Lengths of closed geodesics in a hyperbolic knot complement in *S*³

Sreekrishna Palaparthi

Department of Mathematics

Indian Institute of Technology Guwahati

December 17, 2013

Outline

Definitions

- Theorem of Adams and Reid
- $\mathcal{L}_n(S^3 L)$ is bounded above

イロト イポト イヨト イヨト

Outline

Definitions

2 Geodesic Length Bounds

- Theorem of Adams and Reid
- $\mathscr{L}_n(S^3 L)$ is bounded above

3

イロト イポト イヨト イヨト

Upper half space model

• Upper half-space model of \mathbb{H}^3 : the space

$$\left\{(x,y,t)\|(x,y,t)\in\mathbb{R}^3,t>0
ight\}$$

equipped with the metric

$$ds = \frac{\sqrt{dx^2 + dy^2 + dt^2}}{t}$$

• Geodesics in this model are vertical lines or semicircles perpendicular to the x - y plane in \mathbb{R}^3 .

• Geodesic planes are vertical planes or hemispheres perpendicular to the x - y plane.

Upper half space model

 \bullet Upper half-space model of $\mathbb{H}^3:$ the space

$$\left\{(x,y,t)\|(x,y,t)\in\mathbb{R}^3,t>0
ight\}$$

equipped with the metric

$$ds = \frac{\sqrt{dx^2 + dy^2 + dt^2}}{t}$$

• Geodesics in this model are vertical lines or semicircles perpendicular to the x - y plane in \mathbb{R}^3 .

• Geodesic planes are vertical planes or hemispheres perpendicular to the x - y plane.

Upper half space model

 \bullet Upper half-space model of $\mathbb{H}^3:$ the space

$$\left\{(x,y,t)\|(x,y,t)\in\mathbb{R}^3,t>0
ight\}$$

equipped with the metric

$$ds = \frac{\sqrt{dx^2 + dy^2 + dt^2}}{t}$$

- Geodesics in this model are vertical lines or semicircles perpendicular to the x y plane in \mathbb{R}^3 .
- Geodesic planes are vertical planes or hemispheres perpendicular to the *x* – *y* plane.

Boundary at ∞

• The set of points infinitely far away from a point in \mathbb{H}^3

In the upper half-space model of H³, ∂∞H³ is the x-y plane in R³ union the point at infinity.

Sreekrishna Palaparthi (IIT Guwahati) $\mathscr{L}_n(S^3 - K)$ is bounded for hyperbolic K

イロト イポト イヨト イヨト

Boundary at ∞

- The set of points infinitely far away from a point in \mathbb{H}^3
- In the upper half-space model of H³, ∂∞H³ is the x-y plane in R³ union the point at infinity.

イロト イポト イヨト イヨト

Definitions

Isometries of **Ⅲ**³

• The group of orientation preserving isometries of $\mathbb{H}^3 \cong PSL(2,\mathbb{C})$.

• Classification of isometries: elliptic, parabolic and loxodromic.

Sreekrishna Palaparthi (IIT Guwahati) $\mathscr{L}_n(S^3 - K)$ is bounded for hyperbolic K

Isometries of **Ⅲ**³

- The group of orientation preserving isometries of $\mathbb{H}^3 \cong PSL(2,\mathbb{C})$.
- Classification of isometries: elliptic, parabolic and loxodromic.

- Hyperbolic 3-manifolds: 3-manifolds equipped with a complete Riemannian metric of constant sectional curvature -1.
- Can be obtained as \mathbb{H}^3/Γ , where Γ is a torsion free Kleinian group.
- Will restrict attention to finite volume hyperbolic 3-manifolds.
- Mostow's Rigidity Theorem: unique finite volume structure.
- Parabolic elements in Γ give non-compact manifolds.

- Hyperbolic 3-manifolds: 3-manifolds equipped with a complete Riemannian metric of constant sectional curvature -1.
- Can be obtained as \mathbb{H}^3/Γ , where Γ is a torsion free Kleinian group.
- Will restrict attention to finite volume hyperbolic 3-manifolds.
- Mostow's Rigidity Theorem: unique finite volume structure.
- Parabolic elements in Γ give non-compact manifolds.

