Geometrically maximal knots

Abhijit Champanerkar

Department of Mathematics,
College of Staten Island & The Graduate Center, CUNY

Discussion Meeting on Knot theory and its Applications
IISER Mohali, India
Dec 2013
Outline

Hyperbolic geometry

Hyperbolic knots & 3-manifolds

Ideal triangulations

Simplest hyperbolic knots

Knot diagrams and Volume bounds

Weaving knots

Main Theorem & Proof

Motivation & Conjectures
In 1980s, William Thurston’s seminal work established a strong connection between hyperbolic geometry and knot theory, namely that most knot complements are hyperbolic. Thurston introduced tools from hyperbolic geometry to study knots that led to new geometric invariants, especially hyperbolic volume.
The upper half-plane model of hyperbolic plane \(\mathbb{H}^2 = \{(x, t)|t > 0\} \) with metric \(ds^2 = \frac{dx^2 + dt^2}{t^2} \). The boundary of \(\mathbb{H}^2 \) is \(\mathbb{R} \cup \infty \) called the circle at infinity.

- Geodesic lines are vertical lines or semicircles orthogonal to the \(x \)-axis (with centers on the \(x \)-axis).
- Hyperbolic lines either intersect in \(\mathbb{H}^2 \) or intersect at infinity, or are parallel.
The upper half-plane model of hyperbolic plane $\mathbb{H}^2 = \{(x, t)| t > 0\}$ with metric $ds^2 = \frac{dx^2 + dt^2}{t^2}$. The boundary of \mathbb{H}^2 is $\mathbb{R} \cup \infty$ called the circle at infinity.

- Geodesic lines are vertical lines or semicircles orthogonal to the x-axis (with centers on the x-axis).
- Hyperbolic lines either intersect in \mathbb{H}^2 or intersect at infinity, or are parallel.
- $\text{Isom}^+(\mathbb{H}^2) = \text{PSL}(2, \mathbb{R})$.
- Other models include Poincare ball model, Klein model etc.
Hyperbolic plane

- The upper half-plane model of hyperbolic plane \(\mathbb{H}^2 = \{(x, t)|t > 0\} \) with metric \(ds^2 = \frac{dx^2 + dt^2}{t^2} \). The boundary of \(\mathbb{H}^2 \) is \(\mathbb{R} \cup \infty \) called the circle at infinity.
- Geodesic lines are vertical lines or semicircles orthogonal to the \(x \)-axis (with centers on the \(x \)-axis).
- Hyperbolic lines either intersect in \(\mathbb{H}^2 \) or intersect at infinity, or are parallel.
- \(\text{Isom}^+(\mathbb{H}^2) = \text{PSL}(2, \mathbb{R}) \).
- Other models include Poincaré ball model, Klein model etc.
The upper half-space model of hyperbolic 3-space \(\mathbb{H}^3 = \{(x, y, t)| t > 0\} \) with metric \(ds^2 = \frac{dx^2 + dy^2 + dt^2}{t^2} \). The boundary of \(\mathbb{H}^3 \) is \(\mathbb{C} \cup \infty \) called the sphere at infinity.
The upper half-space model of hyperbolic 3-space $\mathbb{H}^3 = \{(x, y, t)| t > 0\}$ with metric $ds^2 = \frac{dx^2+dy^2+dt^2}{t^2}$. The boundary of \mathbb{H}^3 is $\mathbb{C} \cup \infty$ called the sphere at infinity.

Geodesics are vertical lines or half circles orthogonal to the xy-plane.

Geodesic planes (\mathbb{H}^2) are vertical planes or upper hemispheres of spheres orthogonal to the xy-plane (with centers on the xy-plane).
Hyperbolic 3-space

- The upper half-space model of hyperbolic 3-space $\mathbb{H}^3 = \{(x, y, t)| t > 0\}$ with metric $ds^2 = \frac{dx^2 + dy^2 + dt^2}{t^2}$. The boundary of \mathbb{H}^3 is $\mathbb{C} \cup \infty$ called the sphere at infinity.

- Geodesics are vertical lines or half circles orthogonal to the xy-plane.

