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Abstract 

Background 

Altruistic behavior is defined as helping others at a cost to oneself and a lowered fitness. The 
lower fitness implies that altruists should be selected against, which is in contradiction with 
their widespread presence is nature. Present models of selection for altruism (kin or 
multilevel) show that altruistic behaviors can have ‘hidden’ advantages if the ‘common good’ 
produced by altruists is restricted to some related or unrelated groups. These models are 
mostly deterministic, or assume a frequency dependent fitness. 

Results 

Evolutionary dynamics is a competition between deterministic selection pressure and 
stochastic events due to random sampling from one generation to the next. We show here that 
an altruistic allele extending the carrying capacity of the habitat can win by increasing the 
random drift of “selfish” alleles. In other terms, the fixation probability of altruistic genes can 
be higher than those of a selfish ones, even though altruists have a smaller fitness. Moreover 
when populations are geographically structured, the altruists advantage can be highly 
amplified and the fixation probability of selfish genes can tend toward zero. The above 
results are obtained both by numerical and analytical calculations. Analytical results are 
obtained in the limit of large populations. 

Conclusions 

The theory we present does not involve kin or multilevel selection, but is based on the 
existence of random drift in variable size populations. The model is a generalization of the 
original Fisher-Wright and Moran models where the carrying capacity depends on the 
number of altruists. 

Background 

Light production in Vibrio fischeri [1,2], siderophore production in Pseudomonas aeruginosa 
[3], invertase enzyme production in Saccharomyces cerevisiae [4], stalk formation by 
Dictyostelium discoideum, [2,5] are but a few examples of individuals in a community who 



help others at their own cost by devoting part of their resources to this task. This behavior has 
been termed “altruistic”. From the evolutionary point of view, altruists have a lower fitness 
than other individuals in the community who don’t help, but are recipient of the benefits 
produced by altruists. Through this paper, we will call these latter individuals ‘selfish’. 

From the inception of evolution theory, the problem of the existence of altruists has been 
puzzling: how can a mutant with lower fitness prevail? And how does a community of 
altruists resist the spread of selfish allele (see [6] for a historical perspective)? In the last 40 
years many models have emerged to explain the apparent contradiction between the smaller 
fitness of altruists and their widespread presence in various communities (for a review, see 
[7,8]). It is shown in these models that the actual fitness of an altruistic gene can be increased 
by other factors such as ‘common good’ restricted to kin (inclusive fitness [9,10]), or 
advantages conferred at another level of selection (group or multilevel selection [11,12]). 
These models which can be formulated through the Price equation have seen various 
generalizations and they are sometimes widely debated (see [13] and the numerous replies it 
has elicited). 

The above models are either deterministic, i.e. populations change their size exactly 
according to their relative fitness, or involve frequency dependent fitness [14,15]. We show 
here that another possibility exists: an altruistic individual can produce a common good 
benefiting everybody in the community regardless of its nature (altruistic or selfish) and 
therefore increasing the carrying capacity of the habitat. Even though selfish individuals have 
always a higher fitness, genetic drift effects can favor the altruists. 

It was established by the founding fathers of Population Genetics that a mutation that confers 
a relative fitness 1 + s does not automatically spread and take over the whole community, but 
has only a higher probability, called the fixation probability, to do so [16-18]. For a 
community of fixed size N of haploid individuals, the fixation probability π of a mutant 
appearing at one copy, for small selection pressure Ns < <1, is 

1

2

s

N
π ≈ +

 
(1) 

The fixation probability is composed of two terms: even in the absence of selection, the 
population will become homogenic; in this neutral case, all individuals at generation zero 
have an equal probability 1/N of becoming fixed. When a beneficial mutation is present, the 
fixation probability of its carrier is increased by the relative excess fitness. 

For populations of fixed size, as can be seen from expression (1) or the more precise 
expression (10) obtained by Kimura [19] and Moran [20], the fixation probability is a 
monotonically increasing function of the sole relative fitness. In the competition between 
alleles, arguments based on fitness parameter alone or the fixation probability lead to the 
same conclusions. However, if population size is not fixed, the fixation probability π, which 
takes into account both randomness due to finite size and selection, can lead to other 
conclusions than the fitness parameter alone. 