3

- Hyperbolic 3-manifolds: 3-manifolds equipped with a complete Riemannian metric of constant sectional curvature -1.
- Can be obtained as \mathbb{H}^3/Γ , where Γ is a torsion free Kleinian group.
- Will restrict attention to finite volume hyperbolic 3-manifolds.
- Mostow's Rigidity Theorem: unique finite volume structure.
- Parabolic elements in Γ give non-compact manifolds.

イロト イポト イヨト イヨト

- Hyperbolic 3-manifolds: 3-manifolds equipped with a complete Riemannian metric of constant sectional curvature -1.
- Can be obtained as \mathbb{H}^3/Γ , where Γ is a torsion free Kleinian group.
- Will restrict attention to finite volume hyperbolic 3-manifolds.
- Mostow's Rigidity Theorem: unique finite volume structure.
- Parabolic elements in Γ give non-compact manifolds.

- Hyperbolic 3-manifolds: 3-manifolds equipped with a complete Riemannian metric of constant sectional curvature -1.
- Can be obtained as \mathbb{H}^3/Γ , where Γ is a torsion free Kleinian group.
- Will restrict attention to finite volume hyperbolic 3-manifolds.
- Mostow's Rigidity Theorem: unique finite volume structure.
- Parabolic elements in Γ give non-compact manifolds.

- 3

- The ends of a finite volume, orientable, non-compact, hyperbolic
 3-manifold consists of finite number of *cusps*.
- A rank two cusp $\cong \mathbb{T}^2 \times [0, \infty)$.
- A cusped hyperbolic 3-manifold is a hyperbolic 3-manifold with at-least one cusp.

- The ends of a finite volume, orientable, non-compact, hyperbolic
 3-manifold consists of finite number of *cusps*.
- A rank two cusp $\cong \mathbb{T}^2 \times [0,\infty)$.
- A cusped hyperbolic 3-manifold is a hyperbolic 3-manifold with at-least one cusp.

- The ends of a finite volume, orientable, non-compact, hyperbolic 3-manifold consists of finite number of *cusps*.
- A rank two cusp $\cong \mathbb{T}^2 \times [0, \infty)$.
- A cusped hyperbolic 3-manifold is a hyperbolic 3-manifold with at-least one cusp.

Lift of a Cusp

• A cusp lifts to a disjoint union of horoballs.

- A horoball is a Euclidean ball tangent to the $\partial_{\infty} \mathbb{H}^3$.
- A cross-sectional torus of the cusp is called a cusp torus.

Lift of a Cusp

- A cusp lifts to a disjoint union of *horoballs*.
- A horoball is a Euclidean ball tangent to the $\partial_{\infty} \mathbb{H}^3$.
- A cross-sectional torus of the cusp is called a cusp torus.

Lift of a Cusp

- A cusp lifts to a disjoint union of horoballs.
- A horoball is a Euclidean ball tangent to the $\partial_{\infty} \mathbb{H}^3$.
- A cross-sectional torus of the cusp is called a cusp torus.

3

Horoballs in a lift of a cusped hyperbolic 3-manifold

Sreekrishna Palaparthi (IIT Guwahati) $\mathcal{L}_n(S^3 - K)$ is bo

 $\mathcal{L}_n(S^3 - K)$ is bounded for hyperbolic K

December 17, 2013 9 / 29

Maximal Cusp

Expand the horoballs in the lift of a cusp to ℍ³ until the first two touch.

• The projection of this configuration is called a *maximal cusp*.

< ロ > < 同 > < 回 > < 回 >

December 17, 2013

10/29

Maximal Cusp

- Expand the horoballs in the lift of a cusp to ℍ³ until the first two touch.
- The projection of this configuration is called a *maximal cusp*.

December 17, 2013

10/29

Maximal Cusp

<ロ> <四> <四> <三</td>

Standardization Of The Maximal Cusp

• Parabolic fixed points of Γ are horoball centers.

- 0 and ∞ are parabolic fixed points.
- The horosphere centred at ∞ is the plane t = 1 in \mathbb{H}^3 (relaxable).

Sreekrishna Palaparthi (IIT Guwahati) $\mathscr{L}_n(S^3 - K)$ is bounded for hyperbolic K

December 17, 2013 12 / 29

< ロ > < 同 > < 回 > < 回 >

Standardization Of The Maximal Cusp

- Parabolic fixed points of Γ are horoball centers.
- $\bullet~$ 0 and ∞ are parabolic fixed points.