- Geodesic planes (\mathbb{H}^2) are vertical planes or upper hemispheres of spheres orthogonal to the xy-plane (with centers on the xy-plane).

- $\text{Isom}^+(\mathbb{H}^3) = \text{PSL}(2, \mathbb{C})$ which acts as Mobius transforms on $\mathbb{C} \cup \infty$.
A 3-manifold M is said to be *hyperbolic* if it has a complete, finite volume hyperbolic metric i.e. small balls in M look like small balls in \mathbb{H}^3.

(Margulis 1978) If M is orientable and noncompact then $M = \partial M'$ where $\partial M' = \bigcup T_2$. Each end is of the form $T_2 \times [0, \infty)$ with each section is scaled Euclidean metric, called a cusp.

(Mostow-Prasad Rigidity, 1968) Hyperbolic structure on a 3-manifold is unique. This implies geometric invariants, e.g. hyperbolic volume, are topological invariants.
A 3-manifold M is said to be *hyperbolic* if it has a complete, finite volume hyperbolic metric i.e. small balls in M look like small balls in \mathbb{H}^3.

- $\pi_1(M) = \Gamma$ acts by covering translations as isometries and hence has a discrete faithful representation in $\text{PSL}(2, \mathbb{C})$.
Hyperbolic 3-manifolds

A 3-manifold M is said to be hyperbolic if it has a complete, finite volume hyperbolic metric i.e. small balls in M look like small balls in \mathbb{H}^3.

- $\pi_1(M) = \Gamma$ acts by covering translations as isometries and hence has a discrete faithful representation in $\text{PSL}(2, \mathbb{C})$.

- (Margulis 1978) If M is orientable and noncompact then $\overset{\circ}{M} = M'$ where $\partial M' = \cup T^2$. Each end is of the form $T^2 \times [0, \infty)$ with each section is scaled Euclidean metric, called a cusp.
A 3-manifold M is said to be *hyperbolic* if it has a complete, finite volume hyperbolic metric i.e. small balls in M look like small balls in \mathbb{H}^3.

- $\pi_1(M) = \Gamma$ acts by covering translations as isometries and hence has a discrete faithful representation in $\text{PSL}(2, \mathbb{C})$.
- (Margulis 1978) If M is orientable and noncompact then $\overset{\circ}{M} = M'$ where $\partial M' = \bigcup T^2$. Each end is of the form $T^2 \times [0, \infty)$ with each section is scaled Euclidean metric, called a *cusp*.
- (Mostow-Prasad Rigidity, 1968) Hyperbolic structure on a 3-manifold is unique. This implies geometric invariants, e.g. *hyperbolic volume*, are topological invariants!
Hyperbolic knots

A knot or link L in S^3 is hyperbolic if $S^3 - L$ is a hyperbolic 3-manifold.
A knot or link L in S^3 is **hyperbolic** if $S^3 - L$ is a hyperbolic 3-manifold.

Theorem (Thurston) Every knot in S^3 is either a torus knot, a satellite knot or a hyperbolic knot.
A knot or link L in S^3 is hyperbolic if $S^3 - L$ is a hyperbolic 3-manifold.

Theorem (Thurston) Every knot in S^3 is either a torus knot, a satellite knot or a hyperbolic knot.

Theorem (Menasco) If L has a connected prime alternating diagram, except the standard $(2, q)$-torus link diagram, then L is hyperbolic.

Reduced alternating diagram of $L \leftrightarrow\rightarrow$ decomposition of $S^3 - L$ into two ideal hyperbolic polyhedra with faces identified, according to the checkerboard coloring of the diagram.
Hyperbolic 3-manifolds are formed by gluing hyperbolic polyhedra.

The basic building block is an ideal tetrahedra which is a geodesic tetrahedra in \(\mathbb{H}^3 \) with all vertices on \(\mathbb{C} \cup \infty \).
Ideal tetrahedra in \mathbb{H}^3

Hyperbolic 3-manifolds are formed by gluing hyperbolic polyhedra.

The basic building block is an ideal tetrahedra which is a geodesic tetrahedra in \mathbb{H}^3 with all vertices on $\mathbb{C} \cup \infty$.

