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Polynomial knots

Definition

A long knot defined by an embedding of the form t → (f (t), g(t), h(t)),
where f (t), g(t) and h(t) are real polynomials, is called a polynomial knot.

It has been proved that each long knot is topologically equivalent to some
polynomial knot.
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Example

t → (t3 − 3t, t4 − 4t2, t5 − 10t)
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Degree of a polynomial knot

Definition

A polynomial knot defined by t → (f (t), g(t), h(t)) is said to have degree
d if deg(f (t)) < deg(g(t)) < deg(h(t)) = d .

It is easy to note that if a polynomial knot K has degree d , we can obtain
polynomial knots of degree d + k for each k ≥ 1 which are topologically
equivalent to K .
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Minimal polynomial degree

Definition

A positive integer d is said to be the minimal degree for a knot K if there
is a polynomial knot defined by t → (f (t), g(t), h(t)) which is
topologically equivalent to K with deg(f (t)) < deg(g(t)) < deg(h(t))
and deg(h(t)) = d and no polynomial knot with degree less than d is
equivalent to K .
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Space of polynomial knots

Let us denote: P : The set of all polynomial knots.
Pd : The set of all polynomial knots of degree d .
The set Pd can be seen as an open subset of R3d and hence has a nice
subspace topology.
Also as P = ∪dPd so can be given the inductive limit topology.
Pd and P are topological spaces.
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Equivalence

Definition

Two polynomial knots Φ0 and Φ1 are said to be polynomially isotopic if
there exists a one parameter family of polynomial knots {Pt |t ∈ [0, 1]}
such that P0 = Φ0 and P1 = Φ1

Being polynomially isotopic is an equivalence relation in P for which it is
easy to note that the equivalence classes are nothing but the path
components of the space P. it was proved that:
if two polynomial knots are topologically equivalent as long knots then
they are polynomially isotopic. Thus they will lie in the same path
component of P.
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Equivalence

Two polynomial knots of different degree may represent equivalent long
knots and the polynomial isotopy may pass through polynomial knots of
various degrees. For the space Pd of polynomial knots of degree d , there is
another equivalence defined as:

Definition

Two polynomial knots in Pd are said to be path equivalent if they belong
to the same path component of Pd .

It can be proved easily that if two polynomial knots in Pd are path
equivalent then they are topologically equivalent. Would like to explore if
the converse is true or not?
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Main questions

In connection with polynomial representation of knots, two main important
questions are of interest namely:

Question 1: Given a knot K what is the least degree d such that K
has a polynomial representation in Pd?

Question 2: Given a positive integer d what are the knots that can
have a polynomial representation in Pd?

For both the questions only partial answers are known.
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Note: the number of topologically distinct knots in Pd provides us a lower
bound on the number of path components of Pd . Answer to each question
helps in answering the other question.
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Polynomial degree in relation with other invariants

Result 1: If a knot K has a polynomial representation in degree d
then the minimal crossing number c(K )
satisfies

c(K ) ≤ (d − 2)(d − 3)

2
.

Result 2: If K is a polynomial knot in degree d and bridge number
b(K ) then

b(K ) ≤ (d − 1)

2
.

Result 3: If K is a polynomial knot in degree d and super-bridge
number s(K ) then

s(K ) ≤ (d + 1)

2
.
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More bounds on the degree

The nature of crossing data also puts some condition on the degree of a
polynomial knot. For instance, we have the following result for alternating
knots.

Theorem

Suppose a polynomial knot has a regular projection t → (f (t), g(t)) with
n transversal double points. Suppose a polynomial h(t) of degree d is such
that the polynomial knot t → (f (t), g(t), h(t)) is an alternating knot.
Then d ≤ n + 2.
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Answer to Question 2

Question 2 has been addressed for d ≤ 5 and the known theorems are:

Theorem

The only knot that can be represented as a polynomial knot of degree less
than or equal to 4 is the trivial knot.

In fact for d ≤ 4 there is a stronger result:

Theorem

The space Pd of all polynomial knots in degree d for d ≤ 4 is path
connected.

R.Mishra (IISER Pune) Knot invariants through polynomial parametrization 16 December 2013 13 / 40



The spaces Pd for d > 4

The space Pd of all polynomial knots in degree d > 4 are not path
connected. Estimating the number of path component in each space is an
interesting question.
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Information on other invariants

Knot invariants are main tools to use knot theory anywhere.