Consider an altruistic gene that by some means (production of a ‘common good’, limited 
grazing of natural resources, …) allows the carrying capacity to increase: if the community 



were composed only of altruists its population size would be Nf; if it were composed only of 
selfish individuals the population size would be Ni (Ni < Nf) (Figure 1a). The production of 
common good decreases the relative fitness of altruists by s. 

Figure 1 Variable carrying capacity. (a): A community where the carrying capacity is an 
increasing function of altruist number, varying from Ni when the population is composed 
only of selfish individuals to Nf (Nf > Ni) when only altruists are present. (b) Two examples of 
random walks describing the stochastic behavior a such a system (transition probabilities 4–
7), where m,n are the number of selfish and altruistic individuals. Red line : loss of S’s; Blue 
line : loss of A. A Moran process in this scheme corresponds to a random walk constrained to 
remain on an anti-diagonal line 

Consider now the fixation probability πA of one altruist mutant appearing in a community of 

Ni selfish individuals. A crude use of expression (1) shows that ( )1 2A iN sπ = / − / . On the 
other hand, the fixation probability πs of one selfish individual appearing in a community of 

Nf altruists is ( )1 2S fN sπ = / + / . We see that if 

1 1

i f

s
N N

< −
 

(2) 

i.e. the cost to the altruist is smaller than the benefits in term of relative population increase, 
then an altruist has a larger fixation probability than a selfish one, even though its relative 
fitness is smaller. The relative advantage of a selfish mutant is compensated by the 
increased’random noise’ to which it is exposed. Note that in a deterministic model of the 
above process, the A always lose, since S individuals always increase their proportion. 

The above argument will be refined in the following. In the next section, we formulate 
precisely the stochastic process of altruism outlined above by generalizing the Moran model 
for non-structured, well mixed populations and we show that altruists can indeed be favored 
in their competition with selfish individuals. We outline the amplification of this advantage in 
geographically structured, viscous populations in the third section. The final section is 
dedicated to concluding remarks. 

Results and discussion 

Stochastic model for altruism 

The fundamental aspects of population genetics were clarified in the framework of the 
classical Fisher-Wright (FW) stochastic model of non-overlapping generations or its 
continuous time alternative introduced by Moran [20]. Moran and FW are equivalent in the 
limit of large populations, where both are well approximated by the same diffusion equation 
[21]. These are the simplest models that capture the key elements of population genetics 
(genetic drift, fixation probability, fixation time,…) with the fewest possible ingredients. 

In the Moran model, a population of size N is composed of two types of individual, say A and 
S. Empty spots are created randomly with fixed rate α, increasing the carrying capacity by 



unity. Once an empty spot has been created, it will be colonized by the progeny of either an A 
or an S individual according to their proportion in the community. In order to keep the 
population constant, Moran added the constraint that the colonization of a new spot be 
followed immediately by the death of an individual in the community, restoring the 
population size to N. Moran is therefore a simultaneous model of duplication and 
annihilation; the transition probability densities for the A to increase or decrease their number 
n by one individual are 

( ) ( )1 1W n n nm W n n c nmα α+ −→ + = ; → − =
 

(3) 

where m is the number of S individuals and c is the ‘cost’: 1/c is the relative fitness of the A 
and c > 1 indicates a selective disadvantage. W+ stands for the probability density that the 
new spot is colonized by an A and death occurs among the S. In principle, a similar set of 
equations must be written for the S individuals; however, as the population size is fixed, 
n m N+ = , the quantity m in eq.(3) can be replaced by N-n and the whole stochastic process 
treated as a one dimensional random walk for the A. 

We generalize this model by including two ingredients. First, the fixed size constraint can be 
relaxed and we let N vary between two bounds Ni and Nf : empty spots are created-colonized 
and individuals die, without these two events necessarily succeeding each other. More 
importantly, in order to include the effects of altruists, we suppose that the rate of creation of 
empty spots is proportional to the number of altruists and is equal to αn; in contrast, the death 
rate is proportional to the number of S individuals and is equal to αm. This is the simplest 
hypothesis that implies that the increase in the carrying capacity of the habitat is proportional 
to the number of altruists (see also Methods, mean field approximation). 

