Geometrically maximal knots

Abhijit Champanerkar

Department of Mathematics,
College of Staten Island \& The Graduate Center, CUNY

Discussion Meeting on Knot theory and its Applications
IISER Mohali, India
Dec 2013

Outline

Hyperbolic geometry
Hyperbolic knots \& 3-manifolds
Ideal triangulations
Simplest hyperbolic knots
Knot diagrams and Volume bounds
Weaving knots
Main Theorem \& Proof
Motivation \& Conjectures

Now enters geometry

In 1980s, William Thurstons seminal work established a strong connection between hyperbolic geometry and knot theory, namely that most knot complements are hyperbolic. Thurston introduced tools from hyperbolic geometry to study knots that led to new geometric invariants, especially hyperbolic volume.

Hyperbolic plane

- The upper half-plane model of hyperbolic plane $\mathbb{H}^{2}=\{(x, t) \mid t>0\}$ with metric $\mathrm{d} s^{2}=\frac{\mathrm{d} x^{2}+\mathrm{d} t^{2}}{t^{2}}$. The boundary of \mathbb{H}^{2} is $\mathbb{R} \cup \infty$ called the circle at infinity.
- Geodesic lines are vertical lines or semicircles orthogonal to the x-axis (with centers on the x-axis).
- Hyperbolic lines either intersect in \mathbb{H}^{2} or intersect at infinity, or are parallel.

Hyperbolic plane

- The upper half-plane model of hyperbolic plane $\mathbb{H}^{2}=\{(x, t) \mid t>0\}$ with metric $\mathrm{ds}^{2}=\frac{\mathrm{d} x^{2}+\mathrm{d} t^{2}}{t^{2}}$. The boundary of \mathbb{H}^{2} is $\mathbb{R} \cup \infty$ called the circle at infinity.
- Geodesic lines are vertical lines or semicircles orthogonal to the x-axis (with centers on the x-axis).
- Hyperbolic lines either intersect in \mathbb{H}^{2} or intersect at infinity, or are parallel.
- $\operatorname{Isom}^{+}\left(\mathbb{H}^{2}\right)=\operatorname{PSL}(2, \mathbb{R})$.
- Other models include Poincare ball model, Klein model etc.

Hyperbolic plane

- The upper half-plane model of hyperbolic plane $\mathbb{H}^{2}=\{(x, t) \mid t>0\}$ with metric $d s^{2}=\frac{\mathrm{d} x^{2}+\mathrm{d} t^{2}}{t^{2}}$. The boundary of \mathbb{H}^{2} is $\mathbb{R} \cup \infty$ called the circle at infinity.
- Geodesic lines are vertical lines or semicircles orthogonal to the x-axis (with centers on the x-axis).
- Hyperbolic lines either intersect in \mathbb{H}^{2} or intersect at infinity, or are parallel.
- $\operatorname{Isom}^{+}\left(\mathbb{H}^{2}\right)=\operatorname{PSL}(2, \mathbb{R})$.
- Other models include Poincare ball model, Klein model etc.

Hyperbolic 3-space

- The upper half-space model of hyperbolic 3-space $\mathbb{H}^{3}=\{(x, y, t) \mid t>0\}$ with metric $\mathrm{d} s^{2}=\frac{\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} t^{2}}{t^{2}}$. The boundary of \mathbb{H}^{3} is $\mathbb{C} \cup \infty$ called the sphere at infinity.

Hyperbolic 3-space

- The upper half-space model of hyperbolic 3-space $\mathbb{H}^{3}=\{(x, y, t) \mid t>0\}$ with metric $\mathrm{d} s^{2}=\frac{\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} t^{2}}{t^{2}}$. The boundary of \mathbb{H}^{3} is $\mathbb{C} \cup \infty$ called the sphere at infinity.
- Geodesics are vertical lines or half circles orthogonal to the $x y$-plane.
- Geodesic planes $\left(\mathbb{H}^{2}\right)$ are vertical planes or upper hemispheres of spheres orthogonal to the $x y$-plane (with centers on the $x y$-plane).

