( BioMied Central

BIVIC Evolutionary Biology The Open Access Publisher

This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted
PDF and full text (HTML) versions will be made available soon.

Selection for altruism through random drift in variable size populations
BMC Evolutionary Biology 2012, 12:61 doi:10.1186/1471-2148-12-61

Bahram Houchmandzadeh (bahram.houchmandzadeh@uijf-grenoble.fr)
Marcel Vallade (marcel.vallade @ujf-grenoble.fr)

ISSN 1471-2148
Article type Research article
Submission date 9 November 2011
Acceptance date 10 May 2012
Publication date 10 May 2012

Article URL http://www.biomedcentral.com/1471-2148/12/61

Like all articles in BMC journals, this peer-reviewed article was published immediately upon
acceptance. It can be downloaded, printed and distributed freely for any purposes (see copyright
notice below).

Articles in BMC journals are listed in PubMed and archived at PubMed Central.

For information about publishing your research in BMC journals or any BioMed Central journal, go to

http://www.biomedcentral.com/info/authors/

© 2012 Houchmandzadeh and Vallade ; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


mailto:bahram.houchmandzadeh@ujf-grenoble.fr
mailto:marcel.vallade@ujf-grenoble.fr
http://www.biomedcentral.com/1471-2148/12/61
http://www.biomedcentral.com/info/authors/
http://creativecommons.org/licenses/by/2.0

Selection for altruism through random drift in variable
Size populations

Bahram Houchmandzadeh
Corresponding author
Email: bahram.houchmandzadeh@ujf-grenoble.fr

Marcel Valladé
Email: marcel.vallade @ujf-grenoble.fr

! Univ. Grenoble 1/CNRS, LIPhy UMR 5588, Grenoble F-38401, France

Abstract

Background

Altruistic behavior is defined as helping others at a cost to oneself and adofireess. The
lower fitness implies that altruists should be selected against, which istradiation with
their widespread presence is nature. Present models of selection for alkinism (
multilevel) show that altruistic behaviors can have ‘hidden’ advantages ddherion good’
produced by altruists is restricted to some related or unrelated groups. Thekearede
mostly deterministic, or assume a frequency dependent fitness.

Results

Evolutionary dynamics is a competition between deterministic selectisaysesand

stochastic events due to random sampling from one generation to the next. We show here that

an altruistic allele extending the carrying capacity of the habitatvia by increasing the
random drift of “selfish” alleles. In other terms, tiveation probability of altruistic genes can
be higher than those of a selfish ones, even though altruists have a smalst filoreover
when populations are geographically structured, the altruists advantage canye highl
amplified and the fixation probability of selfish genes can tend toward zero. The above
results are obtained both by numerical and analytical calculations. Aahhgstilts are
obtained in the limit of large populations.

Conclusions

The theory we present does not involve kin or multilevel selection, but is based on the
existence of random drift in variable size populations. The model is a generalcfatien
original Fisher-Wright and Moran models where the carrying capacigndismpon the
number of altruists.

Background

Light production inVibrio fischeri [1,2], siderophore production Pseudomonas aeruginosa
[3], invertase enzyme production$accharomyces cerevisiae [4], stalk formation by
Dictyostelium discoideum, [2,5] are but a few examples of individuals in a community who



help others at their own cost by devoting part of their resources to this task. fdugobbas
been termed “altruistic”. From the evolutionary point of view, altruists haveerlfitness
than other individuals in the community who don’t help, but are recipient of the benefits
produced by altruists. Through this paper, we will call these latter indivickedfish’.

From the inception of evolution theory, the problem of the existence of altruists Inas bee
puzzling: how can a mutant with lower fitness prevail? And how does a community of
altruists resist the spread of selfish allele (see [6] for a histgécapective)? In the last 40
years many models have emerged to explain the apparent contradiction betvepealltdre
fitness of altruists and their widespread presence in various communitiesgfoeva, rsee
[7,8]). It is shown in these models that the actual fitness of an altruistic gehe cameased
by other factors such as ‘common good’ restricted to kin (inclusive fithess)[910]
advantages conferred at another level of selection (group or multileveiselad,12]).
These models which can be formulated through the Price equation have seen various
generalizations and they are sometimes widely debated (see [13] and the nue@iesig
has elicited).