The stochastic model that captures all these features is a two dimensional random walk with 
the following transition probability densities (Figure 1b): 

( ) ( )( ) ( )( )( )1 fW n m n m N n m n mα, → , + = − +  (4) 

( ) ( )( ) ( )( )( )1 fW n m n m N n m n nα, → + , = − +  (5) 

( ) ( )( ) ( ) ( )1 iW n m n m m n N m mα, → , − = + −  (6) 

( ) ( )( ) ( ) ( )1 iW n m n m c m n N m nα, → − , = + −  (7) 

Consider for example the first two lines of the above equations, which are about birth events: 

the factor ( )fN n m− −  is the relaxation of Moran constraints and insures that population size 
remains below Nf; the factor αn accounts for the fact that empty spot creations are 
proportional to the number of A; finally, once a birth event has occurred, the probability for it 
to be an A or an S is proportional to the number of the corresponding sub-populations present 
at this time. The last two lines, which govern population decrease, are similar : the factor 



( )im n N+ −  ensures that population size remains above Ni; the factor αm is the death rate 
(population decrease) for everybody due to the presence of selfish individuals. The cost of 

altruism is included in these equations: the proportion of A is ( )n m n/ + , but once a death 
event has occurred, the probability for it to be an A is: 

cn n

m cn m n
>

+ +   

if c > 1. The results below don’t change significantly if the cost of altruism is included in 
other rates. For example, a higher probability for an S to reproduce, or any combination that 
favors S over A. Note that if the increase/decrease rates were independent of m and n, we 

recover the Moran model by setting 1f iN N= +
 , in which case each birth/death is 

succeeded by a death/birth event (see Methods, relation to Moran model). 

The above rates ensure that if A are lost (n = 0), the population size tends toward Ni and if S 
are lost (m = 0), it tends toward Nf. Note that in the mean field approximation of the above 
process where fluctuations are neglected and the deterministic limit is taken, the A are always 
eliminated if c > 1 (see Methods, mean field approximation). 

In finite size populations however, fluctuations play an important role. The focus of this 
paper is the computation of the fixation probability of the above process and the probability 
that altruists or selfish mutants take over the community. The fixation probability π(k) of a 

general stochastic process beginning with the initial state k and fixing either to k0 or k1 1k  is 
the solution of Kolmogorov backward equation which is a linear set of equations [22] 

( ) ( )( ) ( ) 0Wπ π− → =∑
q

k q k q  (8) 

( ) ( )0 10 1π π= ; =k k
 

(9) 

where the sum is over all the states q attainable from the state k with transition probabilities 

( )W →k q . For one dimensional, one step processes such as Moran, k     = n and the solution of 
the linear system is easily obtained [22]: 

( ) 1 1

1 1

n N s

N Ns

c e
n

c e

µ

π
−

−

− −= ≈
− −  

(10) 

where n Nµ = /  is the proportion of the A. The approximation corresponds to the Kimura 

solution obtained through a backward diffusion equation [19] and ( )1 1c s= / + . Expression 
(1) is the first order expansion of the above expression in s. 



For the two dimensional process (4–7) where ( )m n= ,k  is the initial number of the S and A, 
no closed form solution can be obtained. We can however solve equation (8) numerically by 
standard linear solvers or else resort to a Gillespie algorithm [23] to solve the stochastic 
equations (4–7) directly. Both these methods are used in this paper and the analytical 
approximations obtained below are compared to them. 

For large populations, we use the usual diffusion equation approximation of eq.(8) [19,22]. 
For weak selection pressure, the diffusion approximation error for the simple Moran process 

is (1 )N/O  [24]; for more general cases, the validity of the approximation has been discussed 

by Zhou and Qian [25]. Setting  , ,f f i fx m N y n N k N N= / , = / = /  and denoting π(x, y) the 
fixation probability for the initial composition (x, y), the diffusion equation reads: 

( )
( ) ( )

( ) ( )( )
2 2

2

1 2

1 1 2 0

x y

f xx yy

y f yy

F x y

N G x y

c H N

π π

π π

π π

∂ + ∂ +

/ ∂ + ∂ +

− −∂ + / ∂ =

 (11) 

where 

( )
( )

