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Twisted link diagram

D : twisted link diagram ⇔ D : a link diagram whose dou-
ble points are given the informations
over/under or virtual possibly with
some bars on arcs

A twisted link is the equivalence class of a twisted link diagram under
Reidemeister moves I, II, III, virtual Reidemeister moves I, II, III, IV
and twisted Reidemeister moves I, II, III.
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Generalized Reidemeister moves

Reidemeister moves

-� -� -�

I II III

Virtual Reidemeister moves

-� -� -� -�

I II III IV
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Extended Reidemeister moves

Generalized Reidemeister moves +

-� -�

-�

I II III
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Abstract links

An abstract link diagram (Σ, DΣ) : a pair of a, possibly
non-orientable compact surface Σ and a link diagram DΣ in Σ such
that |DΣ| is a deformation retract of Σ .
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Abstract links and Twisted links

Theorem(Bourgoin)

ϕ : {twisted link diagrams} → {abstract link diagrams}

s.t. ϕ induce a bijection between the set of twisted
links and the set of abstract links.

- - -

⇒

ϕ(D) = (Σ, DΣ) : an abstract link diagram associated with D
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Twisted Reidemeister moves and abstract links

-� -�

-�

I II III
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Link diagram realizations of twisted links

D : a twisted link diagram
(Σ, DΣ) : an abstract link diagram associated with D

(F, DF) : a link diagram realization of D in a closed surface F

⇔ a pair of a closed surface F and a link diagram DF

s.t. there is a embedding f from Σ to F whose
image of DΣ is DF (f(DΣ) = DF ).
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Twisted links and stable equivalence classes

�

�

�

�
{twisted links}⇔

⋃

F∈{closed surfaces }

{
links in F ×̃I

} /
stable equivalence
relation

Theorem (M. Bourgoin)

Stable equivalence classes of links in oriented thickened surfaces have
a unique irreducible representative.
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Index diagram

D : a virtual knot diagram
c : a real crossing of D

The index diagram of a real crossing c, Dc of D is a two component
link diagram d1 ∪ d2 which is obtained from D by smoothing at c
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Intersection index of a real crossing

D: a virtual knot diagram
c : a real crossing of D

We label each component of Dc by (1, −1) as in the figure below.

1-1
1 -1

c c

sgn(c)=+1 sgn(c)=-1
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Intersection index of a real crossing

D : a virtual knot diagram c : a real crossing of D

Dc : the index diagram of c b : a non self real crossing of Dc

1 1-1 -11 1-1 -1

b b b b

ι(b) = 1 ι(b) = −1

The intersection index Ind(c) of a real crossing c is defined by

Ind(c) =
∑

b∈d1∩d2

ι(b)
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The nth partial writhe

The nth partial writhe of D is defined as follows

Jn(D) =
∑

Ind(c)=n

sgn(c)

where sgn(c) is the sign of a real crossing c.

Theorem[S. Satoh, K. Taniguchi]

Jn(D) is an invariant of a virtual knot for each integer n 6= 0.

D 0 -1 1 -1 1

J1(D) = −2, J−1(D) = −2
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Odd writhe

D : a virtual knot diagram
A real crossing c of D is odd if we meet an odd number of crossings
when we walk along one of arcs of D whose starting point and
ending point are c.
The odd writhe of D is defined as follows

J(D) =
∑

c: odd

sgn(c)

Theorem [L. Kauffman]

J(D) is an invariant of a virtual knot.

J(D) = 2
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Odd writhe and the nth partial writhe

D : a virtual knot diagram

Corollary[S. Satoh and K. Taniguchi]

J(D) =
∑

n:odd

Jn(K)

D 0 -1 1 -1 1

J1(D) = −2, J−1(D) = −2, J(D) = −4
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Definition of Index polynomial

The index polynomial of a virtual knot D is defined by as follows

QD(t) =
∑

c

sgn(c)(t|Ind(c)| − 1)

where c runs over all real crossings of D.

Theorem [A. Henrich, Y. H. Im, K. Lee, S. Y. Lee]

QD(t) is an invariant of a virtual knot.

Corollary [S. Satoh and K. Taniguchi]

QD(t) =
∑

n6=0

(Jn(D) + J−n(D))(tn − 1)
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Example

D 0 -1 1 -1 1

J1(D) = −2, J−1(D) = −2, J(D) = −4,
QD(t) = −4(t − 1)
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Index diagrams of twisted links

D : a twisted link diagram

A component of D is said to
be even(or odd) if there are
even (or odd) number of bars
on it.

odd and even even

The index diagram of a real crossing c, Dc is obtained from D as
follows;

If c is the real crossing of the distinct components of D, say d1

and d2, Dc = d1 ∪ d2

If c is the real crossing of a component d of a twisted link
diagram D, Dc is a two component link diagram d1 ∪ d2

obtained from d by smoothing at c
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Frilled Index diagram

The frilled index diagram of a real crossing c, D̃c is obtained from
Dc as follows;

If d1 and d2 are even, D̃c = Dc

If di is odd, D̃c is obtained from Dc by adding a bar to di as in
the figure below. (© indicates that di is an odd component.)