Hyperbolic 3-space

- The upper half-space model of hyperbolic 3-space $\mathbb{H}^{3}=\{(x, y, t) \mid t>0\}$ with metric $\mathrm{d} s^{2}=\frac{\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} t^{2}}{t^{2}}$. The boundary of \mathbb{H}^{3} is $\mathbb{C} \cup \infty$ called the sphere at infinity.
- Geodesics are vertical lines or half circles orthogonal to the $x y$-plane.
- Geodesic planes $\left(\mathbb{H}^{2}\right)$ are vertical planes or upper hemispheres of spheres orthogonal to the $x y$-plane (with centers on the $x y$-plane).
- $\operatorname{Isom}^{+}\left(\mathbb{H}^{3}\right)=\operatorname{PSL}(2, \mathbb{C})$ which acts as Mobius transforms on $\mathbb{C} \cup \infty$.

Hyperbolic 3-manifolds

A 3-manifold M is said to be hyperbolic if it has a complete, finite volume hyperbolic metric i.e. small balls in M look like small balls in \mathbb{H}^{3}.

Hyperbolic 3-manifolds

A 3-manifold M is said to be hyperbolic if it has a complete, finite volume hyperbolic metric i.e. small balls in M look like small balls in \mathbb{H}^{3}.

- $\pi_{1}(M)=\Gamma$ acts by covering translations as isometries and hence has a discrete faithful representation in $\operatorname{PSL}(2, \mathbb{C})$.

Hyperbolic 3-manifolds

A 3-manifold M is said to be hyperbolic if it has a complete, finite volume hyperbolic metric i.e. small balls in M look like small balls in \mathbb{H}^{3}.

- $\pi_{1}(M)=\Gamma$ acts by covering translations as isometries and hence has a discrete faithful representation in $\operatorname{PSL}(2, \mathbb{C})$.
- (Margulis 1978) If M is orientable and noncompact then $M=\stackrel{\circ}{M}^{\prime}$ where $\partial M^{\prime}=\cup T^{2}$. Each end is of the form $T^{2} \times[0, \infty)$ with each section is scaled Euclidean metric, called a cusp.

Hyperbolic 3-manifolds

A 3-manifold M is said to be hyperbolic if it has a complete, finite volume hyperbolic metric i.e. small balls in M look like small balls in \mathbb{H}^{3}.

- $\pi_{1}(M)=\Gamma$ acts by covering translations as isometries and hence has a discrete faithful representation in $\operatorname{PSL}(2, \mathbb{C})$.
- (Margulis 1978) If M is orientable and noncompact then $M=M^{\prime}$ where $\partial M^{\prime}=\cup T^{2}$. Each end is of the form $T^{2} \times[0, \infty)$ with each section is scaled Euclidean metric, called a cusp.
- (Mostow-Prasad Rigidity, 1968) Hyperbolic structure on a 3-manifold is unique. This implies geometric invariants, e.g. hyperbolic volume, are topological invariants !

Hyperbolic knots

A knot or link L in S^{3} is hyperbolic if $S^{3}-L$ is a hyperbolic 3-manifold.

Hyperbolic knots

A knot or link L in S^{3} is hyperbolic if $S^{3}-L$ is a hyperbolic 3-manifold.

Theorem (Thurston) Every knot in S^{3} is either a torus knot, a satellite knot or a hyperbolic knot.

Hyperbolic knots

A knot or link L in S^{3} is hyperbolic if $S^{3}-L$ is a hyperbolic 3-manifold.

Theorem (Thurston) Every knot in S^{3} is either a torus knot, a satellite knot or a hyperbolic knot.

Theorem (Menasco) If L has a connected prime alternating diagram, except the standard $(2, q)$-torus link diagram, then L is hyperbolic.

Reduced alternating diagram of $L \longleftrightarrow$ decomposition of $S^{3}-L$ into two ideal hyperbolic polyhedra with faces identified, according to the checkerboard coloring of the diagram.

Ideal tetrahedra in \mathbb{H}^{3}

Hyperbolic 3-manifolds are formed by gluing hyperbolic polyhedra.
The basic building block is an ideal tetrahedra which is a geodesic tetrahedra in \mathbb{H}^{3} with all vertices on $\mathbb{C} \cup \infty$.