( )

2

2 2

F y kx x y

G y kx x y

H xy x y k

= + − +

= − + −

= + −

 

 

and ( )0 0xπ , = , ( )0 1yπ , = . This is a complicated elliptic partial differential equation. In the 

absence of selection (c = 1) however, the trivial neutral solution is ( ) ( )x y y x yπ , = / +  which 
as expected, is just the proportion of altruists. Building upon this solution, and denoting 

( )y x yµ = / +  for the proportion of altruists and x yη = + , we can check that to the first 

order of perturbation ( )1s c= − , the solution reads 

( )
( )

( )
1

1

f

f

N s g

N sg

e

e

µ η

ηπ µ η −, =
−  

(12) 

where 

( ) ( )1 1 fg Nη γ η= − /
 

 



and γ is a numerical coefficient : ( )1 1 2fN kγ = / + + / . The first order perturbation solution 

(12), which was derived for small selection pressures 1fN s = , proves in fact to be an 

excellent approximation for selection pressure as high as 2fN s = , (Figure 2). 

Figure 2 Fixation probabilities. Comparison of analytical solution (12) (solid lines) to 
numerical solution of eq.(8) for increasing selection pressure indicated by the arrows : 

0 02 0 05 0 1 0 2 0 5 1 2fN s = . , . , . , . , . , , . Nf = 100, Ni = 90 

The general solution (12) allows for the computation of the fixation probability of one 
individual introduced into a community of the other type. To the first order of perturbation in 
s , the fixation probabilities πA of one A introduced in a community of S reads: 

( )
( )2

3

1 1

11

2

A i

i f

i i

m N n

N N
s

N N

π π

γ

= = − , =

−
= −

 (13) 

and the fixation probabilities πs of one S introduced in a community of A is 

( )
( )2

2

1 1 1

11

2

S f

f

f f

m n N

N
s

N N

π π

γ

= − = , = −

−
= +

 (14) 

Figure (3a) shows the evolution of these probabilities as a function of selection pressure for 
various Ni and Nf. Equations (13,14) show that the condition for the altruist to be favored, 

A Sπ π> , is simply 

N
Ns N s

N
∗ ∆< =

 
(15) 

where f iN N N∆ = −  and ( ) 2f iN N N= + /  and we have kept only the leading terms. s ∗
 is 

the equilibrium relative excess cost of altruism at which A and S individuals become 
equivalent. Figure 3b shows the excellent agreement between the above results and exact 
numerical results. Altruists have a selective advantage if the selection pressure against them, 
i.e. the combined effect of fitness and population size, is smaller than the relative increase in 
population size. Unlike a Hamilton rule, criterion (15) is a finite size effect and is of purely 
stochastic nature: because of the demographic effect, selfish mutants are submitted to a 
higher stochastic noise than altruist; this can be sufficient to prevent them from prevailing. 
Note that the above computations were performed for the limiting case of weak selection (Nfs 

< < 1), which is considered by most, but not all, scientists, to be the relevant limit of 



evolutionary dynamics [26,27]. Direct numerical resolution of eq. (8) shows however that an 
equilibrium excess fitness exists even at high selection pressure, given a high enough relative 
increase in population size. 

Figure 3 Criterion for Altruists selection.  (a) fixation probabilities πs (red squares) and πA 

(blue circles) as a function of selection pressure fN s , for Nf = 100 and 
85 87 90 93 95 97iN = , , , , , . Values are obtained by numerically solving eq.(8). Solid lines are 

theoretical values (eqs. 13,14). Increasing Ni are indicated by the arrow. (b) equilibrium 

selection pressure fN s ∗
 for which πA = πs for multiple combinations of [ ]100 150fN ∈ ,  and 

[ ]85 148iN ∈ , , as a function of relative population increase, obtained numerically. The solid 
line is the theoretical value (eq.15) 

