathered}
$$

Then

Thus, \mathbf{M}^{0} is embedded in Σ^{\wedge}, a $\mathbf{Z}_{/ 2}$-homology 4-sphere.

Let X be a connected oriented 4-manifold, and M a closed connected oriented 3-manifold.
Then \exists two types of (smooth) embeddings

$$
\mathrm{M} \rightarrow \mathrm{X} .
$$

Definition. An embedding $f: M \rightarrow X$ is of type 1 if $X-f(M)$ is connected, and of type 2 if $X-f(M)$ is disconnected.

Note: If \exists type 1 embedding $f: M \rightarrow X$, then $H_{1}(X ; Z)$ has a direct summand Z, because $\exists[C] \in H_{1}(X ; Z)$ with $\operatorname{Int}_{\mathrm{x}}(\mathrm{C}, \mathrm{fM})= \pm 1$.

For an abelian group \mathbf{G},
let $\quad G^{(2)}=\{x \in G \mid 2 x=0\}$.
For a connected oriented 4-manifold X, let $\quad \beta^{(2)}{ }_{d}(X ; Z)=H_{d}(X ; Z)^{(2)}$.

Then we have

$$
s=\beta_{1}\left(M ; Z_{2}\right)=\beta^{(2)}(\Sigma ; Z)=\beta^{(2)}{ }_{2}\left(\Sigma^{\wedge} ; Z\right)=0 \text { or } 1 .
$$

Observation 1.

Every r-surgery manifold $M=\chi(K ; r)$ of an invertible knot K is type 1 embedded in Σ, a $Z_{/ 2}$-homology $S^{1} \times S^{3}$ with $\beta_{1}\left(M ; Z_{2}\right)=\beta^{(2)}{ }_{2}(\Sigma ; Z)=0$ or 1.
Further, M^{0} is embeddable in Σ^{\wedge}, a $Z_{/ 2}$-homology 4-sphere with $\beta_{1}\left(M ; Z_{2}\right)=\beta^{(2)}{ }_{2}\left(\Sigma^{\wedge} ; Z\right)=0$ or 1 .

Remark. The $Z_{/ 2}$-homology 4-sphere Σ^{\wedge} cannot be replaced by S^{4} in general.
(1) For the lens space $L(p, q)=\chi(0 ; p / q)(p>0$, even) for the trivial knot 0 which is invertible, $L(p, q)^{0}$ is NOT embeddable in \mathbf{S}^{4}.
D. B. A. Epstein, Embedding punctured manifolds, Proc. Amer. Math. Soc. 16(1965), 175-176.
(2) For the 0 -surgery manifold $\mathrm{M}=\chi(\mathrm{K} ; 0)$ of the trefoil knot K (known to be invertible), M^{0} is NOT embeddable in \mathbf{S}^{4}.
A. Kawauchi, On n-manifolds whose punctured manifolds are imbeddable in ($\mathrm{n}+1$)-sphere and spherical manifolds, Hiroshima Math. J. 9(1979),47-57.

2. A generalization to a component-conservatively invertible link

Definition.

An oriented link L with components $K_{i}(i=1,2, \ldots, n)$ in S^{3} is component-conservatively invertible if \exists an orientation-preserving self-homeomorphism f of S^{3} sending K_{i} to $-K_{i}$ for every i.

The self-homeomorphism f induces an orientation-preserving self-homeomorphism h of the r-surgery 3 -manifold $M=\chi(L ; r)$ for any $r \in Q^{n}$ such that $h_{*}=-1: H_{1}(M ; Z) \rightarrow H_{1}(M ; Z)$.