The above models are either deterministec populations change their size exactly
according to their relative fitness, or involve frequency dependent fitness [1W,&Show
here that another possibility exists: an altruistic individual can produce aaogood
benefitingeverybody in the community regardless of its nature (altruistic or selfish) and
therefore increasing the carrying capacity of the habitat. Even thougihsetfividuals have
always a higher fitness, genetic drift effects can favor the altruists.

It was established by the founding fathers of Population Genetics that aomtitati confers

a relative fitness ¥ s does not automatically spread and take over the whole community, but
has only a higher probability, called tfiation probability, to do so [16-18]. For a

community of fixed sizé\ of haploid individuals, the fixation probabilityof a mutant

appearing at one copy, for small selection presNare<1, is

]'[:—+E (1)

The fixation probability is composed of two terms: even in the absence of selection, the
population will become homogenic; in this neutral case, all individuals at gemezatio

have an equal probabilityN/of becoming fixed. When a beneficial mutation is present, the
fixation probability of its carrier is increased by the relative exfiésess.

For populations of fixed size, as can be seen from expression (1) or the more precise
expression (10) obtained by Kimura [19] and Moran [20], the fixation probability is a
monotonically increasing function of the sole relative fitness. In the compdigimreen
alleles, arguments based on fitness parameter alone or the fixation prplbedulito the
same conclusions. However, if population size is not fixed, the fixation probabwityich
takes into account both randomness due to finite size and selection, can lead to other
conclusions than the fithess parameter alone.

Consider an altruistic gene that by some means (production of a ‘common good’, limited
grazing of natural resources, ...) allows the carrying capacity to incieds= community



were composed only of altruists its population size wouldb# it were composed only of
selfish individuals the population size wouldM&N; < Ng) (Figure 1a). The production of
common good decreases the relative fitness of altruisgs by

Figure 1 Variable carrying capacity. (a): A community where the carrying capacity is an
increasing function of altruist number, varying frddfrwhen the population is composed

only of selfish individuals t&; (N > N;) when only altruists are present. (b) Two examples of
random walks describing the stochastic behavior a such a system (transition pieddbil

7), wherem,n are the number of selfish and altruistic individuals. Red line : l0Ss;0Blue

line : loss ofA. A Moran process in this scheme corresponds to a random walk constrained to
remain on an anti-diagonal line

Consider now the fixation probability, of one altruist mutant appearing in a community of

N; selfish individuals. A crude use of expression (1) showsqhaft(ll Ni)_S/ 2. On the
other hand, the fixation probabili# of one selfish individual appearing in a commumty

=(1/N, )+s/2

N; altruists is’%s . We see that if

1 1
S<—-—— 2
NN, )

i.e. the cost to the altruist is smaller than the bienef term of relative population increase,
then an altruist has a larger fixation probabilitgn a selfish oneven though its relative
fitnessissmaller. The relative advantage of a selfish mutant ispemsated by the
increased’random noise’ to which it is exposed.eNbat in a deterministic model of the
above process, thealways lose, sincBindividuals always increase their proportion.

The above argument will be refined in the followihgthe next section, we formulate
precisely the stochastic process of altruism oadliabove by generalizing the Moran model
for non-structured, well mixed populations and wew that altruists can indeed be favored
in their competition with selfish individuals. Wettine the amplification of this advantage in
geographically structuregiscous populations in the third section. The final setti®
dedicated to concluding remarks.

Results and discussion

Stochastic model for altruism

The fundamental aspects of population genetics walaréied in the framework of the
classical Fisher-Wright (FW) stochastic model ofivowerlapping generations or its
continuous time alternative introduced by Moran [Mdpran and FW are equivalent in the
limit of large populations, where both are well eppmated by the same diffusion equation
[21]. These are the simplest models that captedéely elements of population genetics
(genetic drift, fixation probability, fixation time.) with the fewest possible ingredients.