Geographically structured populations 

The altruists’ advantage can be enhanced for large structured populations [28-31]. 
Geographically structured populations can be modeled as divided into colonies that exchange 
migrants [32]. The Moran model on graph is a non trivial problem [33]; we restrict our 
treatment here to the simplest case where the migration time scale is small compared to 
fixation time of one mutant (viscous populations) : a migrant is either lost or fixed before a 
new migration event happens. The argument we develop below is similar to the two level 
model of Traulsen and Nowak [34]. Consider a one dimensional community subdivided into 
M colonies (Figure 4), exchanging migrants with neighboring patches at rate m. As the 
migration event is rare, these colonies are fixed either into an A or S state. The probability 
density per unit time pSA for an S colony on the border to become an A colony is to receive 
one migrant from the neighboring A colony multiplied by the probability that this mutant gets 
fixed: 

SA f Ap mN π 
 
 

= ×
 

 

Figure 4 Geographically structured populations. Geographically structured population 
where patches can exchange migrants. For low migration rates, the border between A and S 
domains can be modeled as a biased random walk 

Similarly the probability density for an A colony on the border to become S is 

( )AS i Sp mN π= ×
 

 

Therefore, the movement of the border itself can be considered a biased random walk. The 
probability ΠA for an altruist mutant to take over the whole community is thus the probability 
for a mutant to take over one colony and then for this colony to take over the whole 
community: 



1

1

1A A M

r

r
π −

−Π =
−   

where AS SAr p p= / . If the criterion (15) is satisfied, then obviously r < 1 and for large 
number of communities M > > 1, 

0i
A A S

f

N

N
π πΠ ≈ − >

  

On the other hand, the probability Πs for a selfish mutant to be fixed is 

( )
( ) 1

1 1

1 1
S S M

r

r
π −

− /
Π =

− /
 

 

and 0SΠ →  for M > > 1: once altruists dominate, the chances for a selfish mutant to invade 
the community is close to zero! Increased random noise due to production of common good 
and a small migration rate are an efficient way of keeping selfishness in check. 

The above computation concerns the low migration limit. In the high migration limit, the 

community is non-structured and its effective size is fM N≈ × . Criterion (15) shows that in 
this regime, altruists cannot emerge; this is indeed equivalent to the deterministic case where 
emergence of altruists calls for other mechanisms. Between these two regimes of high and 
low migration rate, there is a rich interval where migration rate is a key ingredient in the 
competition between altruists and cheaters. 

Conclusions 

The main concepts of Population Genetics were clarified in the framework of the original 
model of Fisher-Wright and Moran (FWM). These models introduced the key ingredient of 
population size and its role in the randomness of selection. It became clear in the 1920-30’s 
that a beneficial mutation does not spread automatically to the whole population, but has to 
overcome the “random noise” of population sampling over generations. The idea that random 
noise plays also a role for the selection of altruism has been introduced in two kind of 
models, which have a marked difference with the model we present here. The first class of 
models, formulated mostly through evolutionary game theory formalism, concerns fixed size 
populations, where the transition rates are frequency dependent [14] : the fitness of an A 
individual can be superior to the fitness of an S individual if the number of A individuals 
already present is high enough. It can then be shown, upon very general conditions, that the 
fixation probability of altruists can become superior to that of selfish ones. These models can 
be seen as the generalization of Hamilton’s original idea, where ältruistic” help is restricted to 
genetically related individuals, even though Traulsen [35] has argued that the underlying 
mathematics is fundamentally different. The second class of models concerns group (or 
multilevel) selection. It has been shown [34] that the fixation probability of altruists can be 



higher than those of selfish ones, if the population is structured into groups and the splitting 
of one group leads to the elimination of another. It has also recently been noticed that random 
noise in a growing population can favor altruists during a transient period [36]. 

The model we present here is not frequency dependent : an A individual has always a lesser 
chance of reproducing than an S individual; the mean field description of this model has only 
one stable fixed point which corresponds to the disappearance of altruists. Moreover, The 
mechanism we propose is for non-structured populations, even though the altruist effect can 
be amplified when the population is structured into groups with small migration rate between 
groups. Imagine a group of M islands composed only of altruists and another group of M 
islands composed only of selfish individuals. Introduce one S mutant in each island of the 
first group and one A mutant in each islands of the second group. After some time, the 
number of islands in the first group is increased if the criterion (15) is satisfied. 