Ideal tetrahedra in \mathbb{H}^{3}

Hyperbolic 3-manifolds are formed by gluing hyperbolic polyhedra.
The basic building block is an ideal tetrahedra which is a geodesic tetrahedra in \mathbb{H}^{3} with all vertices on $\mathbb{C} \cup \infty$.

An Ideal Tetrahedron

Isometry classes $\leftrightarrow \mathbb{C}-\{0,1\}$. Every edge gets a complex number z called the edge parameter given by the cross ratio of the vertices.

Ideal tetrahedra in \mathbb{H}^{3}

Hyperbolic 3-manifolds are formed by gluing hyperbolic polyhedra.
The basic building block is an ideal tetrahedra which is a geodesic tetrahedra in \mathbb{H}^{3} with all vertices on $\mathbb{C} \cup \infty$.

Isometry classes $\leftrightarrow \mathbb{C}-\{0,1\}$. Every edge gets a complex number z called the edge parameter given by the cross ratio of the vertices.
$\operatorname{Vol}(\triangle(z))=\operatorname{Im}\left(\operatorname{Li}_{2}(z)\right)+\log |z| \arg (1-z)$ where $\operatorname{Li}_{2}(z)$ is the dilogarithm function. $\operatorname{Vol}(\triangle(z)) \leq v_{3} \approx 1.01494, v_{3}$ is the volume of the regular ideal tetrahedron (all dihedral angles $\pi / 3$).

Ideal triangulations

An ideal triangulation of a cusped (non-compact) hyperbolic 3-manifold M is a decompostion into ideal tetrahedra glued along the faces with the vertices deleted.

Ideal triangulations

An ideal triangulation of a cusped (non-compact) hyperbolic 3-manifold M is a decompostion into ideal tetrahedra glued along the faces with the vertices deleted.

Around every edge, the parameters multiply together to ± 1 ensuring hyperbolicity around the edges. The completeness condition gives a condition on every cusp torus giving a similar equation in the edge parameters. These are called gluing and completeness equations.

Ideal triangulations

An ideal triangulation of a cusped (non-compact) hyperbolic 3-manifold M is a decompostion into ideal tetrahedra glued along the faces with the vertices deleted.

Around every edge, the parameters multiply together to ± 1 ensuring hyperbolicity around the edges. The completeness condition gives a condition on every cusp torus giving a similar equation in the edge parameters. These are called gluing and completeness equations.
$\operatorname{Vol}(M)$ is a sum of volumes of ideal tetrahedra.

Example: Figure-8 knot

Example: Figure-8 knot

Example: Figure-8 knot

Example: Figure-8 knot

Computing hyperbolic structures

The program SnapPea by Weeks (1999) and its recent modification SnapPy by Culler and Dunfield computes hyperbolic structures and invariants on 3-manifolds and knots by triangulating and solving gluing equations.

Computing hyperbolic structures

The program SnapPea by Weeks (1999) and its recent modification SnapPy by Culler and Dunfield computes hyperbolic structures and invariants on 3-manifolds and knots by triangulating and solving gluing equations.

SnapPy also includes census of hyperbolic manifolds triangulated using at most 8 tetrahedra (≈ 17000 manifolds) and census of low volume closed hyperbolic 3-manifolds.

Simplest hyperbolic knots

The geometric complexity is the minimum number of ideal tetrahedra used to triangulate a hyperbolic knot complement. Many of the geometrically simple knots have very high crossing numbers.

Simplest hyperbolic knots

The geometric complexity is the minimum number of ideal tetrahedra used to triangulate a hyperbolic knot complement. Many of the geometrically simple knots have very high crossing numbers.

Hyperbolic knots with geometric complexity up to 6 tetrahedra were found by Callahan-Dean-Weeks (1999), extended to 7 tetrahedra by C-Kofman-Paterson (2004) and to 8 tetrahedra by C-Kofman-Mullen (2012).

Simplest hyperbolic knots

The geometric complexity is the minimum number of ideal tetrahedra used to triangulate a hyperbolic knot complement. Many of the geometrically simple knots have very high crossing numbers.

Hyperbolic knots with geometric complexity up to 6 tetrahedra were found by Callahan-Dean-Weeks (1999), extended to 7 tetrahedra by C-Kofman-Paterson (2004) and to 8 tetrahedra by C-Kofman-Mullen (2012).