In the Moran model, a population of sidés composed of two types of individual, sagnd
S Empty spots are created randomly with fixed vat@creasing the carrying capacity by



unity. Once an empty spot has been created, itwiltolonized by the progeny of eitherfan
or anSindividual according to their proportion in thensmunity. In order to keep the
population constant, Moran added the constraintttieatolonization of a new spot be
followed immediately by the death of an individirathe community, restoring the
population size t®N. Moran is therefore a simultaneous model of dupboaand

annihilation; the transition probability densities the A to increase or decrease their number
n by one individual are

W*(n - n+l)=anm; W™ (n - n-1) =canm (3)

wherem s the number o®individuals anct is the ‘cost’: 1¢ is the relative fitness of thé
andc > 1 indicates a selectiwdisadvantage. W' stands for the probability density that the
new spot is colonized by axand death occurs among t&dn principle, a similar set of
equations must be written for t&andividuals; however, as the population sizexed,

n+m= N the quantitynin eq.(3) can be replaced byn and the whole stochastic process
treated as a one dimensional random walk foithe

We generalize this model by including two ingredseifrirst, the fixed size constraint can be
relaxed and we I\l vary between two bound andN; : empty spots are created-colonized
and individuals die, without these two events nsaBly succeeding each other. More
importantly, in order to include the effects ofraists, we suppose that the rate of creation of
empty spots is proportional to the number of adtisiand is equal t@n; in contrast, the death
rate is proportional to the number®individuals and is equal .am. This is the simplest
hypothesis that implies that the increase in theyoay capacity of the habitat is proportional
to the number of altruists (see also Methods, miedeh dpproximation).

The stochastic model that captures all these featigra two dimensional random walk with
the following transition probability densities (kg 1b):

W((nm) - (nm+1) =(N, ~(n+m))(@n)m @
w((nm) - (n+1m))=(N, ~(n+m)(an)n ®
W((n.m) ~ (nm-1))=(m+n-N,)(am)m (6)
W((nm) - (n-1m)) = clm+n-N)(am)n )

Consider for example the first two lines of the abequations, which are about birth events:

the factor( Ny —n—m) is the relaxation of Moran constraints and instinas population size
remains belowNs; the factoran accounts for the fact that empty spot creatioas ar
proportional to the number & finally, once a birth event has occurred, thebphulity for it
to be amA or anSis proportional to the number of the correspondinlg-populations present
at this time. The last two lines, which govern pagion decrease, are similar : the factor



(m+ n-= Ni) ensures that population size remains abgythe factoromis the death rate
(population decrease) for everybody due to thegores of selfish individuals. The cost of

n/(m+n)

altruism is included in these equations: the proporofA is , but once a death

event has occurred, the probability for it to beAdn:

cn n
>

m+cn m+n

if c> 1. The results below don’t change significantlthié cost of altruism is included in
other rates. For example, a higher probabilityaieEto reproduce, or any combination that
favorsSoverA. Note that if the increase/decrease rates weepgntient o andn, we

recover the Moran model by settirln\b' =N +1 , In which case each birth/death is
succeeded by a death/birth event (see Methodsioretat Moran model).

The above rates ensure thaAiére lost § = 0), the population size tends towatdand ifS
are lost (n=0), it tends toward\:;. Note that in the mean field approximation of aeve
process where fluctuations are neglected and tleendmistic limit is taken, thé are always
eliminated ifc > 1 (see Methods, mean field approximation).