• The horosphere centred at ∞ is the plane t = 1 in \mathbb{H}^3 (relaxable).

< ロ > < 同 > < 回 > < 回 >

Definitions

Standardization Of The Maximal Cusp

- Parabolic fixed points of Γ are horoball centers.
- 0 and ∞ are parabolic fixed points.
- The horosphere centred at ∞ is the plane t = 1 in \mathbb{H}^3 (relaxable).

4 D N 4 B N 4 B N 4 B N

Geodesic Length Bounds

- Adams and Reid: A shortest closed geodesic in a hyperbolic link complement in S³ is bounded above by 7.171646...
- Question: Is a second shortest closed geodesic a hyperbolic link complement in *S*³ also bounded above?
- Answer: Yes.

Geodesic Length Bounds

- Adams and Reid: A shortest closed geodesic in a hyperbolic link complement in S³ is bounded above by 7.171646...
- Question: Is a second shortest closed geodesic a hyperbolic link complement in S³ also bounded above?
- Answer: Yes.

< ロ > < 同 > < 回 > < 回 >

Geodesic Length Bounds

- Adams and Reid: A shortest closed geodesic in a hyperbolic link complement in S³ is bounded above by 7.171646...
- Question: Is a second shortest closed geodesic a hyperbolic link complement in S³ also bounded above?
- Answer: Yes.

4 D N 4 B N 4 B N 4 B N

Bounds on Exceptional Dehn Filling

• The 2π -Theorem of Gromov and Thurston

Theorem (Gromov and Thurston)

Let M be a cusped hyperbolic 3-manifold with n cusps. Let $T_1, ..., T_n$ be disjoint cusp tori for the n cusps of M, and r_i a slope on T_i represented by a geodesic a_i whose length in the Euclidean metric on T_i is greater than 2π , for each i = 1..n. Then $M(r_1, ..., r_n)$ admits a metric of negative curvature.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

December 17, 2013

3

14/29

Agol's and Lackenby's improvement

Bounds on Exceptional Dehn Filling

• The 2π-Theorem of Gromov and Thurston

Theorem (Gromov and Thurston)

Let M be a cusped hyperbolic 3-manifold with n cusps. Let $T_1, ..., T_n$ be disjoint cusp tori for the n cusps of M, and r_i a slope on T_i represented by a geodesic a_i whose length in the Euclidean metric on T_i is greater than 2π , for each i = 1..n. Then $M(r_1, ..., r_n)$ admits a metric of negative curvature.

December 17, 2013

- 31

14/29

Agol's and Lackenby's improvement

Bounds on Exceptional Dehn Filling

The 2π-Theorem of Gromov and Thurston

Theorem (Gromov and Thurston)

Let M be a cusped hyperbolic 3-manifold with n cusps. Let $T_1, ..., T_n$ be disjoint cusp tori for the n cusps of M, and r_i a slope on T_i represented by a geodesic a_i whose length in the Euclidean metric on T_i is greater than 2π , for each i = 1..n. Then $M(r_1, ..., r_n)$ admits a metric of negative curvature.

Agol's and Lackenby's improvement

- 31

Hyperbolic Knot Complements

For hyperbolic knot complements in closed, orientable 3-manifolds which do not admit any Riemannian metric of negative curvature (S^3 , for example):

- Dehn filling along the meridian curve gives back the manifold.
- Meridian length in the Euclidean metric on the standardized maximal cusp torus < 6.

Hyperbolic Knot Complements

For hyperbolic knot complements in closed, orientable 3-manifolds which do not admit any Riemannian metric of negative curvature (S^3 , for example):

- Dehn filling along the meridian curve gives back the manifold.
- Meridian length in the Euclidean metric on the standardized maximal cusp torus < 6.

Hyperbolic Knot Complements

For hyperbolic knot complements in closed, orientable 3-manifolds which do not admit any Riemannian metric of negative curvature (S^3 , for example):

- Dehn filling along the meridian curve gives back the manifold.
- Meridian length in the Euclidean metric on the standardized maximal cusp torus < 6.

Notation

- By Mostow's rigidity theorem, the length of an nth shortest closed geodesic in a f.v. hyperbolic 3-manifold M is an invariant of its topological type.
- Denote this length by $\mathcal{L}_n(M)$.