Tetrahedra	1	2	3	4	5	6	7	8	≤ 8
Manifolds	0	2	9	52	223	913	3388	12241	16828
Knots	0	1	2	4	22	43	129	299	500

Simplest hyperbolic knots

Upper Volume bounds

D. Thurston gave upper bound by decomposing $S^{3}-L$ into octahedra, placing one octahedron at each crossing, and pulling remaining vertices to $\pm \infty$:

Any hyperbolic octahedron has volume $\leq v_{8} \approx 3.66386=$ Vol(regular ideal octahedron).
$\Longrightarrow \operatorname{Vol}\left(S^{3}-L\right)<v_{8} c(L)$.

Upper Volume bounds

D. Thurston gave upper bound by decomposing $S^{3}-L$ into octahedra, placing one octahedron at each crossing, and pulling remaining vertices to $\pm \infty$:

Any hyperbolic octahedron has volume $\leq v_{8} \approx 3.66386=$ Vol(regular ideal octahedron). $\Longrightarrow \operatorname{Vol}\left(S^{3}-L\right)<v_{8} c(L)$.

Improved by C. Adams: If $c(K) \geq 5$ then

$$
\operatorname{Vol}\left(S^{3}-K\right) \leq v_{8}(c(K)-5)+4 v_{3}
$$

Twist number

Let D be a prime alternating diagram of L. Two crossings p, q are geometric complexity if they form a bigon (clasp).

Twist number

Let D be a prime alternating diagram of L. Two crossings p, q are geometric complexity if they form a bigon (clasp).

Twist number $t(D):=$ number of twist-equivalence classes of D.

Example: $t(D)=3$.

Volume bounds from twist number

Let $D=$ prime alternating (twist-reduced) diagram of hyperbolic link L.

Thm. (Lackenby + Agol-D.Thurston + Agol-Storm-W.Thurston)

$$
\frac{v_{8}}{2}(t(D)-2) \leq \operatorname{Vol}\left(S^{3}-L\right)<10 v_{3}(t(D)-1)
$$

where $v_{3}=\operatorname{Vol}($ regular ideal tetrahedron $) \approx 1.01494$ and $v_{8}=\operatorname{Vol}($ regular ideal octahedron) ≈ 3.66386.

Volume bounds from twist number

Let $D=$ prime alternating (twist-reduced) diagram of hyperbolic link L.

Thm. (Lackenby + Agol-D.Thurston + Agol-Storm-W.Thurston)

$$
\frac{v_{8}}{2}(t(D)-2) \leq \operatorname{Vol}\left(S^{3}-L\right)<10 v_{3}(t(D)-1)
$$

where $v_{3}=\operatorname{Vol}($ regular ideal tetrahedron $) \approx 1.01494$ and $v_{8}=V o l($ regular ideal octahedron $) \approx 3.66386$.

If D also has no bigons then $t(D)=c(D)$, so

$$
\frac{v_{8}}{2}(c(D)-2) \leq \operatorname{Vol}\left(S^{3}-L\right)<10 v_{3}(c(D)-1)
$$

Geometrically maximal knots

Agol-Storm-W.Thurston + Adams upper bound give the best current volume bounds per crossing number for a knot K with a prime alternating (and twist-reduced) diagram with no bigons:

$$
\frac{v_{8}}{2}+c_{1} \leq \frac{\operatorname{Vol}\left(S^{3}-K\right)}{c(K)} \leq v_{8}+c_{2}
$$

where $c_{1}, c_{2} \rightarrow 0$ as $c(K) \rightarrow \infty$.

Geometrically maximal knots

Agol-Storm-W.Thurston + Adams upper bound give the best current volume bounds per crossing number for a knot K with a prime alternating (and twist-reduced) diagram with no bigons:

$$
\frac{v_{8}}{2}+c_{1} \leq \frac{\operatorname{Vol}\left(S^{3}-K\right)}{c(K)} \leq v_{8}+c_{2}
$$

where $c_{1}, c_{2} \rightarrow 0$ as $c(K) \rightarrow \infty$.