Let Σ be the mapping torus of h :

$$
\Sigma=M \times[0,1] /\{h(x, 0)=(x, 1) \mid x \in M\} .
$$

Then $H_{1}(\Sigma ; Z)=Z \oplus H_{1}\left(M ; Z_{2}\right)=Z \oplus Z_{2}{ }^{s}$.
By Poincare duality and the Euler characteristic $\chi(\Sigma)=0$, we have

$$
H_{d}(\Sigma ; Z)= \begin{cases}Z & (d=0,3,4) \\ Z_{2}^{s} & (d=2) \\ Z+Z_{2}^{s} & (d=1) \\ 0 & \text { (others) } \\ \text { where } s=\beta_{1}\left(M ; Z_{2}\right)=\beta^{(2)}(\Sigma ; Z) .\end{cases}
$$

Σ is a $Z_{/ 2}$-homology $S^{1} \times S^{3}$ and \exists a type 1 embedding $k: M \rightarrow \boldsymbol{\Sigma}$.

Since Σ is an M-bundle over S^{1}, let Σ be a closed 4-manifold obtained from Σ by a surgery killing a section S^{1} :

$$
\Sigma^{\wedge}=\operatorname{cl}\left(\Sigma-S^{1} \times D^{3}\right) \cup\left(D^{2} \times \partial D^{3}\right) .
$$

Then

$$
\begin{aligned}
& H_{d}\left(\Sigma^{\wedge} ; Z\right)= \begin{cases}Z & (d=0,4) \\
Z_{2}^{s} & (d=1,2) \\
0 & (\text { others }),\end{cases} \\
& \text { where } s=\beta_{1}\left(M ; Z_{2}\right)=\beta^{(2)}\left(\Sigma^{\wedge} ; Z\right) .
\end{aligned}
$$

Thus, M^{0} is embeddable in Σ^{\wedge}, a $\mathrm{Z}_{/ 2}$-homology 4-sphere.

Observation 2.

Every r-surgery manifold $M=\chi(L ; r)$ of every component-conservatively invertible link L is type 1 embedded in Σ, a $Z_{/ 2}$-homology $S^{1} \times S^{3}$ with $\beta_{1}\left(M ; Z_{2}\right)=\beta^{(2)}{ }_{2}(\Sigma ; Z)$.
Further, \mathbf{M}^{0} is embeddable in a $Z_{/ 2}$-homology 4-sphere Σ^{\wedge} with $\beta_{1}\left(M ; Z_{2}\right)=\beta^{(2)}\left(\Sigma^{\wedge} ; Z\right)$.

3. Invertible 3-manifolds

Definition.

A closed connected oriented 3-manifold M is invertible if \exists an orientation-preserving self-homeomorphism h of M such that

$$
h_{*}=-1: H_{1}(M) \rightarrow H_{1}(M) .
$$

Observation 3.

Cf. A. Kawauchi, The imbedding problem of 3-manifolds into 4-manifolds, Osaka J. Math. 25 (1988), 171-183.

Every invertible 3-manifold M is embedded in Σ, a $Z_{/ 2}$-homology $S^{1} \times S^{3}$ with $\beta_{1}\left(M ; Z_{2}\right)=\beta^{(2)}{ }_{2}(\Sigma ; Z)$. Further, M^{0} is embeddable in a $Z_{/ 2}$-homology 4-sphere Σ^{\wedge} with $\beta_{1}\left(M ; Z_{2}\right)=\beta^{(2)}{ }_{2}\left(\Sigma^{\wedge} ; Z\right)$.

Examples of invertible 3-manifolds
(1) Every Dehn surgery 3-manifold obtained from \mathbf{S}^{3} along every component-conservatively invertible link is an invertible 3-manifold.
(2) The double branched cover of S^{3} branched along every link is an invertible 3-manifold.
(3) Every closed connected orientable 3-manifold of Heegaard genus $\leqq 2$ is an invertible 3-manifold.

Examples of non-invertible 3-manifolds

(1) A closed connected oriented hyperbolic

3-manifold with no symmetry or with only odd symmetries.
(2) A closed connected oriented 3-manifold M such that $\exists u_{1}, u_{2}, u_{3} \in H^{1}\left(M ; Z_{p}\right)$ (p odd prime)
with $u_{1} \cup u_{2} \cup u_{3} \neq 0$ in $H^{3}\left(M ; Z_{p}\right)=Z_{p}$. (e. g., $\left.M=T^{3} \# M^{\prime}\right)$.