3

Notation

- By Mostow's rigidity theorem, the length of an nth shortest closed geodesic in a f.v. hyperbolic 3-manifold M is an invariant of its topological type.
- Denote this length by $\mathcal{L}_n(M)$.

Theorem for $\mathscr{L}_1(M)$

Theorem (Adams, Reid)

Let N be a finite volume hyperbolic 3-manifold with at least one cusp. Assume that in a maximal cusp torus, there is a non-trivial curve corresponding to a parabolic isometry of length equal to w. Then: $(1) \mathcal{L}_1(N) \leq 2\mathfrak{Re}(\cosh^{-1}((2 + iw^2)/2))$ if $w \neq 2$ $(2) \mathcal{L}_1(N) \leq 2\ln(3 + 2\sqrt{2}) = 3.525...$ if w = 2

Sreekrishna Palaparthi (IIT Guwahati) $\mathscr{L}_n(S^3 - K)$ is bounded for hyperbolic K

Hyperbolic Knot Complements in S³

Corollary (Adams, Reid)

Let M be closed orientable 3-manifold which does not admit any

Riemannian metric of negative curvature and $K \subset M$ be a knot with

hyperbolic complement. Then $\mathcal{L}_1(M - K) \leq 7.35534..$

 The bound in this Corollary can be improved to 7.171646.. by the work of Agol and Lackenby.

• Proof:

Hyperbolic Knot Complements in S³

Corollary (Adams, Reid)

Let M be closed orientable 3-manifold which does not admit any

Riemannian metric of negative curvature and $K \subset M$ be a knot with

hyperbolic complement. Then $\mathcal{L}_1(M - K) \leq 7.35534..$

 The bound in this Corollary can be improved to 7.171646.. by the work of Agol and Lackenby.

• Proof:

Hyperbolic Knot Complements in S³

Corollary (Adams, Reid)

Let M be closed orientable 3-manifold which does not admit any

Riemannian metric of negative curvature and $K \subset M$ be a knot with

hyperbolic complement. Then $\mathcal{L}_1(M - K) \leq 7.35534..$

- The bound in this Corollary can be improved to 7.171646.. by the work of Agol and Lackenby.
- Proof:

Lift of a Standard Maximal Cusp of N

Sreekrishna Palaparthi (IIT Guwahati) $\mathscr{L}_n(S^3 - K)$ is bounded for hyperbolic K

case 1: Suppose $w \neq 2$, then:

- $\gamma_1^{-1}\gamma_2$ is loxodromic.
- Maximum geodesic length occurs when angle between γ_1^{-1} and γ_2 is $\pi/2$

• Can conjugate
$$\gamma_1^{-1}$$
 to $\begin{bmatrix} 1 & w \\ 0 & 1 \end{bmatrix}$
• Can conjugate γ_2 to $\begin{bmatrix} 1 & 0 \\ iw & 1 \end{bmatrix}$

イロト 不得 トイヨト イヨト 二日

case 1: Suppose $w \neq 2$, then:

• $\gamma_1^{-1}\gamma_2$ is loxodromic.

• Maximum geodesic length occurs when angle between γ_1^{-1} and γ_2 is $\pi/2$

• Can conjugate
$$\gamma_1^{-1}$$
 to $\begin{bmatrix} 1 & w \\ 0 & 1 \end{bmatrix}$
• Can conjugate γ_2 to $\begin{bmatrix} 1 & 0 \\ iw & 1 \end{bmatrix}$

イロト 不得 トイヨト イヨト 二日

- *case 1:* Suppose $w \neq 2$, then:
 - $\gamma_1^{-1}\gamma_2$ is loxodromic.
 - Maximum geodesic length occurs when angle between $\gamma_{\rm 1}^{-1}$ and

 γ_2 is $\pi/2$

• Can conjugate
$$\gamma_1^{-1}$$
 to $\begin{bmatrix} 1 & w \\ 0 & 1 \end{bmatrix}$
• Can conjugate γ_2 to $\begin{bmatrix} 1 & 0 \\ iw & 1 \end{bmatrix}$

- *case 1:* Suppose $w \neq 2$, then:
 - $\gamma_1^{-1}\gamma_2$ is loxodromic.
 - Maximum geodesic length occurs when angle between γ_1^{-1} and γ_2 is $\pi/2$

