Chart description of surface braids

Seiichi Kamada

Osaka City University

December 17, 2013

Advanced School and Discussion Meeting Knot Theory and its Application IISER MOHALI

For a quick view (pp.2–33)

[3] S. Carter, S. Kamada, M. Saito, *Surfaces in 4-space*,
Encyclopaedia of Mathematical Sciences, **142**, Low-Dimensional
Topology, III, Springer-Verlag, Berlin, 2004.

For details on surface diagrams

[4] J. S. Carter, M. Saito, *Knotted surfaces and their diagrams*, Mathematical Surveys and Monographs, **55**, American Mathematical Society, Providence, RI, 1998.

For details on braid forms

[7] S. Kamada, *Braid and knot theory in dimension four*,
Mathematical Surveys and Monographs, **95**, American Mathematical
Society, Providence, RI, 2002.

Surface braids

- 2 Motion picture method
- 3 Surface braids vs surface links
- Output the section of the section
- 5 Chart description for regular surface braids

1. Surface braids

 $D^2 \times I^2$: the product of two 2-disks $pr_1: D^2 \times I^2 \rightarrow D^2$, $pr_2: D^2 \times I^2 \rightarrow I^2$: the projections Q_m : a fixed set of m interior points of D^2

Def (1.1)

A compact oriented surface S properly embedded in $D^2 \times I^2$ is a surface braid (or a 2-dimensional braid) if it satisfies the following two conditions.

(1) The restriction map $pr_2|_S : S \to I^2$ to S is an m-fold branched covering of I^2 . (It is denoted by $\pi_S : S \to I^2$.)

(2) For any $y \in \partial I^2$, $pr_1(S \cap pr_2^{-1}(y)) = Q_m$.

Def (1.2)

A surface braid S is regular if there exists exactly one branch point in the pre-image of each branch value of $\pi_S : S \to I^2$.

Def (1.3)

A surface braid S is simple if it is regular and the local degree at each branch point is 2.

Rem. S is simple if and only if $\#(S \cap pr_2^{-1}(y)) \ge m - 1$ for any $y \in I^2$.

Seiichi Kamada (OCU)

We introduce two kinds of equivalence relations on surface braids: equivalent and braid ambient isotopic.

Def (1.4)

Surface braids S and S' are equivalent if there is an ambient isotopy $\{h_s\}_{s\in[0,1]}$ of $D^2 \times I^2$ satisfying the following. (1) $h_0 = \mathrm{id}, h_1(S) = S'.$

(2) For each $s \in [0, 1]$, h_s is fiber-preserving. Namely, there is a homeomorphism $\underline{h}_s : I^2 \to I^2$ such that

$$\underline{h}_s \circ pr_2 = pr_2 \circ h_s.$$

(3) For each $s \in [0, 1]$, the restriction map of h_s to $D^2 \times \partial I^2$ is the identity map.

Def (1.5)

Surface braids S and S' are braid ambient isotopic if there is an ambient isotopy $\{h_s\}_{s \in [0,1]}$ of $D^2 \times I^2$ satisfying the following.

(1)
$$h_0 = \text{id}, h_1(S) = S'$$

- (2) For each $s \in [0, 1]$, $h_s(S)$ is a surface braid.
- (3) For each $s \in [0, 1]$, the restriction map of h_s to $D^2 \times \partial I^2$ is the identity map.

equivalent \Rightarrow braid ambient isotopic

The converse of "equivalent \Rightarrow braid ambient isotopic "is not true.

2. Motion picture method

We regard $D^2 \times I^2 = (D^2 \times I) \times [0, 1]$.

The last coordinate [0, 1] is considered as the time parameter, and we consider the motion picture of a surface braid S.

For each $t \in [0, 1]$, let b_t be the cross section of S at the time t. That means

$$S \cap (D^2 \times I) \times \{t\} = b_t \times \{t\}.$$

We call the 1-parameter family $\{b_t\}$ the motion picture of S.

- For all but finitely many t, b_t is an m-braid.
- For finitely many t, b_t is a singular m-braid.
- b_0 and b_1 are the trivial *m*-braid $Q_m \times I$.

Eg. (2.2) Trivial surface braid

We call $S = Q_m \times D_2^2$ the trivial surface braid. The motion picture $\{b_t\}$ consists of trivial *m*-braids.

Figure: The trivial surface braid

Seiichi Kamada (OCU)

Eg. (2.3)

See the motion picture below. At t = 1/3 and t = 2/3 we have singular braids. The singular points correspond to the branch points of the surface braid.

Figure: A non-trivial surface braid of degree 3

Prop (2.4) (motion picture of simple surface braids)

By a slight perturbation up to equivalence, a motion picture of a simple surface braid can be taken as follows.

(1) In a neighborhood of each singular point, it looks like the figure.

(2) b_0 and b_1 are trivial braids $Q_m \times I$.

Conversely, any motion picture satisfying these two conditions is a motion picture of a simple surface braid.

Seiichi Kamada (OCU)

The converse of "equivalent \Rightarrow braid ambient isotopic "is not true.

