Lengths of closed geodesics in a hyperbolic knot complement in S^{3}

Sreekrishna Palaparthi

Department of Mathematics
Indian Institute of Technology Guwahati
December 17, 2013

Outline

(9) Introduction

- Definitions

(2) Geodesic Length Bounds

- Theorem of Adams and Reid
- $\mathscr{L}_{n}\left(S^{3}-L\right)$ is bounded above

Outline

(1) Introduction

- Definitions
(2) Geodesic Length Bounds
- Theorem of Adams and Reid
- $\mathscr{L}_{n}\left(S^{3}-L\right)$ is bounded above

Upper half space model

- Upper half-space model of \mathbb{H}^{3} : the space

$$
\left\{(x, y, t) \|(x, y, t) \in \mathbb{R}^{3}, t>0\right\}
$$

equipped with the metric

$$
d s=\frac{\sqrt{d x^{2}+d y^{2}+d t^{2}}}{t}
$$

- Geodesics in this model are vertical lines or semicircles
perpendicular to the $x-y$ plane in \mathbb{R}^{3}.
- Geodesic planes are vertical planes or hemispheres
perpendicular to the $x-y$ plane.

Upper half space model

- Upper half-space model of \mathbb{H}^{3} : the space

$$
\left\{(x, y, t) \|(x, y, t) \in \mathbb{R}^{3}, t>0\right\}
$$

equipped with the metric

$$
d s=\frac{\sqrt{d x^{2}+d y^{2}+d t^{2}}}{t}
$$

- Geodesics in this model are vertical lines or semicircles perpendicular to the $x-y$ plane in \mathbb{R}^{3}.
- Geodesic planes are vertical planes or hemispheres perpendicular to the $x-y$ plane.

Upper half space model

- Upper half-space model of \mathbb{H}^{3} : the space

$$
\left\{(x, y, t) \|(x, y, t) \in \mathbb{R}^{3}, t>0\right\}
$$

equipped with the metric

$$
d s=\frac{\sqrt{d x^{2}+d y^{2}+d t^{2}}}{t}
$$

- Geodesics in this model are vertical lines or semicircles perpendicular to the $x-y$ plane in \mathbb{R}^{3}.
- Geodesic planes are vertical planes or hemispheres perpendicular to the $x-y$ plane.

Boundary at ∞

- The set of points infinitely far away from a point in \mathbb{H}^{3}
- In the upper half-space model of $\mathbb{H}^{3}, \partial_{\infty} \mathbb{H}^{3}$ is the x - y plane in \mathbb{R}^{3} union the point at infinity.

Boundary at ∞

- The set of points infinitely far away from a point in \mathbb{H}^{3}
- In the upper half-space model of $\mathbb{H}^{3}, \partial_{\infty} \mathbb{H}^{3}$ is the $x-y$ plane in \mathbb{R}^{3} union the point at infinity.

Isometries of \mathbb{H}^{3}

- The group of orientation preserving isometries of $\mathbb{H}^{3} \cong P S L(2, \mathbb{C})$.
- Classification of isometries: elliptic, parabolic and loxodromic.

Isometries of \mathbb{H}^{3}

- The group of orientation preserving isometries of $\mathbb{H}^{3} \cong P S L(2, \mathbb{C})$.
- Classification of isometries: elliptic, parabolic and loxodromic.

Hyperbolic 3-Manifolds

- Hyperbolic 3-manifolds: 3-manifolds equipped with a complete Riemannian metric of constant sectional curvature -1 .
- Can be obtained as \mathbb{H}^{3} / Γ, where Γ is a torsion free Kleinian group.
- Will restrict attention to finite volume hyperbolic 3-manifolds.
- Mostow's Rigidity Theorem: unique finite volume structure.
- Parabolic elements in 「 give non-compact manifolds.

Hyperbolic 3-Manifolds

- Hyperbolic 3-manifolds: 3-manifolds equipped with a complete Riemannian metric of constant sectional curvature -1 .
- Can be obtained as \mathbb{H}^{3} / Γ, where Γ is a torsion free Kleinian group.
- Will restrict attention to finite volume hyperbolic 3-manifolds.
- Mostow's Rigidity Theorem: unique finite volume structure.
- Parabolic elements in 「 give non-compact manifolds.

Hyperbolic 3-Manifolds

- Hyperbolic 3-manifolds: 3-manifolds equipped with a complete Riemannian metric of constant sectional curvature -1 .
- Can be obtained as \mathbb{H}^{3} / Γ, where Γ is a torsion free Kleinian group.
- Will restrict attention to finite volume hyperbolic 3-manifolds.
- Mostow's Rigidity Theorem: unique finite volume structure.
- Parabolic elements in 「 give non-compact manifolds.