• Can conjugate
$$\gamma_1^{-1}$$
 to $\begin{bmatrix} 1 & w \\ 0 & 1 \end{bmatrix}$
• Can conjugate γ_2 to $\begin{bmatrix} 1 & 0 \\ iw & 1 \end{bmatrix}$

- *case 1:* Suppose $w \neq 2$, then:
 - $\gamma_1^{-1}\gamma_2$ is loxodromic.
 - Maximum geodesic length occurs when angle between $\gamma_{\rm 1}^{-1}$ and

٦

 γ_{2} is $\pi/2$

• Can conjugate
$$\gamma_1^{-1}$$
 to $\begin{bmatrix} 1 & w \\ 0 & 1 \end{bmatrix}$
• Can conjugate γ_2 to $\begin{bmatrix} 1 & 0 \\ iw & 1 \end{bmatrix}$

Г

When $w \neq 2$ (contd.)

• Trace of the product $\gamma_1^{-1}\gamma_2$ is $2 + iw^2$

So, in this case we get

$\mathscr{L}_1(N) \leq 2\mathfrak{Re}(\cosh^{-1}((2+iw^2)/2))$

Sreekrishna Palaparthi (IIT Guwahati) $\mathscr{L}_n(S^3 - K)$ is bounded for hyperbolic K

イロト 不得 トイヨト イヨト 二日

When $w \neq 2$ (contd.)

- Trace of the product $\gamma_1^{-1}\gamma_2$ is $2 + iw^2$
- So, in this case we get

$$\mathscr{L}_1(N) \leq 2\mathfrak{Re}(\cosh^{-1}((2+iw^2)/2))$$

Sreekrishna Palaparthi (IIT Guwahati) $\mathscr{L}_n(S^3 - K)$ is bounded for hyperbolic K

イロト 不得 トイヨト イヨト 二日

case 2: Suppose w = 2, then

• $\angle(\gamma_1^{-1}, \gamma_2)$ could be 0 and then $\gamma_1^{-1}\gamma_2$ could be parabolic.

• Can conjugate γ_1 to $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$

• Assume $\gamma_2 =$

3

case 2: Suppose w = 2, then

• $\angle(\gamma_1^{-1}, \gamma_2)$ could be 0 and then $\gamma_1^{-1}\gamma_2$ could be parabolic.

• Can conjugate γ_1 to $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$

• Assume $\gamma_2 =$

- *case 2:* Suppose w = 2, then
 - $\angle(\gamma_1^{-1}, \gamma_2)$ could be 0 and then $\gamma_1^{-1}\gamma_2$ could be parabolic.
 - Can conjugate γ_1 to $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ • Assume $\gamma_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

- *case 2:* Suppose w = 2, then
 - $\angle(\gamma_1^{-1}, \gamma_2)$ could be 0 and then $\gamma_1^{-1}\gamma_2$ could be parabolic.

• Can conjugate
$$\gamma_1$$
 to $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$
• Assume $\gamma_2 = \begin{bmatrix} 1 & 0 \\ r & 1 \end{bmatrix}$

イロト 不得 トイヨト イヨト 二日

•
$$\gamma_1^{-1}\gamma_2$$
 then is
$$\begin{bmatrix} 1-2r & -2 \\ r & 1 \end{bmatrix}$$

• This is parabolic $\iff r = 2$.

Sreekrishna Palaparthi (IIT Guwahati) $\mathscr{L}_n(S^3 - K)$ is bounded for hyperbolic K

December 17, 2013 23 / 29

э

イロン イ理 とく ヨン イヨン

•
$$\gamma_1^{-1}\gamma_2$$
 then is
$$\begin{bmatrix} 1-2r & -2 \\ r & 1 \end{bmatrix}$$

• This is parabolic $\iff r = 2$.

Sreekrishna Palaparthi (IIT Guwahati) $\mathscr{L}_n(S^3 - K)$ is bounded for hyperbolic K

3

<ロ> <問> <問> < 同> < 同> < 同> -

• $\gamma_1^{-1}\gamma_2^{-1}$ is loxodromic.