To use knot theory in a physical scenario we need to use the knot
invariants which are dependent on the knot conformations.

Some of such important knot invariants have been the crossing
number, the bridge number and the unknotting number.

Idea behind defining each of them is similar and is based of the
following theme:

Define a quantity as minimum for a conformation and minimize it
over all conformations in a knot type.
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Super knot invariants

In place of defining a quantity as minimum if it is defined as
maximum ( it is exist in fact ) for a conformation and minimize it
over all knot conformations in a knot type results in a new knot
invariant. Such knot invariants are called as super invariants.

Superbridge index is one of the super invariant introduced by N.
Kuiper.

There are other super invariants such as the super crossing number
and the super unknotting number, studied by Colin Adams and
Others.

R.Mishra (IISER Pune) Knot invariants through polynomial parametrization 16 December 2013 16 / 40



Super invariants

φ′ : S1 → R3 represents a knot conformation K′.
v : R3 → R be a linear function with ||v || = 1 and is such that the
number of critical points of the function
v ◦ φ′ : S1 → R are finite.

A be a set of such linear functions.

The restriction of v to K′ can be thought of as a projection of K′ on
the line Lv perpendicular to the plane v(x , y , z) = 0 and passing
through the origin.

mv (K′) be the number of local maxima [ or minima ] of K′ along the
line Lv . This is same as the number of local maxima [ or minima ] of
the fuction v ◦ φ′.
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Bridge Number & Super Bridge Number

1 The bridge number b(K′) of a knot conformation K′ is defined as,
the minimum of {mv (K′)} where v takes all possible values from A,
i.e. Take an arbitrary line Lv . Calculate the number of local maxima [
or minima ] of K′ along Lv . Then minimize it over all the possible
directions Lv in R3. The resulting number is the bridge number of K′.

2 The super bridge number sb(K′) of a knot conformation K′ is
defined as, the maximun {mv (K′)} where v takes all possible values
from A, i.e. Take an arbitrary line Lv . Calculate the number of local
maxima [ or minima ] of K′ along Lv . Then maximize it over all the
possible directions Lv in R3. The resulting number is the super bridge
number of K′.
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Bridge Index & Super Bridge Index

1 The bridge index of a knot type [K] is defined as,

b[K] := min
K′∈[K] b(K′) i.e. Take an arbitrary conformation K′

contained in the knot type [K]. Calculate the bridge number of K′.
Then minimize it over all conformations contained in the knot type
[K]. The resulting number is the bridge index of [K].

2 A super bridge index of a knot type [K] is defined as,

sb[K] := min
K′∈[K] sb(K′) i.e. Take an arbitrary conformation K′

contained in the knot type [K]. Calculate the super bridge number of
K′. Then minimize it over all conformations contained in the knot
type [K]. The resulting number is the super bridge index of [K].
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relation between Bridge index and Super bridge
index

Clearly b(K ) ≤ Sb(K ).

Kuiper proved that b(K ) < Sb(K ).

Colin Adams and their group has proved that Sb(K ) ≤ 2b(K ).

Kuiper proved in his paper that a torus knot of type (p, q) with p < q
has super bridge index min{2p, q}
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Bridge Index & Super Bridge Index with polynomial
degree:

Looking at a polynomial knot we immediately know its bridge number and
the super bridge number and hence get an upper bound for the bridge
index and the super bridge index. For instance the polynomial trefoil knot
shown in the begining has bridge number 2 and super bridge number 3 and
these happen to be the bridge index and the super bridge index as well.
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Bridge Index & Super Bridge Index

Here is a polynomial figure eight knot with bridge number 2 and super
bridge number 4:

t 7→
(t(t−2)(t+2), (t−2.1)(t+2.1)t3,−12.8064t+22.4679t3−8.90928t5+t7).
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Bridge Index & Super Bridge Index

However the figure eight knot in degree 6 shown below has bridge number
2 and super bridge number 3:

t → (−t4 + 2.279283653 ∗ t3 + 5 ∗ t2 − 8.63068748 ∗ t + .35140383, t5 −
5 ∗ t3 + 4 ∗ t, (t + 2.06) ∗ (t + 1.916737670) ∗ (t + .2122155248) ∗ (t −

1.379221313) ∗ (t − 2.05) ∗ (t + 10))
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3 superbridge knots

From Kuiper’s result it can be shown that for each even positive
integer n ≥ 4 there are infinitely many knots with super bridge index
n.

it has been conjectured that for every integer n ≥ 4 there are
infinitely many knots with super bridge index n.