Isometry classes $\leftrightarrow \mathbb{C} - \{0, 1\}$. Every edge gets a complex number z called the edge parameter given by the cross ratio of the vertices.
Ideal tetrahedra in \mathbb{H}^3

Hyperbolic 3-manifolds are formed by gluing hyperbolic polyhedra.

The basic building block is an **ideal tetrahedra** which is a geodesic tetrahedra in \mathbb{H}^3 with all vertices on $\mathbb{C} \cup \infty$.

Isometry classes $\leftrightarrow \mathbb{C} - \{0, 1\}$. Every edge gets a complex number z called the **edge parameter** given by the cross ratio of the vertices.

$$\text{Vol}(\triangle(z)) = \text{Im}(\text{Li}_2(z)) + \log |z| \text{arg}(1 - z)$$

where $\text{Li}_2(z)$ is the dilogarithm function. $\text{Vol}(\triangle(z)) \leq v_3 \approx 1.01494$, v_3 is the volume of the regular ideal tetrahedron (all dihedral angles $\pi/3$).
An ideal triangulation of a cusped (non-compact) hyperbolic 3-manifold M is a decomposition into ideal tetrahedra glued along the faces with the vertices deleted.
An ideal triangulation of a cusped (non-compact) hyperbolic 3-manifold M is a decomposition into ideal tetrahedra glued along the faces with the vertices deleted.

Around every edge, the parameters multiply together to ± 1 ensuring hyperbolicity around the edges. The completeness condition gives a condition on every cusp torus giving a similar equation in the edge parameters. These are called gluing and completeness equations.
An ideal triangulation of a cusped (non-compact) hyperbolic 3-manifold M is a decomposition into ideal tetrahedra glued along the faces with the vertices deleted.

Around every edge, the parameters multiply together to ± 1 ensuring hyperbolicity around the edges. The completeness condition gives a condition on every cusp torus giving a similar equation in the edge parameters. These are called gluing and completeness equations.

$\text{Vol}(M)$ is a sum of volumes of ideal tetrahedra.
Example: Figure-8 knot
Example: Figure-8 knot
Example: Figure-8 knot
Example: Figure-8 knot
The program SnapPea by Weeks (1999) and its recent modification SnapPy by Culler and Dunfield computes hyperbolic structures and invariants on 3-manifolds and knots by triangulating and solving gluing equations.
Computing hyperbolic structures

The program SnapPea by Weeks (1999) and its recent modification SnapPy by Culler and Dunfield computes hyperbolic structures and invariants on 3-manifolds and knots by triangulating and solving gluing equations.

SnapPy also includes census of hyperbolic manifolds triangulated using at most 8 tetrahedra (≈ 17000 manifolds) and census of low volume closed hyperbolic 3-manifolds.
The **geometric complexity** is the minimum number of ideal tetrahedra used to triangulate a hyperbolic knot complement. Many of the geometrically simple knots have very high crossing numbers.
Simplest hyperbolic knots

The **geometric complexity** is the minimum number of ideal tetrahedra used to triangulate a hyperbolic knot complement. Many of the geometrically simple knots have very high crossing numbers.

Hyperbolic knots with geometric complexity up to 6 tetrahedra were found by Callahan-Dean-Weeks (1999), extended to 7 tetrahedra by C-Kofman-Paterson (2004) and to 8 tetrahedra by C-Kofman-Mullen (2012).
Simplest hyperbolic knots

The geometric complexity is the minimum number of ideal tetrahedra used to triangulate a hyperbolic knot complement. Many of the geometrically simple knots have very high crossing numbers.

Hyperbolic knots with geometric complexity up to 6 tetrahedra were found by Callahan-Dean-Weeks (1999), extended to 7 tetrahedra by C-Kofman-Paterson (2004) and to 8 tetrahedra by C-Kofman-Mullen (2012).