In finite size populations however, fluctuationaybn important role. The focus of this
paper is the computation of the fixation probaypitif the above process and thr@bability
that altruists or selfish mutants take over the mamity. The fixation probabilityt(k) of a

general stochastic process beginning with theairstiatek and fixing either tdkg orklk
the solution of Kolmogorov backward equation whigla linear set of equations [22]

2 (n(k)=r(a))w(k ~a)=0 (®)
m(ky)=0; m(k,) =1 9)

where the sum is over all the stateattainable from the stakewith transition probabilities

W(k - q) . For one dimensional, one step processes such as Maramand the solution of
the linear system is easily obtained [22]:

_ 1_ Cn e_N'US _1 (10)
) 1_ CN e—NS _ 1

where # =N/ N s the proportion of thA. The approximation corresponds to the Kimura

solution obtained through a backward diffusion equation 4h@]° =1/(1+s)

(1) is the first order expansion of the above expressien

. Expression



For the two dimensional process (4-7) Whlérze(m’ n) is the initial number of th& andA,
no closed form solution can be obtained. We can howeWes sequation (8) numerically by
standard linear solvers or else resort to a Gillespie algof28jio solve the stochastic
equations (4-7) directly. Both these methods are used ipaper and the analytical
approximations obtained below are compared to them.

For large populations, we use the usual diffusion equagiprogimation of eq.(8) [19,22].
For weak selection pressure, the diffusion approximatiar &r the simple Moran process

is O/ N) [24]; for more general cases, the validity of the agipnation has been discussed
by Zhou and Qian [25]. Setting= ™ N: ¥ =n/N¢ . K=N;/Ni. 504 denoting(x, y) the
fixation probability for the initial compositiorx|y), the diffusion equation reads:
F (xaxn+ yayn) +
(1/ 2N, )G(xaixﬂ+ yaiyﬂ) + (11)
(c-2)H (-9,7+(1/ N,)a2 m)= 0

where

F=y+ke—(x+y)’
G:y—kx+(x2—y2)
H =xy(x+y-k)

and ”(X’ 0) = O, ”(0’ y) =1 Thisisa complicated elliptic partial differential equationthie

absence of selection £ 1) however, the trivial neutral solution 18 % Y)= Y/ (X*+Y) which
as expected, is just the proportion of altruists. Building upisnsolution, and denoting

H=yl (X+ y) for the proportion of altruists arfd= X* Y, we can check that to the first
order of perturbatior$ = (C_l) , the solution reads

N;549(n) -1

_€e
ﬂ(/,l,/]) - eNfgg(”) -1

(12)

where

g(7)=y(1-11nN,)



(1"' k)/ 2 The first order perturbation solution

S=1

andy is a numerical coefficient¥ =1/ Ni +

(12), which was derived for small selection preesu'\lf , proves in fact to be an

excellent approximation for selection pressureigls as NS = 2, (Figure 2).

Figure 2 Fixation probabilities. Comparison of analytical solution (12) (solid ky¢o
numerical solution of eq.(8) for increasing selactpressure indicated by the arrows :

N,;5=0.020050102051 n ~100,N =90

The general solution (12) allows for the computatd the fixation probability of one
individual introduced into a community of the otltgpe. To the first order of perturbation in

S, the fixation probabilitiega of oneA introduced in a community &reads:

m=n(m=N, -1n=1)

y(NCN, (13)
2

and the fixation probabilitiess of oneSintroduced in a community & is

ITS:l—IT(leI‘I: N, —1)

(N, -1)° _ (14)

1.y 5
N, 2 N?

Figure (3a) shows the evolution of these probaddlias a function of selection pressure for
variousN; andN;. Equations (13,14) show that the condition fordaheuist to be favored,

T\ > 75 | is simply

AN

NS < Ng'=—
SN

(15)

WhereAN =N, =N, and N _(Nf * Ni)/z and we have kept only the leading termsis
the equilibrium relative excess cost of altruismvhtch A andSindividuals become
equivalent. Figure 3b shows the excellent agreeimetmteen the above results and exact
numerical results. Altruists have a selective athga if theselection pressure against them,
i.e. the combined effect of fithes®d population size, is smaller than the relativeease in
population size. Unlike a Hamilton rule, criteri¢ib) is a finite size effect and is of purely
stochastic nature: because of the demographictesielish mutants are submitted to a
higher stochastic noise than altruist; this casuféicient to prevent them from prevailing.
Note that the above computations were performethifimiting case of weak selection:§N
<< 1), which is considered by most, but not allestists, to be the relevant limit of



evolutionary dynamics [26,27]. Direct numericalalesion of eq. (8) shows however that an
equilibrium excess fitness exists even at highcsiele pressure, given a high enough relative
increase in population size.