Hyperbolic 3-Manifolds

- Hyperbolic 3-manifolds: 3-manifolds equipped with a complete Riemannian metric of constant sectional curvature -1 .
- Can be obtained as \mathbb{H}^{3} / Γ, where Γ is a torsion free Kleinian group.
- Will restrict attention to finite volume hyperbolic 3-manifolds.
- Mostow's Rigidity Theorem: unique finite volume structure.
- Parabolic elements in 「 give non-compact manifolds.

Hyperbolic 3-Manifolds

- Hyperbolic 3-manifolds: 3-manifolds equipped with a complete Riemannian metric of constant sectional curvature -1 .
- Can be obtained as \mathbb{H}^{3} / Γ, where Γ is a torsion free Kleinian group.
- Will restrict attention to finite volume hyperbolic 3-manifolds.
- Mostow's Rigidity Theorem: unique finite volume structure.
- Parabolic elements in 「 give non-compact manifolds.

Hyperbolic 3-Manifolds

- The ends of a finite volume, orientable, non-compact, hyperbolic 3-manifold consists of finite number of cusps.
- A rank two cusp $\cong \mathbb{T}^{2} \times[0, \infty)$.
- A cusped hyperbolic 3-manifold is a hyperbolic 3-manifold with at-least one cusp.

Hyperbolic 3-Manifolds

- The ends of a finite volume, orientable, non-compact, hyperbolic 3-manifold consists of finite number of cusps.
- A rank two cusp $\cong \mathbb{T}^{2} \times[0, \infty)$.
- A cusped hyperbolic 3-manifold is a hyperbolic 3-manifold with at-least one cusp.

Hyperbolic 3-Manifolds

- The ends of a finite volume, orientable, non-compact, hyperbolic 3-manifold consists of finite number of cusps.
- A rank two cusp $\cong \mathbb{T}^{2} \times[0, \infty)$.
- A cusped hyperbolic 3-manifold is a hyperbolic 3-manifold with at-least one cusp.

Lift of a Cusp

- A cusp lifts to a disjoint union of horoballs.
- A horoball is a Euclidean ball tangent to the $\partial_{\infty} \mathbb{H}^{3}$.
- A cross-sectional torus of the cusp is called a cusp torus.

Lift of a Cusp

- A cusp lifts to a disjoint union of horoballs.
- A horoball is a Euclidean ball tangent to the $\partial_{\infty} \mathbb{H}^{3}$.
- A cross-sectional torus of the cusp is called a cusp torus.

Lift of a Cusp

- A cusp lifts to a disjoint union of horoballs.
- A horoball is a Euclidean ball tangent to the $\partial_{\infty} \mathbb{H}^{3}$.
- A cross-sectional torus of the cusp is called a cusp torus.

Horoballs in a lift of a cusped hyperbolic 3-manifold

Maximal Cusp

- Expand the horoballs in the lift of a cusp to \mathbb{H}^{3} until the first two touch.
- The projection of this configuration is called a maximal cusp.

Maximal Cusp

- Expand the horoballs in the lift of a cusp to \mathbb{H}^{3} until the first two touch.
- The projection of this configuration is called a maximal cusp.

Maximal Cusp

Standardization Of The Maximal Cusp

- Parabolic fixed points of Γ are horoball centers.
- 0 and ∞ are parabolic fixed points.
- The horosphere centred at ∞ is the plane $t=1$ in \mathbb{H}^{3} (relaxable).

Standardization Of The Maximal Cusp

- Parabolic fixed points of Γ are horoball centers.
- 0 and ∞ are parabolic fixed points.
- The horosphere centred at ∞ is the plane $t=1$ in \mathbb{H}^{3} (relaxable).

Standardization Of The Maximal Cusp

- Parabolic fixed points of Γ are horoball centers.
- 0 and ∞ are parabolic fixed points.
- The horosphere centred at ∞ is the plane $t=1$ in \mathbb{H}^{3} (relaxable).

Geodesic Length Bounds

- Adams and Reid: A shortest closed geodesic in a hyperbolic link complement in S^{3} is bounded above by 7.171646...
- Question: Is a second shortest closed geodesic a hyperbolic link complement in S^{3} also bounded above?
- Answer: Yes.

Geodesic Length Bounds

- Adams and Reid: A shortest closed geodesic in a hyperbolic link complement in S^{3} is bounded above by 7.171646...
- Question: Is a second shortest closed geodesic a hyperbolic link complement in S^{3} also bounded above?
- Answer: Yes.