For n = 3 the story is very different.

Jin and Geon proved that there are only finitely many knots with
super bridge index 3.

They showed that knots other than
31, 41, 52, 61, 62, 63, 72, 73, 74, 84, 87 and 89 can not have super bridge
index 3.
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3 superbridge knots

From this list 31 and 41 are confirmed to have super bridge index 3, it
is evident from their polynomial parametrizations as well!!.

Other than 52, 61, 62 and 63 all other knots are proved to have super
bridge index 4.

Jin and Geon have conjectured that 31 and 41 are the only two knots
who have super bridge index 3.
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The 52 knot

It is a 2 bridge knot so its super bridge must be either 3 or 4.

we have a polynomial representation of 52 in deg 7 shown below:

52: t → (t4 + 2t3 − 21t2 − 24t + 96, t5 − 22t3 + 95, .340592t7 −
.092293t6 − 8.35577t5 + 1.89418t4 + 43.6898t3 − 7.41241t2 + 10.2056t)

R.Mishra (IISER Pune) Knot invariants through polynomial parametrization 16 December 2013 26 / 40



The 52 knot

We still do not know if 7 is the least polynomial degree to represent
this knot.

May be this can give us a proof that 52 is a 4 super bridge knot.

Similarly one can try for all 6 crossing knots.
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Unknotting number

Definition

Given a knot diagram DK the least number of crossing changes
required to convert it into a knot diagram of an unknot is called the
unknotting number of that diagram denoted by u(DK ).

Definition

The unknotting number of a knot K is defined as minimal number of
crossing changes required among all possible diagrams ofK to be able
to convert it into the unknot.

It is a knot invariant and is denoted by u(K).

R.Mishra (IISER Pune) Knot invariants through polynomial parametrization 16 December 2013 28 / 40



Unknotting number using Polynomial knots

Definition

Two polynomial knots φ0 and φ1 are said to be p-isoptopic if there exists a
one parameter family {ps , 0 ≤ s ≤ 1} of polynomial knots (embeddings)
such that p0 = φ0 and p1 = φ1. This family {ps , 0 ≤ s ≤ 1} is called a
p-isotopy between φ0 and φ1.

1 Given a polynomial knot t 7→ (f (t), g(t), h(t), up to p-isotopy we can
always assume that the degree of h(t) is odd.

2 Every polynomial knot is p-isotopic to some polynomial knot defined
as φ(t) = (f (t), g(t), h(t)), the projection of φ into xy plane is a
regular projection. A polynomial knot with this property will be
referred as a good polynomial knot.

3 Given a good polynomial knot t 7→ (f (t), g(t), h(t)) there is a
naturally associated knot diagram drawn on xy plane.
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Unknotting number using Polynomial knots

Definition

Two polynomial knots are said to be strongly p-regular homotopic if
there exists a one parameter family {ps = (fs , gs , hs), 0 ≤ s ≤ R} of
polynomial maps from R to R3 such that p0 = φ0 and pR = φ1 and for
each s, the map t 7→ (fs(t), gs(t)) have the same crossing data, i.e., the
pairs (t1, t2) for which fs(t1) = fs(t2) and gs(t1) = gs(t2) is same for all
s ∈ [0,R].

Thus if two polynomial knots are strongly p-regular homotopic then their
diagrams differ in terms of change in the nature of crossings, i.e., the
diagram of second polynomial knot can be obtained by changing some
over crossings in first diagram into the under crossings or vice-versa.
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Realizing Crossing change in Polynomial knots

1 Let (f (t), g(t), h(t)) be a good polynomial knot. Let (si , ti ) be the
parameters where there is a crossing, i.e., f (si ) = f (ti ) and
g(si ) = g(ti ).

2 Let mi (h) = |h(si )−h(ti )|
|si−ti | . Each mi (h) is a positive real number. Given

a polynomial knot (f (t), g(t), h(t)) we can compare mi (h) and mj(h)
for each i 6= j .

