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Now enters geometry ....

In 1980s, William Thurstons seminal work established a strong

connection between hyperbolic geometry and knot theory, namely

that most knot complements are hyperbolic. Thurston introduced

tools from hyperbolic geometry to study knots that led to new

geometric invariants, especially hyperbolic volume.



Hyperbolic plane

I The upper half-plane model of hyperbolic plane

H2 = {(x , t)|t > 0} with metric ds2 = dx2+dt2

t2
. The

boundary of H2 is R ∪∞ called the circle at infinity.

I Geodesic lines are vertical lines or semicircles orthogonal to

the x-axis (with centers on the x-axis).

I Hyperbolic lines either intersect in H2 or intersect at infinity,

or are parallel.

I Isom+(H2) = PSL(2,R).

I Other models include Poincare ball model, Klein model etc.
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Hyperbolic 3-space

I The upper half-space model of hyperbolic 3-space

H3 = {(x , y , t)|t > 0} with metric ds2 = dx2+dy2+dt2

t2
. The

boundary of H3 is C ∪∞ called the sphere at infinity.

I Geodesics are vertical lines or half circles orthogonal to the

xy -plane.

I Geodesic planes (H2) are vertical planes or upper hemispheres

of spheres orthogonal to the xy -plane (with centers on the

xy -plane).

I Isom+(H3) = PSL(2,C)

which acts as Mobius

transforms on C ∪∞.
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Hyperbolic 3-manifolds

A 3-manifold M is said to be hyperbolic if it has a complete, finite

volume hyperbolic metric i.e. small balls in M look like small balls

in H3.

I π1(M) = Γ acts by covering translations as isometries and

hence has a discrete faithful representation in PSL(2,C).

I (Margulis 1978) If M is orientable and noncompact then

M =
◦
M ′ where ∂M ′ = ∪T 2. Each end is of the form

T 2 × [0,∞) with each section is scaled Euclidean metric,

called a cusp.

I (Mostow-Prasad Rigidity, 1968) Hyperbolic structure on a

3-manifold is unique. This implies geometric invariants, e.g.

hyperbolic volume, are topological invariants !
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Hyperbolic knots

A knot or link L in S3 is hyperbolic if S3 − L is a hyperbolic

3-manifold.

Theorem (Thurston) Every knot in S3 is either a torus knot, a

satellite knot or a hyperbolic knot.

Theorem (Menasco) If L has a connected prime alternating

diagram, except the standard (2, q)-torus link diagram, then L is

hyperbolic.

Reduced alternating diagram of L ←→ decomposition of S3 − L

into two ideal hyperbolic polyhedra with faces identified, according

to the checkerboard coloring of the diagram.
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Ideal tetrahedra in H3

Hyperbolic 3-manifolds are formed by gluing hyperbolic polyhedra.

The basic building block is an ideal

tetrahedra which is a geodesic tetrahedra in

H3 with all vertices on C ∪∞.

0 1

z
z z’

z’’

z
z’’

z’

Isometry classes ↔ C− {0, 1}. Every

edge gets a complex number z called

the edge parameter given by the cross

ratio of the vertices.

Vol(4(z)) = Im(Li2(z)) + log |z |arg(1− z) where Li2(z) is the

dilogarithm function. Vol(4(z)) ≤ v3 ≈ 1.01494, v3 is the volume

of the regular ideal tetrahedron (all dihedral angles π/3).
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Ideal triangulations

An ideal triangulation of a cusped (non-compact) hyperbolic

3-manifold M is a decompostion into ideal tetrahedra glued along

the faces with the vertices deleted.

Around every edge, the parameters multiply together to ±1

ensuring hyperbolicity around the edges. The completeness

condition gives a condition on every cusp torus giving a similar

equation in the edge parameters. These are called gluing and

completeness equations.

Vol(M) is a sum of volumes of ideal tetrahedra.
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Computing hyperbolic structures

The program SnapPea by Weeks (1999) and its recent

modification SnapPy by Culler and Dunfield computes hyperbolic

structures and invariants on 3-manifolds and knots by triangulating

and solving gluing equations.

SnapPy also includes census

of hyperbolic manifolds

triangulated using at most 8

tetrahedra (≈ 17000

manifolds) and census of low

volume closed hyperbolic

3-manifolds.
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Simplest hyperbolic knots

The geometric complexity is the minimum number of ideal

tetrahedra used to triangulate a hyperbolic knot complement.

Many of the geometrically simple knots have very high crossing

numbers.

Hyperbolic knots with geometric complexity up to 6 tetrahedra

were found by Callahan-Dean-Weeks (1999), extended to 7

tetrahedra by C-Kofman-Paterson (2004) and to 8 tetrahedra by

C-Kofman-Mullen (2012).

Tetrahedra 1 2 3 4 5 6 7 8 ≤8

Manifolds 0 2 9 52 223 913 3388 12241 16828

Knots 0 1 2 4 22 43 129 299 500
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Upper Volume bounds

D. Thurston gave upper bound by decomposing S3 − L into

octahedra, placing one octahedron at each crossing, and pulling

remaining vertices to ±∞:

Any hyperbolic octahedron has

volume ≤ v8 ≈ 3.66386 =

Vol(regular ideal octahedron).

=⇒ Vol(S3 − L) < v8 c(L).

Improved by C. Adams: If c(K ) ≥ 5 then

Vol(S3 − K ) ≤ v8 (c(K )− 5) + 4v3
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Twist number

Let D be a prime alternating diagram of L. Two crossings p, q are

geometric complexity if they form a bigon (clasp).