12 / 31

Composition (product) of surface braids

Seiichi Kamada (OCU)

Chart description of surface braids

December 17, 2013 13 / 31

Thm (4.1)(Alexander and Markov theorem)

- (1) Any oriented link can be described as the closure of a braid.
- (2) Such a braid is unique up to equivalence, conjugation, stabilization and destabilization.

(For classical braids, equivalent \Leftrightarrow braid ambient isotopic.)

Thm (4.2)

- (1) Any oriented surface link can be described as the closure of a surface braid.
- (2) Such a surface braid is unique up to braid ambient isotopy, conjugation, stabilization and destabilization.

Seiichi Kamada (OCU)

Chart description of surface braids

December 17, 2013 15 / 31

Conjugation

Stabilization

Def.

For a surface link F, the braid index of F is the minimum degree of simple surface braids describing F.

Braid $(F) = 1 \iff F$ is an unknotted S^2 Braid $(F) = 2 \iff F$ is an unknotted $S^2 \amalg S^2$ or Σ_g Braid $(F) = 3 \implies F$ is a ribbon surface link

Eg.

The braid index of an unknotted S^2 is 1. The braid index of an unknotted torus is 2. The braid index of a spun trefoil is 3. The braid index of a 2-twist spun trefoil is 4.

4. Chart description for simple surface braids

A simple chart or a chart of degree m is a graph in I^2 whose edges are oriented and labeled by integers from $\{1, \ldots, m-1\}$ and the vertices are as follows.

A simple chart of degree 4

a simple chart \iff a simple surface braid a black vertex \iff a branch point

Thm (4.2) (K. 1992, 1994)

Any simple surface braid is described by a simple chart. Such a chart is unique up to (simple) chart moves.

5. Chart description for regular surface braids

We first define a subset of the classical m-braid group B_m .

Def (5.1)

 $b \in A_m^{\text{regular}} \iff b$ is conjugate to $b_1 \amalg b_2$, where b_1 is a braid of degree ≥ 2 whose closure is an unknot in S^3 and b_2 is a trivial braid.

We call the degree of b_1 the branch degree of b, and denote it by branch-deg(b).

Eg.

Let $b = \sigma_2 \sigma_3^{-1} \sigma_4 \in B_7$. Then $b \sim b_1 \amalg b_2$, where $b_1 = \sigma_1 \sigma_2^{-1} \sigma_3 \in B_4$ whose closure in S^3 is an unknot, and $b_2 \in B_3$ is a trivial braid. Thus $b \in A_7^{\text{regular}}$ and branch-deg $(b) = \text{deg}(b_1) = 4$. Let $b \in A_m^{\text{regular}}$ and let $w = \sigma_{i_1}^{\epsilon_1} \cdots \sigma_{i_q}^{\epsilon_q}$ be a braid word presenting b. If the cardinality of generators $\{\sigma_{i_1}, \ldots, \sigma_{i_q}\}$ appearing in w equals branch-deg(b) - 1, then we say that w is range reduced.

Eg.

Consider the above example again. Let $b = \sigma_2 \sigma_3^{-1} \sigma_4 \in B_7$. Then $b \in A_7^{\text{regular}}$ and branch-deg(b) = 4.

Let $w = \sigma_2 \sigma_3^{-1} \sigma_4 \sigma_3 \sigma_3^{-1}$. The generator set appearing in w is $\{\sigma_2, \sigma_3, \sigma_4\}$. The cardinality is 3 = 4 - 1. Thus w is range reduced.

Let $w' = \sigma_2 \sigma_3^{-1} \sigma_4 \sigma_5 \sigma_5^{-1}$. The generator set appearing in w' is $\{\sigma_2, \sigma_3, \sigma_4, \sigma_5\}$. The cardinality is $4 \neq 4 - 1$. Thus w' is not range reduced.

Def (5.2)

A regular chart of degree m is a graph in I^2 whose edges are oriented and labeled by integers from $\{1, \ldots, m-1\}$ and the vertices are as in the figure, such that at each black vertex, let w be a braid word obtained by reading the labels and orientations of the edges around the vertex, then w is a range reduced word representing an element of A_m^{regular} .

Figure: black vertex, crossing, white vertex

a regular chart \iff a regular surface braid a black vertex \iff a branch point

Thm (5.3)

Any regular surface braid is described by a regular chart. (Such a chart is unique up to regular chart moves (Thm. 5.4)).

Seiichi Kamada (OCU)

Chart description of surface braids

Regular chart moves

Chart moves of type W

27 / 31

Chart moves of regular type B (Assume that i and j are elements of the labels $\{i_1, \ldots, i_n\}$ around the black vertex of the left side)

Passing moves. (Assume that j satisfies $|i_k - j| > 1$ (k = 1, ..., n), where $\{i_1, \ldots, i_n\}$ is the labels around the black vertex)

Label shift moves, which shift the labels +1 or -1.

Examples of label shift moves.

Thm (5.4)

A regular chart description of a regular surface braid is unique up to chart moves of type W, chart moves of regular type B, passing moves and label shift moves.

$${simple surface braids} /_{\sim} \stackrel{1:1}{\iff} {simple charts} /_{\sim}$$

$${\text{regular surface braids}} /_{\sim} \stackrel{1:1}{\iff} {\text{regular charts}} /_{\sim}$$

Thank you.