<table>
<thead>
<tr>
<th>Tetrahedra</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>≤8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manifolds</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>52</td>
<td>223</td>
<td>913</td>
<td>3388</td>
<td>12241</td>
<td>16828</td>
</tr>
<tr>
<td>Knots</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>22</td>
<td>43</td>
<td>129</td>
<td>299</td>
<td>500</td>
</tr>
</tbody>
</table>
Simplest hyperbolic knots
D. Thurston gave upper bound by decomposing $S^3 - L$ into octahedra, placing one octahedron at each crossing, and pulling remaining vertices to $\pm \infty$:

Any hyperbolic octahedron has volume $\leq v_8 \approx 3.66386 = \text{Vol}(\text{regular ideal octahedron})$.

$\implies Vol(S^3 - L) < v_8 c(L)$.
D. Thurston gave upper bound by decomposing $S^3 - L$ into octahedra, placing one octahedron at each crossing, and pulling remaining vertices to $\pm \infty$:

Any hyperbolic octahedron has volume $\leq v_8 \approx 3.66386 = \text{Vol}(\text{regular ideal octahedron})$.

$\implies \text{Vol}(S^3 - L) < v_8 c(L)$.

Improved by C. Adams: If $c(K) \geq 5$ then

$$\text{Vol}(S^3 - K) \leq v_8 (c(K) - 5) + 4v_3$$
Let D be a prime alternating diagram of L. Two crossings p, q are geometric complexity if they form a bigon (clasp).
Let D be a prime alternating diagram of L. Two crossings p, q are geometric complexity if they form a bigon (clasp).

Twist number $t(D) :=$ number of twist-equivalence classes of D.

Example: $t(D) = 3$.
Let D = prime alternating (twist-reduced) diagram of hyperbolic link L.

Thm. (Lackenby + Agol-D.Thurston + Agol-Storm-W.Thurston)

$$\frac{v_8}{2} (t(D) - 2) \leq Vol(S^3 - L) < 10v_3 (t(D) - 1)$$

where $v_3 = Vol($regular ideal tetrahedron$) \approx 1.01494$ and $v_8 = Vol($regular ideal octahedron$) \approx 3.66386$.
Let $D = \text{prime alternating (twist-reduced) diagram of hyperbolic link } L$.

Thm. (Lackenby + Agol-D.Thurston + Agol-Storm-W.Thurston)

$$\frac{v_8}{2} (t(D) - 2) \leq Vol(S^3 - L) < 10v_3 (t(D) - 1)$$

where $v_3 = Vol(\text{regular ideal tetrahedron}) \approx 1.01494$ and $v_8 = Vol(\text{regular ideal octahedron}) \approx 3.66386$.

If D also has no bigons then $t(D) = c(D)$, so

$$\frac{v_8}{2} (c(D) - 2) \leq Vol(S^3 - L) < 10v_3 (c(D) - 1)$$
Geometrically maximal knots

Agol-Storm-W. Thurston + Adams upper bound give the best current volume bounds per crossing number for a knot K with a prime alternating (and twist-reduced) diagram with no bigons:

$$\frac{v_8}{2} + c_1 \leq \frac{Vol(S^3 - K)}{c(K)} \leq v_8 + c_2$$

where $c_1, c_2 \to 0$ as $c(K) \to \infty$.

We say a sequence of knots K_n is geometrically maximal if $\lim_{n \to \infty} Vol(S^3 - K_n) c(K_n) = v_8$.

Question: Which knot families are geometrically maximal?
Geometrically maximal knots

Agol-Storm-W. Thurston + Adams upper bound give the best current volume bounds per crossing number for a knot K with a prime alternating (and twist-reduced) diagram with no bigons:

$$\frac{v_8}{2} + c_1 \leq \frac{\text{Vol}(S^3 - K)}{c(K)} \leq v_8 + c_2$$

where $c_1, c_2 \to 0$ as $c(K) \to \infty$.

We say a sequence of knots K_n is geometrically maximal if

$$\lim_{n \to \infty} \frac{\text{Vol}(S^3 - K_n)}{c(K_n)} = v_8$$
Geometrically maximal knots

Agol-Storm-W. Thurston + Adams upper bound give the best current volume bounds per crossing number for a knot K with a prime alternating (and twist-reduced) diagram with no bigons:

$$\frac{v_8}{2} + c_1 \leq \frac{Vol(S^3 - K)}{c(K)} \leq v_8 + c_2$$

where $c_1, c_2 \to 0$ as $c(K) \to \infty$.