Proof of (1). If M is invertible, then M has

 an even order isometry by Mostwo rigidity. Proof of (2). Suppose \exists an orientationpreserving self-homeomorphism h of M such that $h_{*}=-1: H_{1}(M) \rightarrow H_{1}(M)$. Then $\mathrm{h}^{*}=-1: \mathrm{H}^{1}\left(\mathrm{M} ; \mathrm{Z}_{\mathrm{p}}\right) \rightarrow \mathrm{H}^{1}\left(\mathrm{M} ; \mathrm{Z}_{\mathrm{p}}\right)$, so that$$
\begin{aligned}
h^{*}\left(u_{1} \cup u_{2} \cup u_{3}\right) & =\left(h^{*} u_{1} \cup h^{*} u_{2} \cup h^{*} u_{3}\right) \\
& =-\left(u_{1} \cup u_{2} \cup u_{3}\right) .
\end{aligned}
$$

Thus, $\mathrm{h}^{*}=-1: \mathrm{H}^{3}\left(\mathrm{M} ; \mathrm{Z}_{\mathrm{p}}\right) \rightarrow \mathrm{H}^{3}\left(\mathrm{M} ; \mathrm{Z}_{\mathrm{p}}\right)$ and h must be orientation-reversing, a contradiction.//

4. Samsara 4-manifold

Let M be a closed connected oriented
3-manifold.

Definition.

A closed Samsara 4-manifold on M is a 4-manifold Σ with $Z_{/ 2}$-homology of $S^{1} \times S^{3}$ such that \exists a type 1 embedding $\mathrm{k}: \mathrm{M} \rightarrow \Sigma$.

Let $T^{3}=S^{1} \times S^{1} \times S^{1}$.
Let L_{B} be the Borromean rings in S^{3} :
Let $D\left(T^{3}\right)=D^{4} \cup 0$-framed three 2-handles on L_{B} be the 0 -surgery trace on B with $\partial D\left(T^{3}\right)=\chi\left(L_{B}, 0\right)=T^{3}$. Let $D\left(s T^{3}\right)$ be the disk sum of s copies of $D\left(T^{3}\right)$ with $\partial D\left(s T^{3}\right)=\# s T^{3}$. Note that

$$
H_{d}\left(D\left(s T^{3}\right) ; Z\right)= \begin{cases}Z^{3 s} & (d=2) \\ Z & (d=0) \\ 0 & \text { (others) }\end{cases}
$$

The intersection form on $\mathrm{H}_{\mathbf{2}}\left(\mathrm{D}\left(\mathrm{sT}^{3}\right) ; \mathrm{Z}\right)$ is 0 -form.

Definition.

A bounded Samsara 4-manifold on M is a compact oriented 4-manifold Σ with $\partial \Sigma=\# s T^{3}$ such that
(1) Σ has the $Z_{/ 2}$-homology of $S^{1} \times S^{3} \# D\left(s T^{3}\right)$ for some $s>0$, and
(2) \exists a type 1 embedding $k: M \rightarrow \Sigma$ with

$$
k_{*}=0: H_{2}\left(M ; Z_{/ 2}\right) \rightarrow H_{2}\left(\Sigma ; Z_{/ 2}\right) .
$$

Definition.

A reduced closed Samsara 4-manifold on M^{0} is
a $Z_{/ 2}$-homology 4 -sphere Σ^{\wedge} with M^{0} embedded.

Definition.