We say a sequence of knots K_{n} is geometrically maximal if

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{Vol}\left(S^{3}-K_{n}\right)}{c\left(K_{n}\right)}=v_{8}
$$

Geometrically maximal knots

Agol-Storm-W.Thurston + Adams upper bound give the best current volume bounds per crossing number for a knot K with a prime alternating (and twist-reduced) diagram with no bigons:

$$
\frac{v_{8}}{2}+c_{1} \leq \frac{\operatorname{Vol}\left(S^{3}-K\right)}{c(K)} \leq v_{8}+c_{2}
$$

where $c_{1}, c_{2} \rightarrow 0$ as $c(K) \rightarrow \infty$.

We say a sequence of knots K_{n} is geometrically maximal if

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{Vol}\left(S^{3}-K_{n}\right)}{c\left(K_{n}\right)}=v_{8}
$$

Question: Which knot families are geometrically maximal ?

Weaving knots

X.-S. Lin suggested that weaving knots $W(p, q)$ asymptotically maximize the volume per crossing number.
$W(p, q)$ is the alternating knot with the same projection as the torus knot $T(p, q)$. For example, $W(5,4)$ is the closure of this braid:

$$
c(W(p, q))=q(p-1)
$$

Conjecture (Lin)

$$
\lim _{|p|+|q| \rightarrow \infty} \frac{\operatorname{Vol}(W(p, q))}{c(W(p, q))}=v_{8}
$$

Main Theorem

Theorem(C-Kofman-Purcell 2013) If $p \geq 3$ and $q \geq 2$, then

$$
v_{8}(p-2) q \leq \operatorname{Vol}(W(p, q) \cup \text { axis }) \leq\left(v_{8}(p-3)+4 v_{3}\right) q
$$

Main Theorem

Theorem(C-Kofman-Purcell 2013) If $p \geq 3$ and $q \geq 2$, then

$$
v_{8}(p-2) q \leq \operatorname{Vol}(W(p, q) \cup \text { axis }) \leq\left(v_{8}(p-3)+4 v_{3}\right) q
$$

Corollary If $p \geq 3$ and $q \geq 6$, then

$$
v_{8}(p-2) q\left(1-\frac{(2 \pi)^{2}}{q^{2}}\right)^{3 / 2} \leq \operatorname{Vol}(W(p, q)) \leq\left(v_{8}(p-3)+4 v_{3}\right) q
$$

Main Theorem

Theorem(C-Kofman-Purcell 2013) If $p \geq 3$ and $q \geq 2$, then

$$
v_{8}(p-2) q \leq \operatorname{Vol}(W(p, q) \cup \text { axis }) \leq\left(v_{8}(p-3)+4 v_{3}\right) q
$$

Corollary If $p \geq 3$ and $q \geq 6$, then
$v_{8}(p-2) q\left(1-\frac{(2 \pi)^{2}}{q^{2}}\right)^{3 / 2} \leq \operatorname{Vol}(W(p, q)) \leq\left(v_{8}(p-3)+4 v_{3}\right) q$
Corollary

$$
\lim _{|p|+|q| \rightarrow \infty} \frac{\operatorname{Vol}(W(p, q))}{c(W(p, q))}=v_{8}
$$

Outline of the proof

1. $W(p, q) \cup$ axis is a q-fold cover of $W(p, 1) \cup$ axis.

Outline of the proof

1. $W(p, q) \cup$ axis is a q-fold cover of $W(p, 1) \cup$ axis.
2. $S^{3}-(W(p, 1) \cup$ axis $)$ has an ideal polyhedral decomposition \mathcal{P} with 4 ideal tetrahedra and $p-3$ ideal octahedra.

Outline of the proof

1. $W(p, q) \cup$ axis is a q-fold cover of $W(p, 1) \cup$ axis.
2. $S^{3}-(W(p, 1) \cup$ axis $)$ has an ideal polyhedral decomposition \mathcal{P} with 4 ideal tetrahedra and $p-3$ ideal octahedra.
3. For $p>3, \mathcal{P}$ admits an angle structure s.t.

$$
\operatorname{Vol}(\mathcal{P})=v_{8}(p-2)
$$

Outline of the proof

1. $W(p, q) \cup$ axis is a q-fold cover of $W(p, 1) \cup$ axis.
2. $S^{3}-(W(p, 1) \cup$ axis $)$ has an ideal polyhedral decomposition \mathcal{P} with 4 ideal tetrahedra and $p-3$ ideal octahedra.
3. For $p>3, \mathcal{P}$ admits an angle structure s.t.