We say a sequence of knots K_n is geometrically maximal if

$$\lim_{n \to \infty} \frac{Vol(S^3 - K_n)}{c(K_n)} = v_8$$

Question: Which knot families are geometrically maximal?
Weaving knots

X.-S. Lin suggested that *weaving knots* \(W(p, q) \) asymptotically maximize the volume per crossing number.

\(W(p, q) \) is the alternating knot with the same projection as the torus knot \(T(p, q) \). For example, \(W(5, 4) \) is the closure of this braid:

\[
c(W(p, q)) = q(p - 1)
\]

Conjecture (Lin)

\[
\lim_{|p| + |q| \to \infty} \frac{\text{Vol}(W(p, q))}{c(W(p, q))} = v_8
\]
Theorem (C-Kofman-Purcell 2013) If \(p \geq 3 \) and \(q \geq 2 \), then

\[
v_8 (p - 2) q \leq \text{Vol}(W(p, q) \cup \text{axis}) \leq (v_8 (p - 3) + 4v_3) q
\]
Main Theorem

Theorem (C-Kofman-Purcell 2013) If \(p \geq 3 \) and \(q \geq 2 \), then

\[
v_8(p - 2)q \leq \text{Vol}(W(p, q) \cup \text{axis}) \leq (v_8(p - 3) + 4v_3)q
\]

Corollary If \(p \geq 3 \) and \(q \geq 6 \), then

\[
v_8(p - 2)q \left(1 - \frac{(2\pi)^2}{q^2}\right)^{3/2} \leq \text{Vol}(W(p, q)) \leq (v_8(p - 3) + 4v_3)q
\]
Main Theorem

Theorem (C-Kofman-Purcell 2013) If $p \geq 3$ and $q \geq 2$, then

$$v_8 (p - 2)q \leq Vol(W(p, q) \cup \text{axis}) \leq (v_8 (p - 3) + 4v_3)q$$

Corollary If $p \geq 3$ and $q \geq 6$, then

$$v_8 (p - 2)q \left(1 - \frac{(2\pi)^2}{q^2}\right)^{3/2} \leq Vol(W(p, q)) \leq (v_8 (p - 3) + 4v_3)q$$

Corollary \[\lim_{|p|+|q| \to \infty} \frac{Vol(W(p, q))}{c(W(p, q))} = v_8 \]
1. $W(p, q) \cup \text{axis}$ is a q–fold cover of $W(p, 1) \cup \text{axis}$.
Outline of the proof

1. $W(p, q) \cup \text{axis}$ is a q–fold cover of $W(p, 1) \cup \text{axis}$.

2. $S^3 - (W(p, 1) \cup \text{axis})$ has an ideal polyhedral decomposition \mathcal{P} with 4 ideal tetrahedra and $p - 3$ ideal octahedra.
Outline of the proof

1. \(W(p, q) \cup \text{axis} \) is a \(q \)-fold cover of \(W(p, 1) \cup \text{axis} \).
2. \(S^3 - (W(p, 1) \cup \text{axis}) \) has an ideal polyhedral decomposition \(\mathcal{P} \) with 4 ideal tetrahedra and \(p - 3 \) ideal octahedra.
3. For \(p > 3 \), \(\mathcal{P} \) admits an angle structure s.t.
 \[\text{Vol}(\mathcal{P}) = v_8 (p - 2). \]
Outline of the proof

1. $W(p, q) \cup \text{axis}$ is a q–fold cover of $W(p, 1) \cup \text{axis}$.

2. $S^3 - (W(p, 1) \cup \text{axis})$ has an ideal polyhedral decomposition \mathcal{P} with 4 ideal tetrahedra and $p - 3$ ideal octahedra.

3. For $p > 3$, \mathcal{P} admits an angle structure s.t. $\text{Vol}(\mathcal{P}) = v_8 (p - 2)$.

4. Triangulate \mathcal{P} into ideal tetrahedra.
Outline of the proof

1. $W(p, q) \cup \text{axis}$ is a q–fold cover of $W(p, 1) \cup \text{axis}$.