A reduced bounded Samsara 4-manifold on M^{0} is a 4-manifold Σ^{\wedge} with $\partial \Sigma^{\wedge}=\# S^{3}$ such that
(1) $H_{*}\left(\Sigma^{\wedge} ; Z_{/ 2}\right)=H_{*}\left(S^{4} \# D\left(s T^{3}\right) ; Z_{/ 2}\right)=H_{*}\left(D\left(s T^{3}\right) ; Z_{/ 2}\right)$,
(2) \exists an embedding $k^{0}: M^{0} \rightarrow \Sigma^{\wedge}$ such that

$$
\mathrm{k}^{0}{ }_{*}=0: \mathrm{H}_{2}\left(\mathrm{M}^{0} ; \mathrm{Z}_{/ 2}\right) \rightarrow \mathrm{H}_{\mathbf{2}}\left(\Sigma^{\wedge} ; \mathrm{Z}_{12}\right) .
$$

Observation 4.
(1) Given a reduced Samsara 4-manifold Σ^{\wedge} on $\mathbf{M}^{\mathbf{0}}, \exists$ a Samsara 4-manifold Σ on \mathbf{M} with $H_{2}(\Sigma ; Z)=H_{2}\left(\Sigma^{\wedge} ; Z\right)$.
Conversely, given a Samsara 4-manifold Σ on M, \exists a reduced Samsara 4-manifold $\boldsymbol{\Sigma}^{\wedge}$ on M^{0} with $H_{2}\left(\Sigma^{\wedge} ; Z\right)=H_{2}(\Sigma ; Z)$ by a surgery killing a generator of $\mathrm{H}_{1}(\Sigma ; Z) /(2$-torsion $)=Z$.
(2) For a Samsara 4-manifold Σ on M and every integer $n>0, \exists$ a Samsara 4-manifold Σ^{\prime} on M with

$$
\beta^{(2)}{ }_{2}\left(\Sigma^{\prime} ; Z\right)=\beta^{(2)}{ }_{2}(\Sigma ; Z)+n .
$$

For a reduced Samsara 4-manifold Σ^{\wedge} on \mathbf{M}^{0} and every integer $n>0, \exists$ a reduced Samsara 4-manifold $\Sigma^{\wedge^{\prime}}$ on M^{0} with

$$
\beta^{(2)}\left(\Sigma^{\wedge^{\prime}} ; Z\right)=\beta^{(2)}{ }_{2}\left(\Sigma^{\wedge} ; Z\right)+n .
$$

(3) ヨSamsara 4-manifolds Σ on M and reduced Samsara 4-manifolds $\boldsymbol{\Sigma}^{\wedge}$ on M^{0} for some M , such that

$$
\beta^{(2)}(\Sigma ; Z)<\beta_{1}\left(M ; Z_{2}\right) \text { and } \beta^{(2)}\left(\Sigma^{\wedge} ; Z\right)<\beta_{1}\left(M ; Z_{2}\right) .
$$

For example, take M with $\beta_{1}\left(M ; Z_{2}\right)>0$ such that M^{0} is embedded in S^{4}. Then S^{4} is a reduced closed Samsara 4-manifold on M^{0} with

$$
\beta^{(2)}{ }_{2}\left(S^{4} ; Z\right)=0<\beta_{1}\left(M ; Z_{2}\right) .
$$

By a surgery of S^{4} along the 2-knot $S^{2}=\partial M^{0}$,
\exists a closed Samsara 4-manifold Σ with Z-homology of $S^{1} \times S^{3}$ on M with $\beta^{(2)}(\Sigma ; Z)=0<\beta_{1}\left(M ; Z_{2}\right)$.

Theorem.

(1) For every closed connected oriented 3-manifold M, \exists a (closed or bounded) Samsara 4-manifold Σ on M with $\beta^{(2)}{ }_{2}(\Sigma ; Z)=\beta_{1}\left(M ; Z_{2}\right)$. (2) For every integer $n>0, \exists \infty$-many M such that every (closed or bounded) Samsara 4-manifold Σ on M has $\beta^{(2)}(\Sigma ; Z) \geqq \beta_{1}\left(M ; Z_{2}\right)=n$.