$$
\operatorname{Vol}(\mathcal{P})=v_{8}(p-2)
$$

4. Triangulate \mathcal{P} into ideal tetrahedra.

Outline of the proof

1. $W(p, q) \cup$ axis is a q-fold cover of $W(p, 1) \cup$ axis.
2. $S^{3}-(W(p, 1) \cup$ axis $)$ has an ideal polyhedral decomposition \mathcal{P} with 4 ideal tetrahedra and $p-3$ ideal octahedra.
3. For $p>3, \mathcal{P}$ admits an angle structure s.t. $\operatorname{Vol}(\mathcal{P})=v_{8}(p-2)$.
4. Triangulate \mathcal{P} into ideal tetrahedra.
5. By flattening tetrahedra, show that the critical point for $\operatorname{Vol}(W(p, 1) \cup$ axis $)$ is in the interior of the space of angle structures.

Outline of the proof

1. $W(p, q) \cup$ axis is a q-fold cover of $W(p, 1) \cup$ axis.
2. $S^{3}-(W(p, 1) \cup$ axis $)$ has an ideal polyhedral decomposition \mathcal{P} with 4 ideal tetrahedra and $p-3$ ideal octahedra.
3. For $p>3, \mathcal{P}$ admits an angle structure s.t. $\operatorname{Vol}(\mathcal{P})=v_{8}(p-2)$.
4. Triangulate \mathcal{P} into ideal tetrahedra.
5. By flattening tetrahedra, show that the critical point for $\operatorname{Vol}(W(p, 1) \cup$ axis $)$ is in the interior of the space of angle structures.
6. Casson \& Rivin $\Longrightarrow \operatorname{Vol}(W(p, 1) \cup$ axis $) \geq \operatorname{Vol}(\mathcal{P})$.

Outline of the proof

1. $W(p, q) \cup$ axis is a q-fold cover of $W(p, 1) \cup$ axis.
2. $S^{3}-(W(p, 1) \cup$ axis $)$ has an ideal polyhedral decomposition \mathcal{P} with 4 ideal tetrahedra and $p-3$ ideal octahedra.
3. For $p>3, \mathcal{P}$ admits an angle structure s.t. $\operatorname{Vol}(\mathcal{P})=v_{8}(p-2)$.
4. Triangulate \mathcal{P} into ideal tetrahedra.
5. By flattening tetrahedra, show that the critical point for $\operatorname{Vol}(W(p, 1) \cup$ axis $)$ is in the interior of the space of angle structures.
6. Casson \& Rivin $\Longrightarrow \operatorname{Vol}(W(p, 1) \cup$ axis $) \geq \operatorname{Vol}(\mathcal{P})$.
7. The meridian of the braid axis of $W(p, q)$ has length $\geq q$.

Outline of the proof

1. $W(p, q) \cup$ axis is a q-fold cover of $W(p, 1) \cup$ axis.
2. $S^{3}-(W(p, 1) \cup$ axis $)$ has an ideal polyhedral decomposition \mathcal{P} with 4 ideal tetrahedra and $p-3$ ideal octahedra.
3. For $p>3, \mathcal{P}$ admits an angle structure s.t. $\operatorname{Vol}(\mathcal{P})=v_{8}(p-2)$.
4. Triangulate \mathcal{P} into ideal tetrahedra.
5. By flattening tetrahedra, show that the critical point for $\operatorname{Vol}(W(p, 1) \cup$ axis $)$ is in the interior of the space of angle structures.
6. Casson \& Rivin $\Longrightarrow \operatorname{Vol}(W(p, 1) \cup$ axis $) \geq \operatorname{Vol}(\mathcal{P})$.
7. The meridian of the braid axis of $W(p, q)$ has length $\geq q$.
8. By Futer-Kalfagianni-Purcell, the lower bound for $\operatorname{Vol}(W(p, q))$ follows.