Figure 3 Criterion for Altruists selection. (a) fixation probabilitiegs (red squares) anth
(blue circles) as a function of selection press’ﬂré, for N =100 and

N; =8587 90 93959 vajues are obtained by numerically solving eq.8)lid lines are
theoretical values (egs. 13,14). Increasihgre indicated by the arrow. (b) equilibrium

=0
selection pressurgIf S for whichza = zs for multiple combinations ofVs D[lOQ 15q and

N D[85‘ 14@, as a function of relative population increasd¢ami®d numerically. The solid
line is the theoretical value (eq.15)

Geographically structured populations

The altruists’ advantage can be enhanced for lstrgetured populations [28-31].
Geographically structured populations can be mada¢edivided into colonies that exchange
migrants [32]. The Moran model on graph is a nondirproblem [33]; we restrict our
treatment here to the simplest case where the tiugriame scale is small compared to
fixation time of one mutant (viscous populationg)migrant is either lost or fixed before a
new migration event happens. The argument we de\stow is similar to the two level
model of Traulsen and Nowak [34]. Consider a omeettisional community subdivided into
M colonies (Figure 4), exchanging migrants with hbwying patches at rate As the
migration event is rare, these colonies are fix#teeinto anA or Sstate. The probability
density per unit tim@sa for anScolony on the border to becomeAolony is to receive
one migrant from the neighborifgcolony multiplied by the probability that this naat gets
fixed:

Psa :(me]x”A

Figure 4 Geographically structured populations.Geographically structured population
where patches can exchange migrants. For low nogredtes, the border betweArandS
domains can be modeled as a biased random walk

Similarly the probability density for ai colony on the border to becor8és

pAS :(mNi)x”S

Therefore, the movement of the border itself candresidered a biased random walk. The
probabilityITa for an altruist mutant to take over the whole camity is thus the probability
for a mutant to take over one colony and thenhi ¢olony to take over the whole
community:



where" = Pas/ Psa  If the criterion (15) is satisfied, then obviousk 1 and for large
number of communities M > 1,

I‘IAznA—%ﬂS>O
f

On the other hand, the probabilliy for a selfish mutant to be fixed is

1-(1/r)
- (un)"?

ands ~ O for M >> 1: once altruists dominate, the chances for a seffistant to invade
the community is close to zero! Increased randoisendue to production of common good
and a small migration rate are an efficient wale#ping selfishness in check.

The above computation concerns the low migratianit.liin the high migration limit, the

community is non-structured and its effective $iz& M>N; criterion (15) shows that in
this regime, altruists cannot emerge; this is iddsguivalent to the deterministic case where
emergence of altruists calls for other mechanigesyeen these two regimes of high and
low migration rate, there is a rich interval whergration rate is a key ingredient in the
competition between altruists and cheaters.

Conclusions

The main concepts of Population Genetics werefiddrin the framework of the original
model of Fisher-Wright and Moran (FWM). These madetroduced the key ingredient of
population size and its role in the randomnes®lgcsion. It became clear in the 1920-30’s
that a beneficial mutation does not spread auta@adgtito the whole population, but has to
overcome the “random noise” of population sampbrgr generations. The idea that random
noise plays also a role for the selection of atruhas been introduced in two kind of
models, which have a marked difference with the ehagk present here. The first class of
models, formulated mostly through evolutionary gahemry formalism, concerns fixed size
populations, where the transition rates are frequeependent [14] : the fithess of An
individual can be superior to the fitness ofSandividual if the number oA individuals
already present is high enough. It can then be shopon very general conditions, that the
fixation probability of altruists can become supeto that of selfish ones. These models can
be seen as the generalization of Hamilton’s origotea, where &altruistic” help is restricted to
genetically related individuals, even though Tranlg35] has argued that the underlying
mathematics is fundamentally different. The seadads of models concerns group (or
multilevel) selection. It has been shown [34] et fixation probability of altruists can be



higher than those of selfish onéghe population is structured into groups and tiiiting
of one group leads to the elimination of anothienak also recently been noticed that random
noise in a growing population can favor altruigtsilg a transient period [36].