Corollary. For every closed connected oriented 3-manifold M, ヨ a reduced (closed or bounded) Samsara 4-manifold Σ^{\wedge} on M^{0} with

$$
\beta^{(2)}\left(\Sigma_{2} \Sigma^{\wedge} ; Z\right)=\beta_{1}\left(M ; Z_{2}\right) .
$$

Further, for every integer $n>0, \exists \infty$-many M such that every reduced (closed or bounded) Samsara 4-manifold Σ^{\wedge} on M^{0} has

$$
\beta^{(2)}\left(\Sigma^{\wedge} ; Z\right) \geqq \beta_{1}\left(M ; Z_{2}\right)=n .
$$

Proof of (1) of Theorem.

Let $M=\chi(L, 0)$, the 0 -surgery of S^{3} along a link L with r components.
By the following paper:
H. Murakami and Y. Nakanishi, On a certain move generating link-homology, Math. Ann. 284(1989), 75-89
the link $-L$ is a fusion of a split union of L and some copies of the Borromean rings $\mathrm{L}_{\mathrm{B}_{\mathrm{i}}}(\mathrm{i}=1,2, \ldots, \mathrm{~s})$.
\exists a proper oriented surface F consisting of punctured annuli in $S^{3} \times[0,1]$ such that $\partial F=\left(L \cup L_{B}\right) \times 0 \cup(-L) \times 1$, where L_{B} is the union of Borromean rings $L_{B_{i}}(i=1,2, \ldots, s)$.

Attach 0-framed $D^{2} \times D_{i}^{2}(i=1,2, \ldots, 3 s)$ to $S^{3} \times 0$ along L_{B}. Then F extends the union A of r proper annuli with $\partial A=L \times O \cup(-L) \times 1$ in the connected sum $X^{\prime}=S^{3} \times[0,1] \# D\left(S^{3}\right)$.

Let Σ ' be the " 0 -surgery" of X ' along A, so that $\partial \mathrm{Y}=\# \mathrm{~s}^{3} \mathrm{UM} \times 0 \mathrm{U}-\mathrm{M} \times 1$. A desired bounded Samsara 4-manifold Σ on M with $\partial \Sigma=\# s T^{3}$ is obtained from X^{\prime} by identifying $M \times 0$ with $-M \times 1$.

Let $X=S^{1} \times S^{3} \# D\left(s T^{3}\right)$ be the manifold obtained from X^{\prime} by identifying $S^{3} \times 0$ with $S^{3} \times 1$, and $K b$ the union of r Klein bottles obtained from A by identifying the boundaries.

(0) Σ is also the " 0 -surgery" of X along $K b$.
(1) Since X^{\prime} is simply connected, every element of $H_{1}\left(X^{\prime}-A\right)$ is generated by meridians of A in X^{\prime}. Hence the natural map

$$
\mathrm{H}_{1}\left(\mathrm{~S}^{3} \times 0-\mathrm{L} \times 0 ; \mathrm{Z}\right) \rightarrow \mathrm{H}_{1}\left(\mathrm{X}^{\prime}-\mathrm{A} ; \mathrm{Z}\right)
$$

is onto, so that the natural map

$$
H_{1}(M \times 0 ; Z) \rightarrow H_{1}\left(\Sigma^{\prime} ; Z\right)
$$

is onto.
(2) For the inclusion $k: M \subset \Sigma, \exists$ a natural exact sequence

$$
H_{1}(M ; Z) \xrightarrow{k_{*}} H_{1}(\Sigma ; Z) \rightarrow Z \rightarrow 0
$$

and the image $\operatorname{Im}\left(k_{*}\right) \subset H_{1}(\Sigma)$ is generated by order 2 elements. Hence

$$
H_{1}\left(\Sigma ; Z_{/ 2}\right)=Z_{/ 2}
$$

and

$$
k_{*}=0: H_{1}\left(M ; Z_{/ 2}\right) \rightarrow H_{1}\left(\Sigma ; Z_{/ 2}\right) .
$$