The 3-strand case

Theorem(C-Kofman-Purcell 2013) If $p \geq 3$ and $q \geq 2$, then

$$
v_{8}(p-2) q \leq \operatorname{Vol}(W(p, q) \cup \text { axis }) \leq\left(v_{8}(p-3)+4 v_{3}\right) q
$$

If $p=3$ the upper bound in the above Theorem is achieved. This case is special because all edges of \mathcal{P} are 6 -valent, so all dihedral angles are $\pi / 3$. Thus \mathcal{P} has only regular ideal tetrahedra, which is the geometric triangulation.

$$
\operatorname{Vol}(W(3, q) \cup \text { axis })=4 q v_{3}
$$

Commensurability in the 3 -strand case

Motivation: The Infinite Weave

Menasco's polyhedral decomposition for $S^{3}-W(p, q)$ approaches that of the infinite weave W as $|p|+|q| \rightarrow \infty$

Motivation: The Infinite Weave

Menasco's polyhedral decomposition for $S^{3}-W(p, q)$ approaches that of the infinite weave W as $|p|+|q| \rightarrow \infty$

Get the hyperbolic structure for $\mathbb{R}^{3}-W$ by coning the square lattice to $\pm \infty$. Associated circle packing shows $\mathbb{R}^{3}-W$ tessellated by regular ideal octahedra.

Motivation: The Infinite Weave

Menasco's polyhedral decomposition for $S^{3}-W(p, q)$ approaches that of the infinite weave W as $|p|+|q| \rightarrow \infty$

Get the hyperbolic structure for $\mathbb{R}^{3}-W$ by coning the square lattice to $\pm \infty$. Associated circle packing shows $\mathbb{R}^{3}-W$ tessellated by regular ideal octahedra.

Associated circle packing shows $\mathbb{R}^{3}-W$ tessellated by regular ideal octahedra.

Conjectures

- Conjecture Family of alternating knots obtained by closing up parts of the infinite weave, with number of squares in both directions $\rightarrow \infty$ is (a) geometrically maximal (b) geometrically converges to $\mathbb{R}^{3}-W$.

Conjectures

- Conjecture Family of alternating knots obtained by closing up parts of the infinite weave, with number of squares in both directions $\rightarrow \infty$ is (a) geometrically maximal (b) geometrically converges to $\mathbb{R}^{3}-W$.
- Theorem(C-Kofman-Purcell) For a sequence K_{n} of knots as above, $\lim _{n \rightarrow \infty} \frac{2 \pi \log \operatorname{det}\left(K_{n}\right)}{c\left(K_{n}\right)}=v_{8}$.

Conjectures

- Conjecture Family of alternating knots obtained by closing up parts of the infinite weave, with number of squares in both directions $\rightarrow \infty$ is (a) geometrically maximal (b) geometrically converges to $\mathbb{R}^{3}-W$.
- Theorem(C-Kofman-Purcell) For a sequence K_{n} of knots as above, $\lim _{n \rightarrow \infty} \frac{2 \pi \log \operatorname{det}\left(K_{n}\right)}{c\left(K_{n}\right)}=v_{8}$.
- Conjecture If K is any knot, $\frac{2 \pi \log \operatorname{det}(K)}{c(K)} \leq v_{8}$.

Conjectures

- Conjecture Family of alternating knots obtained by closing up parts of the infinite weave, with number of squares in both directions $\rightarrow \infty$ is (a) geometrically maximal (b) geometrically converges to $\mathbb{R}^{3}-W$.
- Theorem(C-Kofman-Purcell) For a sequence K_{n} of knots as above, $\lim _{n \rightarrow \infty} \frac{2 \pi \log \operatorname{det}\left(K_{n}\right)}{c\left(K_{n}\right)}=v_{8}$.
- Conjecture If K is any knot, $\frac{2 \pi \log \operatorname{det}(K)}{c(K)} \leq v_{8}$.
- Conjecture(Kenyon) If G is any finite planar graph, $\tau(G)=\#$ spanning trees of $G, C \approx 0.916$ is Catalan's constant,

$$
\frac{\log \tau(G)}{e(G)} \leq \frac{2 \mathrm{C}}{\pi}=\frac{v_{8}}{2 \pi} \approx 0.58312
$$

Questions

Questions

Thank You

Questions

Thank You

Slides available from :
http://www.math.csi.cuny.edu/abhijit/