c cc c c

c c

d1 d2

c

c

d1 d2 d1 d2 d1 d2 d1 d2 d1 d2 d1 d2 d1 d2 d1 d2
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Examples

C1

C2

DC1
~ DC

~

C1 C2

DC1
~ DC2

~

C3

D DC3
~

D
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bar-edge

p: {twisted link diagrams } → {immersed loops with some bar}

D : twisted link diagram
e: bar-edge of D ⇔ Preimege of a segment of p(D) between two

bars
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Weight map of a frilled index diagram

D : a twisted link diagram
D̃c: a frilled index diagram of a real crossing c of D

E(D̃c) : the set of bar-edge of D̃c

σ : a weight map of D̃c ⇔
σ : E(D̃c) → {1, −1}
s.t. σ(e) 6= σ(e′) for e, e′ ∈ E(D̃c) if e and e′ are
adjacent .

C1

C2
DC1~

DC2~
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Weight map of a frilled index diagram

A weight map is admissible if the neighborhood of c is as in the
following figure.

c c c

c c c

c c

c c

c

c

c

c

c c cc c c

c c c c

cc c c

W1(C)

sgn(c)=+1

sgn(c)=-1

sgn(c)=+1

sgn(c)=-1

W2(C)

W3(C)

W4(C)

W5(C)

W6(C)
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The nth partial writhe of a twisted link diagram

D : a twisted link diagram
D̃c = d̃1 ∪ d̃2 : a frilled index diagram of a real crossing c of D

For a real crossing b ∈ d̃1 ∩ d̃2, let ι̃(b) be as in follows :
1 1-1 1 1-1 -1 -1 11 -111 -1 -1 -1

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

b

1 -1 0
The frilled index of c is define as follows

Ĩnd(c) =
∑

σ∈W(c)

∑

b∈d̃1∩d̃2

ι̃(b),

where W(c) is the set of admissible weight maps of D̃c.
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The nth partial writhe of a twisted link diagram

D: a twisted link diagram R(D): the set of real crossings of D
R1(D) ={c ∈ R(D)| c: a self crossing, d1, d2: even} ,
R2(D) ={c ∈ R(D)| c: a non self crossing, d1, d2: even},
R3(D) ={c ∈ R(D)| c: a self crossing, di: even, dj: odd (i 6= j)},
R4(D) ={c ∈ R(D)| c: a non self crossing, di: even, dj: odd
(i 6= j)},
R5(D) ={c ∈ R(D)| c: a self crossing, d1, d2: odd},
R6(D) ={c ∈ R(D)| c: a non self crossing, d1, d2: odd},

where Dc = d1 ∪ d2 is the index diagram for a real crossing, c of D.

For k ∈ {1, 2, 3, 4} and n ∈ Z, the nth partial writhe of a twisted
link is defined as follows:

J̃k
n(D) =

∑

c∈Rk(D),gInd(c)=n

sgn(c)
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Theorem

For k ∈ {5, 6} and n ∈ {0, 1}, J̃k
n(D) is defined as follows

J̃k
n(D) =

∑

c∈Rk(D),gInd(c)≡n mod 2

sgn(c)

Theorem

J̃k
n(D) is an invariant of twisted links for k = 1, 2, 3, 4 and n 6= 0

(or k = 5, 6 and n ∈ {0, 1}).
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Example 1

C1 C2

DC1~

DC2
~

C3

D

C1 C2 C3 C1 C2 C3

C1 C2 C3 C1 C2 C3

DC3
~

C1 C2 C3 C1 C2 C3

0 1

-1 0

0 -2

J̃3
1 (D) = 1, J̃3

−1(D) = −1, J̃3
−2(D) = 1
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Twisted Jones polynomial

D: a twisted link diagram
S :a state S of D : a twisted link diagram which is obtained from D

by applying A or B splices at all real crossings of D

Splice

A
*

B
j

〈D〉 =
∑

S

A♮S(−A2−A−2)♯SM ♯oS

where ♮S is the number of A-splices
minus that of B, ♮S is the number
of loops in S and ♯oS is the number
of loops with the odd number of
bars
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Example 2

· · ·

m − 2

· · ·

m − 2
Dm Dm

′

The twisted Jones polynomials of Dm and Dm
′ are

−A−6(A4 + A−4) − A−4m(A3 − A−3)(A + A−1) (or
−A6(A4 + A−4) + A−4m+12(A3 − A−3)(A + A−1)) if m is
even (or odd). However we obtain
J̃1

1 (Dm) = (−1)m, J̃1
−1(Dm) = (−1)m,

J̃5
[1](D

′
m) = (−1)m × 2
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Double Flype

(i) parallel (ii)non parallel

Proposition

The partial writhe is invariant under parallel double flypes.
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Example of diagrams related with a non parallel

double flype

(i) (ii)D1 D2

J̃3
2 (D1) = J̃3

−2(D1) = 1

J̃
j
i (D2) = 0
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Example of diagrams related with a non parallel

double flype

(i) (ii)D1 D2

J̃3
2 (D1) = J̃3

−2(D1) = 1

J̃
j
i (D2) = 0
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