Geodesic Length Bounds

- Adams and Reid: A shortest closed geodesic in a hyperbolic link complement in S^{3} is bounded above by 7.171646...
- Question: Is a second shortest closed geodesic a hyperbolic link complement in S^{3} also bounded above?
- Answer: Yes.

Bounds on Exceptional Dehn Filling

- The 2π-Theorem of Gromov and Thurston

> Theorem (Gromov and Thurston)
> Let M be a cusped hyperbolic 3-manifold with n cusps. Let T_{1}, \ldots, T_{n} be disjoint cusp tori for the n cusps of M, and r_{i} a slope on T_{i} represented by a geodesic a_{i} whose length in the Euclidean metric on T_{i} is greater than 2π, for each $i=1 \ldots n$. Then $M\left(r_{1}, \ldots, r_{n}\right)$ admits a metric of negative curvature.

Bounds on Exceptional Dehn Filling

- The 2π-Theorem of Gromov and Thurston

Theorem (Gromov and Thurston)
Let M be a cusped hyperbolic 3 -manifold with n cusps. Let $T_{1}, . ., T_{n}$ be disjoint cusp tori for the n cusps of M, and r_{i} a slope on T_{i} represented by a geodesic a_{i} whose length in the Euclidean metric on T_{i} is greater than 2π, for each $i=1$..n. Then $M\left(r_{1}, . ., r_{n}\right)$ admits a metric of negative curvature.

Bounds on Exceptional Dehn Filling

- The 2π-Theorem of Gromov and Thurston

Theorem (Gromov and Thurston)
Let M be a cusped hyperbolic 3 -manifold with n cusps. Let $T_{1}, . ., T_{n}$ be disjoint cusp tori for the n cusps of M, and r_{i} a slope on T_{i} represented by a geodesic a_{i} whose length in the Euclidean metric on T_{i} is greater than 2π, for each $i=1$..n. Then $M\left(r_{1}, . ., r_{n}\right)$ admits a metric of negative curvature.

- Agol's and Lackenby's improvement

Hyperbolic Knot Complements

For hyperbolic knot complements in closed, orientable 3-manifolds which do not admit any Riemannian metric of negative curvature (S^{3}, for example):

- Dehn filling along the meridian curve gives back the manifold.
- Meridian length in the Euclidean metric on the standardized
maximal cusp torus <6.

Hyperbolic Knot Complements

For hyperbolic knot complements in closed, orientable 3-manifolds which do not admit any Riemannian metric of negative curvature (S^{3}, for example):

- Dehn filling along the meridian curve gives back the manifold.
- Meridian length in the Euclidean metric on the standardized maximal cusp torus <6.

Hyperbolic Knot Complements

For hyperbolic knot complements in closed, orientable 3-manifolds which do not admit any Riemannian metric of negative curvature (S^{3}, for example):

- Dehn filling along the meridian curve gives back the manifold.
- Meridian length in the Euclidean metric on the standardized maximal cusp torus <6.

Notation

- By Mostow's rigidity theorem, the length of an $n^{\text {th }}$ shortest closed geodesic in a f.v. hyperbolic 3-manifold M is an invariant of its topological type.
- Denote this length by $\mathscr{L}_{n}(M)$.

Notation

- By Mostow's rigidity theorem, the length of an $n^{\text {th }}$ shortest closed geodesic in a f.v. hyperbolic 3-manifold M is an invariant of its topological type.
- Denote this length by $\mathscr{L}_{n}(M)$.

Theorem for $\mathscr{L}_{1}(M)$

Theorem (Adams, Reid)
Let N be a finite volume hyperbolic 3-manifold with at least one cusp.
Assume that in a maximal cusp torus, there is a non-trivial curve corresponding to a parabolic isometry of length equal to w. Then:
(1) $\mathscr{L}_{1}(N) \leq 2 \mathfrak{R e}\left(\cosh ^{-1}\left(\left(2+i w^{2}\right) / 2\right)\right)$ if $w \neq 2$
(2) $\mathscr{L}_{1}(N) \leq 2 \ln (3+2 \sqrt{2})=3.525$.. if $w=2$

Hyperbolic Knot Complements in S^{3}

Corollary (Adams, Reid)
Let M be closed orientable 3-manifold which does not admit any
Riemannian metric of negative curvature and $K \subset M$ be a knot with hyperbolic complement. Then $\mathscr{L}_{1}(M-K) \leq 7.35534$..

Hyperbolic Knot Complements in S^{3}

Corollary (Adams, Reid)
Let M be closed orientable 3-manifold which does not admit any
Riemannian metric of negative curvature and $K \subset M$ be a knot with hyperbolic complement. Then $\mathscr{L}_{1}(M-K) \leq 7.35534$..