Twist number t(D) := number of twist-equivalence classes of D.

Example: t(D) = 3.
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Volume bounds from twist number

Let D = prime alternating (twist-reduced) diagram of hyperbolic

link L.

Thm. (Lackenby + Agol-D.Thurston + Agol-Storm-W.Thurston)

v8
2

(t(D)− 2) ≤ Vol(S3 − L) < 10v3 (t(D)− 1)

where v3 = Vol(regular ideal tetrahedron) ≈ 1.01494 and

v8 = Vol(regular ideal octahedron) ≈ 3.66386.

If D also has no bigons then t(D) = c(D), so

v8
2

(c(D)− 2) ≤ Vol(S3 − L) < 10v3 (c(D)− 1)
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Geometrically maximal knots

Agol-Storm-W.Thurston + Adams upper bound give the best

current volume bounds per crossing number for a knot K with a

prime alternating (and twist-reduced) diagram with no bigons:

v8
2

+ c1 ≤
Vol(S3 − K )

c(K )
≤ v8 + c2

where c1, c2 → 0 as c(K )→∞.

We say a sequence of knots Kn is geometrically maximal if

lim
n→∞

Vol(S3 − Kn)

c(Kn)
= v8

.

Question: Which knot families are geometrically maximal ?
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Weaving knots

X.-S. Lin suggested that weaving knots W (p, q) asymptotically

maximize the volume per crossing number.

W (p, q) is the alternating knot with the same projection as the

torus knot T (p, q). For example, W (5, 4) is the closure of this

braid:

c(W (p, q)) = q(p − 1)

Conjecture (Lin)

lim
|p|+|q|→∞

Vol(W (p, q))

c(W (p, q))
= v8



Main Theorem

Theorem(C-Kofman-Purcell 2013) If p ≥ 3 and q ≥ 2, then

v8 (p − 2)q ≤ Vol(W (p, q) ∪ axis) ≤ (v8 (p − 3) + 4v3)q

Corollary If p ≥ 3 and q ≥ 6, then

v8 (p− 2)q

(
1− (2π)2

q2

)3/2

≤ Vol(W (p, q)) ≤ (v8 (p− 3) + 4v3)q

Corollary lim
|p|+|q|→∞

Vol(W (p, q))

c(W (p, q))
= v8
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Outline of the proof

1. W (p, q) ∪ axis is a q–fold cover of W (p, 1) ∪ axis.

2. S3 − (W (p, 1) ∪ axis) has an ideal polyhedral decomposition

P with 4 ideal tetrahedra and p − 3 ideal octahedra.

3. For p > 3, P admits an angle structure s.t.

Vol(P) = v8 (p − 2).

4. Triangulate P into ideal tetrahedra.

5. By flattening tetrahedra, show that the critical point for

Vol(W (p, 1) ∪ axis) is in the interior of the space of angle

structures.

6. Casson & Rivin =⇒ Vol(W (p, 1) ∪ axis) ≥ Vol(P).

7. The meridian of the braid axis of W (p, q) has length ≥ q.

8. By Futer-Kalfagianni-Purcell, the lower bound for

Vol(W (p, q)) follows.
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5. By flattening tetrahedra, show that the critical point for

Vol(W (p, 1) ∪ axis) is in the interior of the space of angle

structures.

6. Casson & Rivin =⇒ Vol(W (p, 1) ∪ axis) ≥ Vol(P).

7. The meridian of the braid axis of W (p, q) has length ≥ q.

8. By Futer-Kalfagianni-Purcell, the lower bound for

Vol(W (p, q)) follows.
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The 3–strand case

Theorem(C-Kofman-Purcell 2013) If p ≥ 3 and q ≥ 2, then

v8 (p − 2)q ≤ Vol(W (p, q) ∪ axis) ≤ (v8 (p − 3) + 4v3)q

If p = 3 the upper bound in the above Theorem is achieved. This

case is special because all edges of P are 6–valent, so all dihedral

angles are π/3. Thus P has only regular ideal tetrahedra, which is

the geometric triangulation.

Vol(W (3, q) ∪ axis) = 4q v3



Commensurability in the 3–strand case

2

3

W(3,3) U axis

= Borromean link U axis

W(3,2) U axis

2

4

W(3,6) U axis

W(3,2) = 4 1

W(3,1) U axis = L6a2

Vol(W (3, q) ∪ axis) = 4q v3



Motivation: The Infinite Weave

Menasco’s polyhedral decomposi-

tion for S3−W (p, q) approaches

that of the infinite weave W as

|p|+ |q| → ∞

Get the hyperbolic structure for

R3−W by coning the square lat-

tice to ±∞. Associated circle

packing shows R3−W tessellated

by regular ideal octahedra.

Associated circle packing shows R3 −W tessellated by regular

ideal octahedra.
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Conjectures

I Conjecture Family of alternating knots obtained by closing up

parts of the infinite weave, with number of squares in both

directions →∞ is (a) geometrically maximal (b)

geometrically converges to R3 −W .

I Theorem(C-Kofman-Purcell) For a sequence Kn of knots as

above, lim
n→∞

2π log det(Kn)

c(Kn)
= v8.

I Conjecture If K is any knot,
2π log det(K )

c(K )
≤ v8.

I Conjecture(Kenyon) If G is any finite planar graph, τ(G ) = #

spanning trees of G , C ≈ 0.916 is Catalan’s constant,

log τ(G )

e(G )
≤ 2C

π
=

v8
2π
≈ 0.58312.
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