# Numerical invariants of twisted knots

#### Naoko KAMADA

Nagoya City University

Dec. 17, 2013

#### ADVANCED SCHOOL AND DISCUSSION MEETING ON KNOT THEORY AND ITS APPLICATIONS

< ロ > < 同 > < 三 > < 三 > <

3



- 2 Twisted links and link diagrams in closed surfaces
- Partial writhes of virtual knots
- Partial writhes of twisted links
- 5 Property and Example

< □ ▶

▲ □ ▶ ▲ 三 ▶ ▲ □ ▶

3

# Twisted link diagram

D : twisted link diagram  $\Leftrightarrow D$  : a link diagram whose double points are given the informations over/under or virtual possibly with some bars on arcs



A twisted link is the equivalence class of a twisted link diagram under Reidemeister moves I, II, III, virtual Reidemeister moves I, II, III, IV and twisted Reidemeister moves I, II, III.

## Generalized Reidemeister moves



▲□▶ ▲□▶ ▲□▶ ▲豆▶

÷.

590

## Extended Reidemeister moves

#### Generalized Reidemeister moves +



▲□▶ ▲□▶ ▲□▶ ▲□▶

王

## Abstract links

An abstract link diagram  $(\Sigma, D_{\Sigma})$ : a pair of a, possibly non-orientable compact surface  $\Sigma$  and a link diagram  $D_{\Sigma}$  in  $\Sigma$  such that  $|D_{\Sigma}|$  is a deformation retract of  $\Sigma$ .



▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

E

# Abstract links and Twisted links

#### Theorem(Bourgoin)

- $\varphi: \{ \text{twisted link diagrams} \} \rightarrow \{ \text{abstract link diagrams} \}$ 
  - s.t.  $\varphi$  induce a bijection between the set of twisted links and the set of abstract links.



 $arphi(D)=(\Sigma,D_{\Sigma})$  : an abstract link diagram associated with D , is solved with D .

Naoko KAMADA

Numerical invariants of twisted knots

### Twisted Reidemeister moves and abstract links



< ロ > < 同 > < 三 > < 三 > <

3

## Link diagram realizations of twisted links

D: a twisted link diagram  $(\Sigma, D_{\Sigma})$ : an abstract link diagram associated with D  $(F, D_F)$ : a link diagram realization of D in a closed surface F  $\Leftrightarrow$  a pair of a closed surface F and a link diagram  $D_F$ s.t. there is a embedding f from  $\Sigma$  to F whose image of  $D_{\Sigma}$  is  $D_F$   $(f(D_{\Sigma}) = D_F)$ .







∃ →

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 







Naoko KAMADA

Numerical invariants of twisted knots

### Twisted links and stable equivalence classes

$$\{\text{twisted links}\} \Leftrightarrow \bigcup_{F \in \{\text{closed surfaces}\}} \left\{ \text{links in } F \tilde{\times} I \right\} / \text{stable equivalence}$$

#### Theorem (M. Bourgoin)

Stable equivalence classes of links in oriented thickened surfaces have a unique irreducible representative.

< ∃ →

 $\mathcal{A} \mathcal{A} \mathcal{C}$ 

< ∃ >

## Index diagram

- D: a virtual knot diagram
- c : a real crossing of D

The index diagram of a real crossing c,  $D_c$  of D is a two component link diagram  $d_1 \cup d_2$  which is obtained from D by smoothing at c



< □ ▶

A

#### Intersection index of a real crossing

- D: a virtual knot diagram
- c : a real crossing of D

We label each component of  $D_c$  by (1, -1) as in the figure below.



▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ .

王

#### Intersection index of a real crossing

 $m{D}$  : a virtual knot diagram  $m{c}$  : a real crossing of  $m{D}$  $m{D}_{m{c}}$  : the index diagram of  $m{c}$   $m{b}$  : a non self real crossing of  $m{D}_{m{c}}$ 



The intersection index  $\operatorname{Ind}(c)$  of a real crossing c is defined by

$$\operatorname{Ind}(c) = \sum_{b \in d_1 \cap d_2} \iota(b)$$

< ロ > < 同 > < 三 > < 三 > <

3

# The nth partial writhe

The nth partial writhe of D is defined as follows

$$J_n(D) = \sum_{\mathrm{Ind}(c)=n} \mathrm{sgn}(c)$$

where  $\operatorname{sgn}(c)$  is the sign of a real crossing c.

#### Theorem[S. Satoh, K. Taniguchi]

 $J_n(D)$  is an invariant of a virtual knot for each integer n 
eq 0.



# Odd writhe

D: a virtual knot diagram

A real crossing c of D is odd if we meet an odd number of crossings when we walk along one of arcs of D whose starting point and ending point are c.