The model we present here is not frequency depéna@eA individual hasalways a lesser
chance of reproducing than &imndividual; the mean field description of this nebtias only
one stable fixed point which corresponds to thagjpigarance of altruists. Moreover, The
mechanism we propose is for non-structured popmuratieven though the altruist effect can
be amplified when the population is structured groups with small migration rate between
groups. Imagine a group bf islands composed only of altruists and anothengaf M
islands composed only of selfish individuals. Idinoe oneS mutant in each island of the
first group and on@ mutant in each islands of the second group. Afbene time, the
number of islands in the first group is increaddte criterion (15) is satisfied.

In summary, we have shown, by a slight generabmatif the Moran model, that in finite size
populations, the fixation probability of altruistan be higher than that of selfish ones, even
though theiffitness is lower and their emergence is’forbidden’ by artiton rule. We have
also shown that in large, structured populationd,ia the limit of small migration rate, the
same arguments hold. Production of the’common gand’increase in the carrying capacity
of the habitat increase the random noise for $eifidividuals and can therefore favor
altruists.

The aim of the present article is not to contestriterits of kin/group selection models which
have been investigated during the last forty yedits a large number of case studies. We
believe we are providing an alternative way of kimig about altruism which is
complementary to the above models and which restbeekey ingredients of population
genetic to this topic.

Methods

Diffusion equation derivation

In the discrete backward Kolmogorov eq. (8) i§e=t(m’ n) andg all the states reachable
fromk, i.e. all states of the forrm{£ 1, n) andm, n+ 1. The equations read

W((mn) - (m+1n))(7(mn)-7(m+1n))+
w((mn) ~ (L)) ()~ r{m-1m))
..=0

x=m/N, y=n/N

For large populationé\If ? 1, we set f and develop the above

expression to the second ordefth=d =1/ N (Kramers-Moyal expansion). Combining
all the resulting terms leads to the partial déferal equation (11). It is fruitful to express

this equation in terms of total relative populat/ém XY and proportion of altruists



H=yl(x+y) : the inside domain shown in Figure 1 then mapsﬁlnﬁa[k’l]x[o’]]

rectangle, wherd =N/ N¢ in these coordinates, the diffusion equationsead

G(/726,7,777+ ,u(l—/,l)aﬂﬂﬂ) -

1
Fno, m+
TN

f

c-1)
(c—DH (n3,mr+(1- p)a,m) +(9£N—f] =0

where

F=n(k-n+(1-k)u)
G :(—k+/7(1— 24) +(1+ k),u)
H = (n-k) u(1- )

Mean field approximation

In the deterministic approximation, fluctuations aeglected. Denoting iy andn the
ensemble average of the numbeBaindA individuals, their deterministic evolution equatio
reads:

() - (me0)) W ((mn) ~ (m-1n)
B w{(mn) - (mn+1)-w((mn) - (mn-1)

It is more fruitful to write directly the evolutioof the proportion oA-individuals

H= n/(m+ n) . Using the expression for transition probabilitiés7), we have

1 du 2
Y~ (-0 -K)ua-
N’ ot (c=Dn@7-kK)u@-u) (16)

where? =(M+M/ N 3nq k=N /Nt 1t is then obvious that fog >1, d¢#/dt <0 |n the
deterministic modelA-individuals always disappear.