For a generator $[C] \in H_{1}(\Sigma ; Z) /(2$-torsion $)=Z$, $\operatorname{Int}(\mathrm{M}, \mathrm{C})=1$.
(3) \exists a Z-basis $x_{i} \in H_{2}\left(D\left(s T^{3}\right) ; Z\right)(i=1,2, \ldots, 3 s)$ with Int $\left(x_{i}, x_{j}\right)=0(\nabla i, j)$ such that each x_{i} is represented by an embedded surface S_{i} disjoint from A.
(4) \exists a Z-basis $y_{i} \in H_{2}\left(D\left(s T^{3}\right), \# s T^{3} ; Z\right)(i=1,2, \ldots, 3 s)$
with Int $\left(x_{i}, y_{j}\right)=\delta_{i j}(\forall i, j)$ such that each y_{i} is represented by an embedded proper 2-disk D_{i} transversely meeting S_{i} with one point and $D_{i} \cap D_{j}=\phi$ and $D_{i} \cap S_{j}=\phi$ for $i \neq j$. Also, every D_{i} transversely meets A with one point in X^{\prime}.
(5) $\partial D_{i}(i=1,2, \ldots, 3 s)$ forms a Z-basis of $H_{1}\left(\# s T^{3} ; Z\right)$. (6) From D_{i} and its parallel D_{i}^{\prime}, we can construct an annulus $A\left(D_{i}\right)$ in X disjoint from K with

$$
\left[\partial A\left(D_{i}\right)\right]=\left[\partial D_{i}+\partial D_{i}^{\prime}\right]=2\left[\partial D_{i}\right] \in H_{1}\left(\# s T^{3} ; Z\right)
$$

by piping them along K.
Let $y_{i}^{(2)}=(1 / 2)\left[A\left(D_{i}\right)\right] \in H_{2}\left(\Sigma, \partial \Sigma ; Z_{/ 2}\right)$.
Then $\partial_{*}: H_{2}\left(\Sigma, \partial \Sigma ; Z_{/ 2}\right) \rightarrow H_{1}\left(\partial \Sigma ; Z_{/ 2}\right)$ is onto. Hence the natural map $H_{1}\left(\Sigma ; Z_{/ 2}\right) \rightarrow H_{1}\left(\Sigma, \partial \Sigma ; Z_{/ 2}\right)$ is an isomorphism and

$$
H_{1}\left(\Sigma ; Z_{/ 2}\right)=H_{1}\left(\Sigma, \partial \Sigma ; Z_{/ 2}\right)=Z_{/ 2}
$$

(7) By Poincare duality, $\mathrm{H}_{3}(\Sigma, \partial \Sigma ; Z)=Z$ and M represents a generator. Since $\mathrm{H}_{2}(\partial \Sigma ; Z)$ is Z-free, the natural $\operatorname{map} H_{3}(\Sigma ; Z) \rightarrow H_{3}(\Sigma, \partial \Sigma ; Z)=Z$ is an isomorphism. Hence $[M] \in H_{3}(\Sigma ; Z)$ is a generator.
(8) $\chi(\Sigma)=\chi(X)=3 s-1$ implies $\operatorname{dim}_{Q} H_{3}(\Sigma ; Q)=3 s$. By Poincare duality, $H_{2}\left(\Sigma ; Z_{/ 2}\right)$ is $Z_{/ 2}$-free. Regarding $x_{i} \in H_{2}\left(\Sigma ; Z_{/ 2}\right)(i=1,2, \ldots, 3 s)$, Int $\left(x_{i}, y_{i}^{(2)}\right)=\delta_{i j}(\forall i, j)$.
Hence $x_{i}(i=1,2, \ldots, 3 s)$ form a $Z_{(2)}$-basis of $H_{2}\left(\Sigma ; Z_{/ 2}\right)$ and by Poincare duality $y_{i}{ }^{(2)}(i=1,2, \ldots, 3 s)$ are a $Z_{(2)}$-basis of $H_{2}\left(\Sigma, \partial \Sigma ; Z_{/ 2}\right)$.
In particular, $H_{*}\left(\Sigma ; Z_{/ 2}\right)=H_{*}\left(X ; Z_{/ 2}\right)$.
(9) Since M is disjoint from a 2-cycle representing $y_{i}^{(2)} \in H_{2}\left(\Sigma, \partial \Sigma ; z_{/ 2}\right)$ and $x_{i}(i=1,2, \ldots, 3 s)$ form a $Z_{/ 2}$-basis of $\mathrm{H}_{2}\left(\Sigma ; \mathrm{Z}_{/ 2}\right)$, we see from Int $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}^{(2)}\right)=\delta_{\mathrm{ij}}$
$(\forall i, j)$ that $k_{*}=0: H_{2}\left(M ; Z_{/ 2}\right) \rightarrow H_{2}\left(\Sigma ; Z_{/ 2}\right)$. //