- The bound in this Corollary can be improved to 7.171646.. by the work of Agol and Lackenby.

Hyperbolic Knot Complements in S^{3}

Corollary (Adams, Reid)
Let M be closed orientable 3-manifold which does not admit any
Riemannian metric of negative curvature and $K \subset M$ be a knot with hyperbolic complement. Then $\mathscr{L}_{1}(M-K) \leq 7.35534$..

- The bound in this Corollary can be improved to 7.171646 .. by the work of Agol and Lackenby.
- Proof:

Lift of a Standard Maximal Cusp of N

When $w \neq 2$

case 1 : Suppose $w \neq 2$, then:

- $\gamma_{1}^{-1} \gamma_{2}$ is loxodromic.
- Maximum geodesic length occurs when angle between γ_{1}^{-1} and
γ_{2} is $\pi / 2$
- Can conjugate γ_{1}^{-1} to $\left[\begin{array}{ll}1 & w \\ 0 & 1\end{array}\right]$
- Can conjugate γ_{2} to

When $w \neq 2$

case 1: Suppose $w \neq 2$, then:

- $\gamma_{1}^{-1} \gamma_{2}$ is loxodromic.
- Maximum geodesic length occurs when angle between γ_{1}^{-1} and γ_{2} is $\pi / 2$

When $w \neq 2$

case 1: Suppose $w \neq 2$, then:

- $\gamma_{1}^{-1} \gamma_{2}$ is loxodromic.
- Maximum geodesic length occurs when angle between γ_{1}^{-1} and γ_{2} is $\pi / 2$

When $w \neq 2$

case 1: Suppose $w \neq 2$, then:

- $\gamma_{1}^{-1} \gamma_{2}$ is loxodromic.
- Maximum geodesic length occurs when angle between γ_{1}^{-1} and γ_{2} is $\pi / 2$
- Can conjugate γ_{1}^{-1} to $\left[\begin{array}{cc}1 & w \\ 0 & 1\end{array}\right]$
- Can conjugate γ_{2} to

When $w \neq 2$

case 1: Suppose $w \neq 2$, then:

- $\gamma_{1}^{-1} \gamma_{2}$ is loxodromic.
- Maximum geodesic length occurs when angle between γ_{1}^{-1} and γ_{2} is $\pi / 2$
- Can conjugate γ_{1}^{-1} to $\left[\begin{array}{ll}1 & w \\ 0 & 1\end{array}\right]$
- Can conjugate γ_{2} to $\left[\begin{array}{cc}1 & 0 \\ i w & 1\end{array}\right]$

When $w \neq 2$ (contd.)

- Trace of the product $\gamma_{1}^{-1} \gamma_{2}$ is $2+i w^{2}$
- So, in this case we get

$$
\mathscr{L}_{1}(N) \leq 2 \mathfrak{R e}\left(\cosh ^{-1}\left(\left(2+i w^{2}\right) / 2\right)\right)
$$

When $w \neq 2$ (contd.)

- Trace of the product $\gamma_{1}^{-1} \gamma_{2}$ is $2+i w^{2}$
- So, in this case we get

$$
\mathscr{L}_{1}(N) \leq 2 \mathfrak{R e}\left(\cosh ^{-1}\left(\left(2+i w^{2}\right) / 2\right)\right)
$$

When $w=2$

case 2: Suppose $w=2$, then

- $\angle\left(\gamma_{1}^{-1}, \gamma_{2}\right)$ could be 0 and then $\gamma_{1}^{-1} \gamma_{2}$ could be parabolic.
- Can conjugate γ_{1} to

- Assume $\gamma_{2}=$

When $w=2$

case 2: Suppose $w=2$, then

- $\angle\left(\gamma_{1}^{-1}, \gamma_{2}\right)$ could be 0 and then $\gamma_{1}^{-1} \gamma_{2}$ could be parabolic.
- Can conjugate γ_{1} to

- Assume $\gamma_{2}=$

When $w=2$

case 2: Suppose $w=2$, then

- $\angle\left(\gamma_{1}^{-1}, \gamma_{2}\right)$ could be 0 and then $\gamma_{1}^{-1} \gamma_{2}$ could be parabolic.
- Can conjugate γ_{1} to $\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$
- Assume $\gamma_{2}=$

When $w=2$

case 2: Suppose $w=2$, then

- $\angle\left(\gamma_{1}^{-1}, \gamma_{2}\right)$ could be 0 and then $\gamma_{1}^{-1} \gamma_{2}$ could be parabolic.
- Can conjugate γ_{1} to $\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$
- Assume $\gamma_{2}=$

$$
\left[\begin{array}{ll}
1 & 0 \\
r & 1
\end{array}\right]
$$

When $w=2$ (contd.)

