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1. Surface braids

D2 × I2 : the product of two 2-disks
pr1 : D2 × I2 → D2, pr2 : D2 × I2 → I2: the projections
Qm : a fixed set of m interior points of D2

Def (1.1)

A compact oriented surface S properly embedded in D2 × I2 is a
surface braid (or a 2-dimensional braid) if it satisfies the following
two conditions.

(1) The restriction map pr2|S : S → I2 to S is an m-fold branched
covering of I2. (It is denoted by πS : S → I2.)

(2) For any y ∈ ∂I2, pr1(S ∩ pr−1
2 (y)) = Qm.

Seiichi Kamada (OCU) Chart description of surface braids December 17, 2013 4 / 31



Def (1.2)

A surface braid S is regular if there exists exactly one branch point in
the pre-image of each branch value of πS : S → I2.

Def (1.3)

A surface braid S is simple if it is regular and the local degree at each
branch point is 2.

Rem. S is simple if and only if #(S ∩ pr−1
2 (y)) ≥ m − 1 for any

y ∈ I2.
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We introduce two kinds of equivalence relations on surface braids:
equivalent and braid ambient isotopic.

Def (1.4)

Surface braids S and S ′ are equivalent if there is an ambient
isotopy {hs}s∈[0,1] of D2 × I2 satisfying the following.

(1) h0 = id, h1(S) = S ′.

(2) For each s ∈ [0, 1], hs is fiber-preserving.
Namely, there is a homeomorphism hs : I2 → I2 such that

hs ◦ pr2 = pr2 ◦ hs.

(3) For each s ∈ [0, 1], the restriction map of hs to D2 × ∂I2 is
the identity map.
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Def (1.5)

Surface braids S and S ′ are braid ambient isotopic if there is an
ambient isotopy {hs}s∈[0,1] of D2 × I2 satisfying the following.

(1) h0 = id, h1(S) = S ′

(2) For each s ∈ [0, 1], hs(S) is a surface braid.

(3) For each s ∈ [0, 1], the restriction map of hs to D2 × ∂I2 is the
identity map.

equivalent ⇒ braid ambient isotopic

The converse of “equivalent ⇒ braid ambient isotopic ”is not true.
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2. Motion picture method

We regard D2 × I2 = (D2 × I) × [0, 1].
The last coordinate [0, 1] is considered as the time parameter, and
we consider the motion picture of a surface braid S.

For each t ∈ [0, 1], let bt be the cross section of S at the time t.
That means

S ∩ (D2 × I) × {t} = bt × {t}.

We call the 1-parameter family {bt} the motion picture of S.

For all but finitely many t, bt is an m-braid.

For finitely many t, bt is a singular m-braid.

b0 and b1 are the trivial m-braid Qm × I.
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Eg. (2.2) Trivial surface braid

We call S = Qm × D2
2 the trivial surface braid. The motion picture

{bt} consists of trivial m-braids.

1

0
=
< t

t = 0 t =

1<
=

Figure: The trivial surface braid
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Eg. (2.3)

See the motion picture below. At t = 1/3 and t = 2/3 we have
singular braids. The singular points correspond to the branch points
of the surface braid.

1t = 0 t =t = t =1/3 2/3

Figure: A non-trivial surface braid of degree 3
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Prop (2.4) (motion picture of simple surface braids)

By a slight perturbation up to equivalence, a motion picture of a
simple surface braid can be taken as follows.

(1) In a neighborhood of each singular point, it looks like the figure.

(2) b0 and b1 are trivial braids Qm × I.

Conversely, any motion picture satisfying these two conditions is a
motion picture of a simple surface braid.
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The converse of “equivalent ⇒ braid ambient isotopic ”is not true.
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Composition (product) of surface braids
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Prop (2.5)

The vertical product of S and S ′ is equivalent to the horizontal
product.
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3. Surface braids vs surface links

Thm (4.1)(Alexander and Markov theorem)

(1) Any oriented link can be described as the closure of a braid.

(2) Such a braid is unique up to equivalence, conjugation,
stabilization and destabilization.

(For classical braids, equivalent ⇔ braid ambient isotopic.)

Thm (4.2)

(1) Any oriented surface link can be described as the closure of a
surface braid.