The equation for total population reads



TS0 = 2 (1K) rrk=) ~(c=1) (7 =K (- 1) )

for (C_l) = 1, the stationary solution of this equation, assgnimatu is held constant is

(1-k) 4 (1-4)

n=k+(1-k)u-(c-1 (k+(1—k),u)2

(18)

which shows that the increase in carrying capaifithe habitay; - k, at small selection
pressure, is mostly proportional to the numbet-aridividuals. A closer look at the above

equations (16,18) shows thaf K.4=0 s the only stable fixed point wher 1.
Relation to Moran model

In a simple model where population size is variabig birth and death rates are independent
of the number of altruists and selfish individuagonstant will replace ¢n) and ¢m) in

equations (4-7). In the case whdYe = N; +1, the stochastic movement pictured in Figure
1b reduces to a movement on the anti-diagonatsassr: births and deaths occur only when

the total populatiorN = m+n s respectively equal & andN;. The analog of the Moran
process is obtained by computing the two stepsitian probabilities

M _
W* (nm — n£lmmi) c m+n=N, this implies first the birth of one individual ofe
type and then the death of an individual of theeptlgpe. Combining the rates given by
eqs.(4-7) where birth and death rates are constantptain

W ((nm) -~ (n+1,m-1) =a*m
W ((nm) - (n-1,m+1)) =ca’mn

The same expression is obtainedf "= Nr .

Numerical resolution of fixation probabilities

Two different kinds of numerical resolution wereedgo check the validity of our analytical
results on the fixation probabilities: A Gillesg®chastic algorithm and direct resolution of

eg. (8).
Gillespie algorithm

The stochastic equations given by the rates (4ai7 e seen as 2 chemical reactions for the
species’ ={AS}.



AOf-2A; ADD.O

which we solve by the classical Gillespie algoritf28] written in C++. We are interested
here only in the fixation probability and not iretfixation time; the program can therefore be
accelerated by computing only the nature of theaetkheat occurs at each turn (and not its
time of occurrence). In general, to solve for ftxatfon probability,R = 10° stochastic
trajectories are generated.

Direct resolution

Equation (8) constitutes a linear system and carefare be solved by standard numerical
packages. For the present case however, the unlknogvhe fixation probabilitiez(m,n)
don’t constitute a vector but a second rank tertberfensor formed from the rat@sis of
rank 4. To adapt our linear system to standaraltiselvers, we have to re-index the

unknowns and decrease their rank by dfan)a K we have chosen the following
scheme, which corresponds to a sequential scaohiig anti-diagonal lines (Figure 5a):

k(mn)=5(N,-1+(5-1)/2)+n (19)

where9 =M+N=N, The (m, n) points belong to the interior of the trapezoid

Nism+nsN; o9 m>1

Figure 5 Tensor reindexation.(a) To each 2 d indexn(n), a new 1 d indek is associated
by scanning sequentially the anti-diagonal line¥.The re-indexation transforms the

. . . . rkrﬂk = BX k
tensorial equation (8) into a normal linear sysfé/ , Wherer" are the unknowns

The re-indexation transforms the equation (8) amteormal linear system

> ()= r{k)W(k k) =0

KOl (k)

wherel (k) designates the 1 d indexes of the four neareghbers of the pointn{,n), where

k= k(m, n)' The above equations can be written in standatdxmeotation

Wi = B" (20)

, k
where 77 are the unknown% is a sparse matrix, which apart from the diagetehents,

k
has at most four non-zero elements per lind isfthe image of elemen(n), thenW 70
only if k' is the image of one of the four nearest neighbb(e,n), in which case its value is



given according to rates (4—7). The right hand sitorB* is a sparse vector provided by
the limit conditions”(M=0,n) =1. k', one of the 4 nearest neighbors of the elerkent

, k
belongs to the borden=0, then77* =1 and the correspondin\@k' is transferred to the right
hand side to constitute the vecBSr Note that because we index the interior of thperoid,
the indexk itself can never belong to the border.

Once the linear system (20) has been constitutednibe solved by any linear solver. We
have used the commercial package matlab for thasgonrlations.
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