The odd writhe of D is defined as follows

$$J(D) = \sum_{c: \; \mathsf{odd}} \operatorname{sgn}(c)$$

Theorem [L. Kauffman]

J(D) is an invariant of a virtual knot.



- ∢ ∃ ▶

< ∃ →

## Odd writhe and the nth partial writhe

#### D: a virtual knot diagram

Corollary[S. Satoh and K. Taniguchi]

$$J(D) = \sum_{n: ext{odd}} J_n(K)$$



 $J_1(D) = -2$ ,  $J_{-1}(D) = -2$ , J(D) = -4

< □ ▶ < / □ ▶

-∢ ∃ ▶

E

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

< ∃ →

# Definition of Index polynomial

The index polynomial of a virtual knot D is defined by as follows

$$Q_D(t) = \sum_c \mathrm{sgn}(c)(t^{|\mathrm{Ind}(c)|}-1)$$

where c runs over all real crossings of D.

Theorem [A. Henrich, Y. H. Im, K. Lee, S. Y. Lee]  $Q_D(t)$  is an invariant of a virtual knot.

Corollary [S. Satoh and K. Taniguchi] $Q_D(t) = \sum_{n \neq 0} (J_n(D) + J_{-n}(D))(t^n - 1)$ 

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ...

E.

#### Example



 $egin{aligned} J_1(D) &= -2, \ J_{-1}(D) = -2, \ J(D) = -4, \ Q_D(t) &= -4(t-1) \end{aligned}$ 

E

 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

▲□▶ ▲□▶ ▲□▶ ▲ □▶ -

# Index diagrams of twisted links

D: a twisted link diagram

A component of D is said to be even(or odd) if there are even (or odd) number of bars on it.



odd and even

```
even
```

The index diagram of a real crossing c,  $D_c$  is obtained from D as follows;

- If c is the real crossing of the distinct components of D, say  $d_1$  and  $d_2$ ,  $D_c=d_1\cup d_2$
- If c is the real crossing of a component d of a twisted link diagram D,  $D_c$  is a two component link diagram  $d_1 \cup d_2$  obtained from d by smoothing at c

## Frilled Index diagram

The frilled index diagram of a real crossing c,  $\tilde{D}_c$  is obtained from  $D_c$  as follows;

- ullet If  $d_1$  and  $d_2$  are even,  $ilde{D}_c=D_c$
- If  $d_i$  is odd,  $\tilde{D}_c$  is obtained from  $D_c$  by adding a bar to  $d_i$  as in the figure below. ( $\bigcirc$  indicates that  $d_i$  is an odd component.)



◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● 豆

### Examples







 $ilde{D}_{C_2}$ 



E

590





D



Naoko KAMADA

 $\tilde{D}_{C_2}$ 

◆□▶ ◆□▶ ◆目▶ ◆目▶ →

#### bar-edge

- $p: \{ \text{twisted link diagrams } \rightarrow \{ \text{immersed loops with some bar} \}$
- D: twisted link diagram

e: bar-edge of  $D \Leftrightarrow$  Preimege of a segment of p(D) between two bars



▲ (□ ) ▲ (□ ) →

< □ ▶

▲ 글 ▶

=

# Weight map of a frilled index diagram

D : a twisted link diagram  $D_c$ : a frilled index diagram of a real crossing c of D $E(D_c)$  : the set of bar-edge of  $D_c$  $\sigma$  : a weight map of  $D_c \Leftrightarrow$  $\sigma: E(D_c) \to \{1, -1\}$ s.t.  $\sigma(e) \neq \sigma(e')$  for  $e, e' \in E(\tilde{D}_c)$  if e and e' are adjacent .  $C_1$  $ilde{D}_{C_1}$  $ilde{D}_{C_2}$ < ∃ ▶ < ∃ >  $\mathcal{A} \mathcal{A} \mathcal{A}$ 

# Weight map of a frilled index diagram

A weight map is admissible if the neighborhood of c is as in the following figure.



 $\mathcal{A}$ 

## The *n*th partial writhe of a twisted link diagram

![](_page_24_Figure_2.jpeg)

The frilled index of c is define as follows

$$\widetilde{\mathrm{Ind}}(c) = \sum_{\sigma \in \mathcal{W}(c)} \sum_{b \in \tilde{d_1} \cap \tilde{d_2}} \tilde{\iota}(b),$$

where  $\mathcal{W}(c)$  is the set of admissible weight maps of  $ilde{D}_c$ .