(2) Such a surface braid is unique up to braid ambient isotopy,
conjugation, stabilization and destabilization.
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Conjugation
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{Surface braids} /∼
1:1
⇐⇒ {Surface links} /∼

Def.
For a surface link F , the braid index of F is the minimum degree of
simple surface braids describing F .

Braid(F ) = 1 ⇔ F is an unknotted S2

Braid(F ) = 2 ⇔ F is an unknotted S2 ∐ S2 or Σg

Braid(F ) = 3 ⇒ F is a ribbon surface link

Eg.

The braid index of an unknotted S2 is 1.
The braid index of an unknotted torus is 2.
The braid index of a spun trefoil is 3.
The braid index of a 2-twist spun trefoil is 4.
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4. Chart description for simple surface braids

A simple chart or a chart of degree m is a graph in I2 whose edges
are oriented and labeled by integers from {1, . . . ,m − 1} and the
vertices are as follows.
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a simple chart ⇐⇒ a simple surface braid
a black vertex ⇐⇒ a branch point

Thm (4.2) (K. 1992, 1994)

Any simple surface braid is described by a simple chart. Such a chart
is unique up to (simple) chart moves.
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5. Chart description for regular surface braids

We first define a subset of the classical m-braid group Bm.

Def (5.1)

b ∈ Aregular
m ⇐⇒ b is conjugate to b1 ∐ b2, where b1 is a braid of

degree ≥ 2 whose closure is an unknot in S3 and b2 is a trivial braid.

We call the degree of b1 the branch degree of b, and denote it by
branch-deg(b).

Eg.

Let b = σ2σ
−1
3 σ4 ∈ B7.

Then b ∼ b1 ∐ b2, where b1 = σ1σ
−1
2 σ3 ∈ B4 whose closure in S3 is

an unknot, and b2 ∈ B3 is a trivial braid.
Thus b ∈ Aregular

7 and branch-deg(b) = deg(b1) = 4.
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Let b ∈ Aregular
m and let w = σǫ1

i1
· · ·σ

ǫq

iq
be a braid word presenting b.

If the cardinality of generators {σi1 , . . . , σiq} appearing in w equals
branch-deg(b) − 1, then we say that w is range reduced.

Eg.

Consider the above example again. Let b = σ2σ
−1
3 σ4 ∈ B7.

Then b ∈ Aregular
7 and branch-deg(b) = 4.

Let w = σ2σ
−1
3 σ4σ3σ

−1
3 . The generator set appearing in w is

{σ2, σ3, σ4}. The cardinality is 3 = 4 − 1. Thus w is range reduced.

Let w′ = σ2σ
−1
3 σ4σ5σ

−1
5 . The generator set appearing in w′ is

{σ2, σ3, σ4, σ5}. The cardinality is 4 6= 4 − 1. Thus w′ is not range
reduced.
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Def (5.2)

A regular chart of degree m is a graph in I2 whose edges are oriented
and labeled by integers from {1, . . . ,m − 1} and the vertices are as
in the figure, such that at each black vertex, let w be a braid word
obtained by reading the labels and orientations of the edges around
the vertex, then w is a range reduced word representing an element
of Aregular

m .

| |

i
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i

i

i

j

j

j

j

j

= –  > i j | |–i j1 1 

Figure: black vertex, crossing, white vertex
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a regular chart ⇐⇒ a regular surface braid
a black vertex ⇐⇒ a branch point

Thm (5.3)

Any regular surface braid is described by a regular chart. (Such a
chart is unique up to regular chart moves (Thm. 5.4)).
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Regular chart moves

Chart moves of type W
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Chart moves of regular type B (Assume that i and j are elements of
the labels {i1, . . . , in} around the black vertex of the left side)
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Passing moves. (Assume that j satisfies |ik − j| > 1 (k = 1, . . . , n),
where {i1, . . . , in} is the labels around the black vertex)
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Label shift moves, which shift the labels +1 or −1.
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Examples of label shift moves.
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Thm (5.4)

A regular chart description of a regular surface braid is unique up to
chart moves of type W, chart moves of regular type B, passing moves
and label shift moves.

{simple surface braids} /∼
1:1
⇐⇒ {simple charts} /∼

{regular surface braids} /∼
1:1
⇐⇒ {regular charts} /∼

Thank you.
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