3 Suppose mi1(h) < mi2(h) < . . . < min(h). Then {i1, i2, . . . , in} defines
an order on the set {1, 2, . . . , n}. In the next proposition we show
that it is possible to attain each order among mi (h)s by choosing a
suitable good polynomial representation of a knot diagram.
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Realizing Ceossing change in Polynomial knots

Theorem

Let D be a knot diagram of a knot K with n crossings. Let σ be an order
on {1, 2, . . . , n}. Then there exists a good polynomial knot
t 7→ (f (t), g(t), hσ(t)) representing the diagram D with crossings at
parametric pairs of values (si , ti ), i = 1, 2, . . . , n for which

mi (hσ) = |hσ(si )−hσ(ti )|
|si−ti | satisfy the order σ.
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Realizing Crossing change in Polynomial knots

Theorem

Every polynomial knot is strongly p-regular homotopic to a polynomial
unknot.

Proof. Let φ(t) = (f (t), g(t), h(t)), be a polynomial knot such that the
map t 7→ (f (t), g(t) is an immersion and the deg(h(t)) is odd. For each
s ∈ R consider a family of maps Φs : R ↪→ R3 as
Φs(t) = (f (t) + s, g(t) + s, h(t) + s2t). The proposition now follows from
the following two claims.

Claim 1. For each s ∈ R the map φs(t) = (f (t) + s, g(t) + s, h(t) + s2t)
is an immersion and the map t 7→ (f (t) + s, g(t) + s) have the same
crossing data as that of t 7→ (f (t), g(t)).

Claim 2. There exists some real number R such that for s ≥ R the maps
φs : R ↪→ R3 represent the trivial knot.
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Crossing Change

1 The proof of the previous theorem demonstrates that we have a
continuous map Φ : R× [0,R] −→ R3 such that
Φ(t, 0) = (f (t), g(t), h(t)), the given knot and
Φ(t,R) = (f (t) + R, g(t) + R, h(t) + R2t) a trivial knot and for each
s ∈ [0,R] Φ(t, s) = (f (t) + s, g(t) + s, h(t) + s2t) is an immersion.
The values of s for which Φ(t, s) = (f (t) + s, g(t) + s, h(t) + s2t)
fails to be an embedding are called singular values.

2 If the given polynomial knot is non trivial then from the above
proposition it follows that we can obtain a polynomial unknot with
the same crossing data whose diagram is obtained by switching some
of the crossings of the given knot from over crossing to under crossing
or vice versa. As it is a continuous deformation, for some finite
number of values of s ∈ [0,R] the maps Φ(−, s) : R −→ R3 must be
singular knots,i.e., must have double points.
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Singularity Index

Definition

Let φ(t) = (f (t), g(t), h(t)), be a polynomial knot with say n crossings.
Let Rσ be the least positive real number such that the map
Φs : R −→ R3 defined by t 7→ (f (t) + s, g(t) + s, h(t) + s2t) represents a
trivial knot for s = R + ε, for ε > 0. Then the minimum number of
singular values, i.e., the values of s ∈ [0,Rσ] for which the map Φs is a
singular knot is defined as the singularity index of φ denoted by SIφ.

Definition

The minimum value of all SIphi , minimum taken over all φ that
represent a knot diagram D is defined as the singularity index of the
diagram D denoted by SI (D).
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Singularity Index

Definition

The minimum value of all SI (D), minimum taken over all knot
diagrams that represent a knot K is defined as the singularity index of
the knot K and is denoted by SI (K ).

1. Singularity index SI (K ) of a knot is a knot invariant.
2. Singularity index of the unknot is zero.
3. for any nontrivial knot K , SI (K ) ≥ 1.
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Singularity Index and Unknotting number

Theorem

Singularity index of a knot diagram is less than or equal to its unknotting
number.
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Computing Singularity Index

Consider a polynomial representation of figure eight knot given by t 7→
(t(t−2)(t+2), (t−2.1)(t+2.1)t3,−12.8064t+22.4679t3−8.90928t5+t7).
It has a knot diagram as shown below.
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Computing

In the deformation φs = t 7→ (t(t − 2)(t + 2) + s, (t − 2.1)(t + 2.1)t3 +
s,−12.8064t + 22.4679t3 − 8.90928t5 + t7 + s2 ∗ t) we see that for
s > 1.48 each φs is an unknot (Figure 4) and there is only one singular
knot corresponding to s = 1.48. Thus the singularity index of this diagram
is 1 which is same as its unknotting number.
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Thank you

R.Mishra (IISER Pune) Knot invariants through polynomial parametrization 16 December 2013 40 / 40