Proof of (2) of Theorem.

We use the signature theorem in:

(1) A. Kawauchi, On the signature invariants of infinite cyclic coverings of even dimensional manifolds, Advanced Studies in Pure Math. 9(1986), 177-188. http://www.sci.osaka-cu.ac.jp/~kawauchi/index.html
(2) A. Kawauchi, The imbedding problem of 3-manifolds into 4-manifolds, Osaka J. Math. 25 (1988), 171-183.

Let Y be a compact oriented 4-manifold with boundary a closed 3-manifold B.
Let $\left(Y_{\infty}, B_{\infty}\right)$ be the infinite cyclic covering of (Y, B)
associated with a homomorphism $Y: H_{1}(Y ; Z) \rightarrow Z$.
Let $\dot{\gamma}: H_{1}(Y ; Z) \rightarrow Z$ be the restriction of γ.
Consider the Γ-intersection form

$$
\text { Int }: H_{2}\left(Y_{\infty} ; Q\right) \times H_{2}\left(Y_{\infty} ; Q\right) \rightarrow \Gamma .
$$

Let $A(t)$ be a Γ-Hermitian matrix representing the「-intersection form Int $_{\Gamma}$ on $\mathrm{H}_{2}\left(\mathrm{Y}_{\infty} ; \mathrm{Q}\right) /(\Gamma$-torsions). Let $a, x \in(-1,1)$.
Define

$$
\tau_{a \pm 0}\left(Y_{\infty}\right)=\lim _{x \rightarrow a \pm 0} \operatorname{sign} A\left(x+\left(1-x^{2}\right)^{1 / 2} i\right)
$$

The signature invariants $\sigma_{x}\left(B_{\infty}\right), x \in(-1,1)$, of B_{∞} is defined on the quadratic form

$$
\text { b:Tor }{ }_{\Gamma} \mathrm{H}_{1}\left(\mathrm{~B}_{\infty} ; \mathrm{Q}\right) \times \operatorname{Tor}_{\Gamma} \mathrm{H}_{1}\left(\mathrm{~B}_{\infty} ; \mathrm{Q}\right) \rightarrow \mathrm{Q}
$$

so that

$$
\sigma_{(\mathrm{a}, 1]}\left(B_{\infty}\right)=\sum_{\mathrm{a} \lll 1} \sigma_{\mathrm{x}}\left(B_{\infty}\right)
$$

Signature Theorem.

$$
\begin{aligned}
& \tau_{a-0}\left(Y_{\infty}\right)-\operatorname{sign} Y=\sigma_{[a, 1]}\left(B_{\infty}\right), \\
& \tau_{a+0}\left(Y_{\infty}\right)-\operatorname{sign} Y=\sigma_{(a, 1]}\left(B_{\infty}\right) .
\end{aligned}
$$

Corollary. For $\forall a \in(-1,1)$,

$$
\left|\sigma_{[a, 1]}\left(B_{\infty}\right)\right|-K_{1}\left(B_{\infty}\right) \leqq 2 \hat{\beta}_{2}(Y ; Z)
$$

where
$K_{1}\left(B_{\infty}\right)=$ Z-rank of $\operatorname{Ker}\left(t-1: H_{1}\left(B_{\infty}\right) \rightarrow H_{1}\left(B_{\infty}\right)\right)$.
$\hat{\beta}_{2}(Y ; Z)=$ rank of Int: $H_{2}(Y ; Z) \times H_{2}(Y ; Z) \rightarrow Z$.