2. $S^3 - (W(p, 1) \cup \text{axis})$ has an ideal polyhedral decomposition \mathcal{P} with 4 ideal tetrahedra and $p - 3$ ideal octahedra.

3. For $p > 3$, \mathcal{P} admits an angle structure s.t.
 \[Vol(\mathcal{P}) = v_8 (p - 2). \]

4. Triangulate \mathcal{P} into ideal tetrahedra.

5. By flattening tetrahedra, show that the critical point for
 \[Vol(W(p, 1) \cup \text{axis}) \] is in the interior of the space of angle structures.
Outline of the proof

1. $W(p, q) \cup \text{axis}$ is a q–fold cover of $W(p, 1) \cup \text{axis}$.

2. $S^3 - (W(p, 1) \cup \text{axis})$ has an ideal polyhedral decomposition \mathcal{P} with 4 ideal tetrahedra and $p - 3$ ideal octahedra.

3. For $p > 3$, \mathcal{P} admits an angle structure s.t.

 $\text{Vol}(\mathcal{P}) = v_8 (p - 2)$.

4. Triangulate \mathcal{P} into ideal tetrahedra.

5. By flattening tetrahedra, show that the critical point for $\text{Vol}(W(p, 1) \cup \text{axis})$ is in the interior of the space of angle structures.

6. Casson & Rivin \implies $\text{Vol}(W(p, 1) \cup \text{axis}) \geq \text{Vol}(\mathcal{P})$.
Outline of the proof

1. \(W(p, q) \cup \text{axis} \) is a \(q \)-fold cover of \(W(p, 1) \cup \text{axis} \).
2. \(S^3 \setminus (W(p, 1) \cup \text{axis}) \) has an ideal polyhedral decomposition \(\mathcal{P} \) with 4 ideal tetrahedra and \(p - 3 \) ideal octahedra.
3. For \(p > 3 \), \(\mathcal{P} \) admits an angle structure s.t.
 \(Vol(\mathcal{P}) = v_8 (p - 2) \).
4. Triangulate \(\mathcal{P} \) into ideal tetrahedra.
5. By flattening tetrahedra, show that the critical point for
 \(Vol(W(p, 1) \cup \text{axis}) \) is in the interior of the space of angle structures.
6. Casson & Rivin \(\implies \) \(Vol(W(p, 1) \cup \text{axis}) \geq Vol(\mathcal{P}) \).
7. The meridian of the braid axis of \(W(p, q) \) has length \(\geq q \).
Outline of the proof

1. \(W(p, q) \cup \text{axis} \) is a \(q \)-fold cover of \(W(p, 1) \cup \text{axis} \).

2. \(S^3 - (W(p, 1) \cup \text{axis}) \) has an ideal polyhedral decomposition \(\mathcal{P} \) with 4 ideal tetrahedra and \(p - 3 \) ideal octahedra.

3. For \(p > 3 \), \(\mathcal{P} \) admits an angle structure s.t. \(\text{Vol}(\mathcal{P}) = \nu_8 (p - 2) \).

4. Triangulate \(\mathcal{P} \) into ideal tetrahedra.

5. By flattening tetrahedra, show that the critical point for \(\text{Vol}(W(p, 1) \cup \text{axis}) \) is in the interior of the space of angle structures.

6. Casson & Rivin \(\implies \text{Vol}(W(p, 1) \cup \text{axis}) \geq \text{Vol}(\mathcal{P}) \).

7. The meridian of the braid axis of \(W(p, q) \) has length \(\geq q \).

8. By Futer-Kalfagianni-Purcell, the lower bound for \(\text{Vol}(W(p, q)) \) follows.
The 3–strand case

Theorem (C-Kofman-Purcell 2013) If \(p \geq 3 \) and \(q \geq 2 \), then

\[
v_8(p - 2)q \leq Vol(W(p, q) \cup axis) \leq (v_8(p - 3) + 4v_3)q
\]

If \(p = 3 \) the upper bound in the above Theorem is achieved. This case is special because all edges of \(\mathcal{P} \) are 6–valent, so all dihedral angles are \(\pi/3 \). Thus \(\mathcal{P} \) has only regular ideal tetrahedra, which is the geometric triangulation.