- The length of this geodesic is $2\ln(3 + 2\sqrt{2}) = 3.525...$
- So in this case we get:

$$\mathscr{L}_1(N) \le 2\ln(3+2\sqrt{2}) = 3.525..$$

- $\gamma_1^{-1}\gamma_2^{-1}$ is loxodromic.
- The length of this geodesic is $2\ln(3 + 2\sqrt{2}) = 3.525...$
- So in this case we get:

$$\mathscr{L}_1(N) \le 2\ln(3+2\sqrt{2}) = 3.525..$$

- $\gamma_1^{-1}\gamma_2^{-1}$ is loxodromic.
- The length of this geodesic is $2\ln(3 + 2\sqrt{2}) = 3.525...$
- So in this case we get:

$$\mathscr{L}_1(N) \le 2\ln(3+2\sqrt{2}) = 3.525..$$

$$\gamma_1^{-n}\gamma_2$$

Sreekrishna Palaparthi (IIT Guwahati) $\mathscr{L}_n(S^3 - K)$ is bounded for hyperbolic K

December 17, 2013 25 / 29

(日)、(四)、(日)、(日)、(日)

• Conjugate so that
$$w = 2$$
, then $\gamma_1 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$
• $\gamma_2 = \begin{bmatrix} 1 & 0 \\ r & 1 \end{bmatrix}$
• $\gamma_1^{-n}\gamma_2 = \begin{bmatrix} 1 - 2rn & -2n \\ r & 1 \end{bmatrix}$

• Infer from the trace: $\gamma_1^{-n}\gamma_2$ are loxodromic for n > 1

• Conjugate so that
$$w = 2$$
, then $\gamma_1 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$
• $\gamma_2 = \begin{bmatrix} 1 & 0 \\ r & 1 \end{bmatrix}$
• $\gamma_1^{-n}\gamma_2 = \begin{bmatrix} 1 - 2rn & -2n \\ r & 1 \end{bmatrix}$

• Infer from the trace: $\gamma_1^{-n}\gamma_2$ are loxodromic for n > 1

• Conjugate so that
$$w = 2$$
, then $\gamma_1 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$
• $\gamma_2 = \begin{bmatrix} 1 & 0 \\ r & 1 \end{bmatrix}$
• $\gamma_1^{-n}\gamma_2 = \begin{bmatrix} 1 - 2rn & -2n \\ r & 1 \end{bmatrix}$

• Infer from the trace: $\gamma_1^{-n}\gamma_2$ are loxodromic for n > 1

• Conjugate so that
$$w = 2$$
, then $\gamma_1 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$
• $\gamma_2 = \begin{bmatrix} 1 & 0 \\ r & 1 \end{bmatrix}$
• $\gamma_1^{-n}\gamma_2 = \begin{bmatrix} 1 - 2rn & -2n \\ r & 1 \end{bmatrix}$

• Infer from the trace: $\gamma_1^{-n}\gamma_2$ are loxodromic for n > 1

Conjugacy

• $\gamma_1^{-k}\gamma_2$ and $\gamma_1^{-m}\gamma_2$ are not conjugate for $k \neq m$

• Proof: Is $2 - 2rk = \pm(2 - 2rm)$?

Sreekrishna Palaparthi (IIT Guwahati) $\mathscr{L}_n(S^3 - K)$ is bounded for hyperbolic K

イロト 不得 トイヨト イヨト 二日

Conjugacy

- $\gamma_1^{-k}\gamma_2$ and $\gamma_1^{-m}\gamma_2$ are not conjugate for $k \neq m$
- Proof: Is $2 2rk = \pm(2 2rm)$?

Sreekrishna Palaparthi (IIT Guwahati) $\mathscr{L}_n(S^3 - K)$ is bounded for hyperbolic K

(日)

A Result

Theorem

Let N be a finite volume hyperbolic 3-manifold with at least one cusp. Assume that in a maximal cusp torus, there is a non-trivial curve corresponding to a parabolic isometry of length equal to w. Then $\mathscr{L}_n(N) \leq 2\mathfrak{Re}[\cosh^{-1}((2 + iw^2(n+1))/2)]$

3

Statement of the Main Theorem

Theorem

Let M be a closed orientable 3-manifold which does not admit any

Riemannian metric of negative curvature. Let L be a hyperbolic link in

M. Then

$$\mathscr{L}_n(M-L) \leq 2\mathfrak{Re}[\cosh^{-1}(1+18(n+1)i)]$$

Sreekrishna Palaparthi (IIT Guwahati) $\mathscr{L}_n(S^3 - K)$ is bounded for hyperbolic K

< ロ > < 同 > < 回 > < 回 >