For every integer $n>0$, take n knots $K_{i}(1 \leqq i \leqq n)$ whose signatures $\sigma\left(K_{i}\right)(1 \leqq i \leqq n)$ have:
$\left|\sigma\left(K_{1}\right)\right|>0$ and $\left|\sigma\left(K_{i}\right)\right|>\left|\sum_{j=1}^{i-1} \sigma\left(K_{j}\right)\right|(i=2,3, \ldots, n)$.
Let $\mathbf{M}_{\mathrm{i}}=\chi\left(\mathrm{K}_{\mathrm{i}}, \mathbf{0}\right)$ and $\mathbf{M}=\mathrm{M}_{1} \# \mathrm{M}_{\mathbf{2}} \# \ldots \# \mathrm{M}_{\mathrm{n}}$.
Call M an efficient 3-manifold of rank n.

Fact: For every integer $n>0, \exists \infty$-many efficient 3-manifolds of rank n.

Claim: For every efficient M of any rank $n \geqq 1$ and every reduced Samsara 4-manifold Σ^{\wedge} on M^{0}, we have $\beta^{(2)}{ }_{2}\left(\Sigma^{\wedge} ; Z\right) \geqq \beta_{1}\left(M ; Z_{2}\right)=n$.
('.') If $\beta^{(2)}{ }_{2}\left(\Sigma^{\wedge} ; Z\right)<\beta_{1}\left(M ; Z_{2}\right)$, then apply Signature Theorem for $Y=c l\left(\Sigma^{\wedge} \backslash M^{0} \times I\right)$ and $B=\partial Y \supset D M^{0}$ to obtain a Z_{2}-asymmetric homomorphism
$\dot{Y}: H_{1}\left(\mathrm{DM}^{0} ; Z\right) \rightarrow Z$ with $\sigma_{(-1,1]}\left(\mathrm{DM}^{0}{ }_{\infty}\right)=0$,
contradicting that M is efficient. //

5. A meaning of a Samsara 4-manifold

cf. A. Kawauchi, On 4-dimensional universe for every 3-dimensional manifold, preprint.

Definition.
A (4-dimensional) universe $=$ a boundary-less orientable 4-manifold U with every M embedded.

Problem. Characterize the topological shape of a universe.

Fact. For \forall closed orientable 4-manifold $X, \exists M$

 such that M^{0} is not embeddable in X, so that M is not embeddable in X.Cf. A. Kawauchi, The imbedding problem of 3-manifolds into 4-manifolds, Osaka J. Math. 25 (1988), 171-183.

Thus, a universe must be an open 4-manifold.

Let $\Sigma_{i}(i=1,2,3, \ldots)$ be bounded Samsara

 4-manifolds on all M.A Samsara universe is: $U_{S M}=\operatorname{int}\left(R_{+}^{4} \bigcup_{i=1}^{+\infty} \quad \Sigma_{i}\right)$, where U denotes the boundary disk sums.
(1) Int=0: $H_{2}\left(U_{S M} ; Z\right) \times H_{2}\left(U_{S M} ; Z\right) \rightarrow Z$.
(2) For $\forall \mathrm{M}, \exists$ a type 1 embedding $\mathrm{k}: \mathrm{M} \rightarrow \mathrm{U}_{\mathrm{SM}}$ with $k_{*}=0: H_{d}\left(M ; Z_{/ 2}\right) \rightarrow H_{d}\left(U_{S M} ; Z_{/ 2}\right), d=1,2$.