Ŧ

## The nth partial writhe of a twisted link diagram

 $\begin{array}{ll} D: \text{ a twisted link diagram } \mathcal{R}(D): \text{ the set of real crossings of } D\\ \mathcal{R}_1(D) =& \{c \in \mathcal{R}(D) \mid c: \text{ a self crossing, } d_1, d_2: \text{ even}\},\\ \mathcal{R}_2(D) =& \{c \in \mathcal{R}(D) \mid c: \text{ a non self crossing, } d_1, d_2: \text{ even}\},\\ \mathcal{R}_3(D) =& \{c \in \mathcal{R}(D) \mid c: \text{ a self crossing, } d_i: \text{ even, } d_j: \text{ odd } (i \neq j)\},\\ \mathcal{R}_4(D) =& \{c \in \mathcal{R}(D) \mid c: \text{ a non self crossing, } d_i: \text{ even, } d_j: \text{ odd } (i \neq j)\},\\ \mathcal{R}_5(D) =& \{c \in \mathcal{R}(D) \mid c: \text{ a self crossing, } d_1, d_2: \text{ odd}\},\\ \mathcal{R}_6(D) =& \{c \in \mathcal{R}(D) \mid c: \text{ a non self crossing, } d_1, d_2: \text{ odd}\},\\ \text{where } D_c =& d_1 \cup d_2 \text{ is the index diagram for a real crossing, } c \text{ of } D. \end{array}$ 

For  $k \in \{1, 2, 3, 4\}$  and  $n \in \mathbb{Z}$ , the *n*th partial writhe of a twisted link is defined as follows:

Naoko KAMADA

$$\widetilde{J}_n^k(D) = \sum_{c \in \mathcal{R}_k(D), \widetilde{\operatorname{Ind}}(c) = n} \operatorname{sgn}(c)$$

Numerical invariants of twisted knots

#### Theorem

For  $k \in \{5,6\}$  and  $n \in \{0,1\}$ ,  $ilde{J}^k_n(D)$  is defined as follows

$$\widetilde{J}_n^k(D) = \sum_{c \in \mathcal{R}_k(D), \widetilde{\operatorname{Ind}}(c) \equiv n \mod 2} \operatorname{sgn}(c)$$

#### Theorem

 $ilde{J}^k_n(D)$  is an invariant of twisted links for k=1,2,3,4 and n
eq 0 (or k=5,6 and  $n\in\{0,1\}$ ).

E

# Example 1

![](_page_27_Picture_2.jpeg)

 $ilde{J}_{1}^{3}(D)=1$ ,  $ilde{J}_{-1}^{3}(D)=-1$ ,  $ilde{J}_{-2}^{3}(D)=1$ 

< □ > < □ > < □ > < □ > < □ > .

王

500

#### **Twisted Jones polynomial**

#### **D**: a twisted link diagram

S :a state S of D : a twisted link diagram which is obtained from D by applying A or B splices at all real crossings of D

Splice

![](_page_28_Figure_5.jpeg)

$$\langle D 
angle = \sum_{S} A^{
atural} (-A^2 - A^{-2})^{
atural} M^{
atural}_{oS}$$

where  $\natural S$  is the number of A-splices minus that of B,  $\natural S$  is the number of loops in S and  $\sharp_o S$  is the number of loops with the odd number of bars

< 🗗 🕨

-∢ ∃ ▶

Example 2

![](_page_29_Figure_2.jpeg)

The twisted Jones polynomials of  $D_m$  and  $D_m'$  are  $-A^{-6}(A^4 + A^{-4}) - A^{-4m}(A^3 - A^{-3})(A + A^{-1})$  (or  $-A^6(A^4 + A^{-4}) + A^{-4m+12}(A^3 - A^{-3})(A + A^{-1}))$  if m is even (or odd). However we obtain  $\tilde{J}_1^1(D_m) = (-1)^m$ ,  $\tilde{J}_{-1}^1(D_m) = (-1)^m$ ,  $\tilde{J}_{[1]}^5(D'_m) = (-1)^m \times 2$ 

# Double Flype

![](_page_30_Figure_2.jpeg)

#### Proposition

The partial writhe is invariant under parallel double flypes.

◆□▶ ◆□▶ ◆三▶ ◆三▶

臣

590

# Example of diagrams related with a non parallel double flype

![](_page_31_Figure_2.jpeg)

(i)  $D_1$ 

(ii) *D*<sub>2</sub>

$$egin{aligned} & \tilde{J}_2^3(D_1) = \tilde{J}_{-2}^3(D_1) = 1 \ & \tilde{J}_i^j(D_2) = 0 \end{aligned}$$

<ロト < 同ト < ヨト < ヨト

E.

590

# Example of diagrams related with a non parallel double flype

![](_page_32_Figure_2.jpeg)

(i)  $D_1$ 

(ii) *D*<sub>2</sub>

$$egin{aligned} & ilde{J}_2^3(D_1) = ilde{J}_{-2}^3(D_1) = 1 \ & ilde{J}_i^j(D_2) = 0 \end{aligned}$$

![](_page_32_Picture_6.jpeg)

Naoko KAMADA

< □ > < □

< E ▶ < E ▶

E