- $\gamma_{1}^{-1} \gamma_{2}$ then is

$$
\left[\begin{array}{lr}
1-2 r & -2 \\
r & 1
\end{array}\right]
$$

- This is parabolic $\Longleftrightarrow r=2$.

When $w=2$ (contd.)

- $\gamma_{1}^{-1} \gamma_{2}$ then is

$$
\left[\begin{array}{lr}
1-2 r & -2 \\
r & 1
\end{array}\right]
$$

- This is parabolic $\Longleftrightarrow r=2$.

When $w=2$ (contd.)

- $\gamma_{1}^{-1} \gamma_{2}^{-1}$ is loxodromic.
- The length of this geodesic is $2 \ln (3+2 \sqrt{2})=3.525 \ldots$
- So in this case we get:

$$
\mathscr{L}_{1}(N) \leq 2 \ln (3+2 \sqrt{2})=3.525 . .
$$

When $w=2$ (contd.)

- $\gamma_{1}^{-1} \gamma_{2}^{-1}$ is loxodromic.
- The length of this geodesic is $2 \ln (3+2 \sqrt{2})=3.525 \ldots$
- So in this case we get:

$$
\mathscr{L}_{1}(N) \leq 2 \ln (3+2 \sqrt{2})=3.525 . .
$$

When $w=2$ (contd.)

- $\gamma_{1}^{-1} \gamma_{2}^{-1}$ is loxodromic.
- The length of this geodesic is $2 \ln (3+2 \sqrt{2})=3.525 \ldots$
- So in this case we get:

$$
\mathscr{L}_{1}(N) \leq 2 \ln (3+2 \sqrt{2})=3.525 . .
$$

Altered Standard Form

- Conjugate so that $w=2$, then $\gamma_{1}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$

- Infer from the trace: $\gamma_{1}^{-n} \gamma_{2}$ are loxodromic for $n>1$

Altered Standard Form

- Conjugate so that $w=2$, then $\gamma_{1}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$
- $\gamma_{2}=\left[\begin{array}{ll}1 & 0 \\ r & 1\end{array}\right]$

- Infer from the trace: $\gamma_{1}^{-n} \gamma_{2}$ are loxodromic for $n>1$

Altered Standard Form

- Conjugate so that $w=2$, then $\gamma_{1}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$
- $\gamma_{2}=\left[\begin{array}{ll}1 & 0 \\ r & 1\end{array}\right]$
- $\gamma_{1}^{-n} \gamma_{2}=\left[\begin{array}{lr}1-2 r n & -2 n \\ r & 1\end{array}\right]$
- Infer from the trace: $\gamma_{1}^{-n} \gamma_{2}$ are loxodromic for $n>1$

Altered Standard Form

- Conjugate so that $w=2$, then $\gamma_{1}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$
- $\gamma_{2}=\left[\begin{array}{ll}1 & 0 \\ r & 1\end{array}\right]$
- $\gamma_{1}^{-n} \gamma_{2}=\left[\begin{array}{lr}1-2 r n & -2 n \\ r & 1\end{array}\right]$
- Infer from the trace: $\gamma_{1}^{-n} \gamma_{2}$ are loxodromic for $n>1$

Conjugacy

- $\gamma_{1}^{-k} \gamma_{2}$ and $\gamma_{1}^{-m} \gamma_{2}$ are not conjugate for $k \neq m$
- Proof: Is $2-2 r k= \pm(2-2 r m)$?

Conjugacy

- $\gamma_{1}^{-k} \gamma_{2}$ and $\gamma_{1}^{-m} \gamma_{2}$ are not conjugate for $k \neq m$
- Proof: Is $2-2 r k= \pm(2-2 r m)$?

A Result

Theorem
Let N be a finite volume hyperbolic 3-manifold with at least one cusp.
Assume that in a maximal cusp torus, there is a non-trivial curve corresponding to a parabolic isometry of length equal to w. Then $\mathscr{L}_{n}(N) \leq 2 \mathfrak{R e}\left[\cosh ^{-1}\left(\left(2+i w^{2}(n+1)\right) / 2\right)\right]$

Statement of the Main Theorem

Theorem
Let M be a closed orientable 3-manifold which does not admit any
Riemannian metric of negative curvature. Let L be a hyperbolic link in
M. Then

$$
\mathscr{L}_{n}(M-L) \leq 2 \mathfrak{R e}\left[\cosh ^{-1}(1+18(n+1) i)\right]
$$