\[
Vol(W(3, q) \cup axis) = 4q v_3
\]
Commensurability in the 3–strand case

\[\text{Vol}(W(3, q) \cup \text{axis}) = 4q \nu_3 \]
Motivation: The Infinite Weave

Menasco’s polyhedral decomposition for $S^3 - W(p, q)$ approaches that of the infinite weave W as $|p| + |q| \to \infty$
Motivation: The Infinite Weave

Menasco’s polyhedral decomposition for $S^3 - W(p, q)$ approaches that of the infinite weave W as $|p| + |q| \to \infty$

Get the hyperbolic structure for $\mathbb{R}^3 - W$ by coning the square lattice to $\pm \infty$. Associated circle packing shows $\mathbb{R}^3 - W$ tessellated by regular ideal octahedra.
Motivation: The Infinite Weave

Menasco’s polyhedral decomposition for $S^3 - W(p, q)$ approaches that of the infinite weave W as $|p| + |q| \to \infty$

Get the hyperbolic structure for $\mathbb{R}^3 - W$ by coning the square lattice to $\pm \infty$. Associated circle packing shows $\mathbb{R}^3 - W$ tessellated by regular ideal octahedra.

Associated circle packing shows $\mathbb{R}^3 - W$ tessellated by regular ideal octahedra.
Conjectures

- **Conjecture** Family of alternating knots obtained by closing up parts of the infinite weave, with number of squares in both directions $\to \infty$ is (a) geometrically maximal (b) geometrically converges to $\mathbb{R}^3 - W$.

- **Theorem (C-Kofman-Purcell)** For a sequence K_n of knots as above, $\lim_{n \to \infty} 2\pi \log \det(K_n) = v_8$.

- **Conjecture** If K is any knot, $2\pi \log \det(K) \leq v_8$.

- **Conjecture (Kenyon)** If G is any finite planar graph, $\tau(G) = \# \text{spanning trees of } G$, $C \approx 0.916$ is Catalan's constant, $\log \tau(G) e(G) \leq 2\pi = v_8/2\pi \approx 0.58312$.

Conjectures

- **Conjecture** Family of alternating knots obtained by closing up parts of the infinite weave, with number of squares in both directions $\rightarrow \infty$ is (a) geometrically maximal (b) geometrically converges to $\mathbb{R}^3 - W$.

- **Theorem (C-Kofman-Purcell)** For a sequence K_n of knots as above,
 $$\lim_{n \to \infty} \frac{2\pi \log \det(K_n)}{c(K_n)} = v_8.$$
Conjectures

- **Conjecture** Family of alternating knots obtained by closing up parts of the infinite weave, with number of squares in both directions $\to \infty$ is (a) geometrically maximal (b) geometrically converges to $\mathbb{R}^3 - W$.

- **Theorem (C-Kofman-Purcell)** For a sequence K_n of knots as above, \[\lim_{n \to \infty} \frac{2\pi \log \det(K_n)}{c(K_n)} = v_8. \]

- **Conjecture** If K is any knot, \[\frac{2\pi \log \det(K)}{c(K)} \leq v_8. \]
Conjectures

- **Conjecture** Family of alternating knots obtained by closing up parts of the infinite weave, with number of squares in both directions $\rightarrow \infty$ is (a) geometrically maximal (b) geometrically converges to $\mathbb{R}^3 - W$.

- **Theorem (C-Kofman-Purcell)** For a sequence K_n of knots as above, \(\lim_{n \to \infty} \frac{2\pi \log \det(K_n)}{c(K_n)} = v_8. \)

- **Conjecture** If K is any knot, \(\frac{2\pi \log \det(K)}{c(K)} \leq v_8. \)

- **Conjecture (Kenyon)** If G is any finite planar graph, $\tau(G) = \#$ spanning trees of G, $C \approx 0.916$ is Catalan’s constant, \(\frac{\log \tau(G)}{e(G)} \leq \frac{2C}{\pi} = \frac{v_8}{2\pi} \approx 0.58312. \)
Questions
Questions

Thank You

Slides available from: http://www.math.csi.cuny.edu/abhijit/
Questions

Thank You

Slides available from:
http://www.math.csi.cuny.edu/abhijit/