In summary, we have shown, by a slight generalization of the Moran model, that in finite size 
populations, the fixation probability of altruists can be higher than that of selfish ones, even 
though their fitness is lower and their emergence is’forbidden’ by a Hamilton rule. We have 
also shown that in large, structured populations, and in the limit of small migration rate, the 
same arguments hold. Production of the’common good’ and increase in the carrying capacity 
of the habitat increase the random noise for selfish individuals and can therefore favor 
altruists. 

The aim of the present article is not to contest the merits of kin/group selection models which 
have been investigated during the last forty years with a large number of case studies. We 
believe we are providing an alternative way of thinking about altruism which is 
complementary to the above models and which restores the key ingredients of population 
genetic to this topic. 

Methods 

Diffusion equation derivation 

In the discrete backward Kolmogorov eq. (8) set ( )m n= ,k  and q all the states reachable 
from k, i.e. all states of the form (m ± 1, n) and m, n ± 1. The equations read 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 1

1 1

0

W m n m n m n m n

W m n m n m n m n

π π

π π

, → + , , − + , +

, → − , , − − , +

... =

 
 

For large populations 1fN ? , we set fx m N= / , fy n N= /  and develop the above 

expression to the second order in 1 fdx dy N= = /  (Kramers-Moyal expansion). Combining 
all the resulting terms leads to the partial differential equation (11). It is fruitful to express 
this equation in terms of total relative population x yη = +  and proportion of altruists 



( )y x yµ = / + ; the inside domain shown in Figure 1 then maps into the [ ] [ ]1 0 1k, × ,  

rectangle, where i fk N N= / . In these coordinates, the diffusion equation reads : 

( )( )

( )( )

21
1

2

1
( 1) 1 0

f

f

F G
N

c
c H

N

η ηη µµ

η µ

η π η π µ µ π

η π µ π

∂ + ∂ + − ∂ −

 −− ∂ + − ∂ + =  
 

O

 

 

where 

( )( )
( ) ( )( )

( ) ( )

1

1 2 1

1

F k k

G k k

H k

η η µ

η µ µ

η η µ µ

= − + −

= − + − + +

= − −
 

 

Mean field approximation 

In the deterministic approximation, fluctuations are neglected. Denoting by m and n the 
ensemble average of the number of S and A individuals, their deterministic evolution equation 
reads: 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 1

1 1

dm
W m n m n W m n m n

dt
dn

W m n m n W m n m n
dt

= , → + , − , → − ,

= , → , + − , → , −
 

 

It is more fruitful to write directly the evolution of the proportion of A-individuals 

( )n m nµ = / + . Using the expression for transition probabilities (4–7), we have 

2
2

1
( 1) ( ) (1 )

f

d
c k

N dt

µ η η µ µ
α

= − − − −
 

(16) 

where ( ) fm n Nη = + /  and i fk N N= / . It is then obvious that for 1c > , 0d dtµ / < . In the 
deterministic model, A-individuals always disappear. 

The equation for total population reads 



( )( ) ( )( ) ( )2
2

1
1 1 1

f

d
k k c k

N dt

η η µ η η µ µ
α

= − + − − − − −
 

(17) 

for ( )1 1c − = , the stationary solution of this equation, assuming that µ is held constant is 

( ) ( ) ( ) ( )
( )( )

2

2

1 1
1 1

1

k
k k c

k k

µ µ
η µ

µ
− −

= + − − −
+ −

 (18) 

which shows that the increase in carrying capacity of the habitat η - k, at small selection 
pressure, is mostly proportional to the number of A-individuals. A closer look at the above 

equations (16,18) shows that 0kη µ= , =  is the only stable fixed point when c > 1. 

Relation to Moran model 

In a simple model where population size is variable, but birth and death rates are independent 
of the number of altruists and selfish individuals, a constant α will replace (αn) and (αm) in 

equations (4–7). In the case where 1f iN N= + , the stochastic movement pictured in Figure 
1b reduces to a movement on the anti-diagonal staircase : births and deaths occur only when 
the total population N m n= +  is respectively equal to Ni and Nf. The analog of the Moran 
process is obtained by computing the two steps transition probabilities 

( )1 1MW n m n m, → ± , m . If im n N+ = , this implies first the birth of one individual of one 
type and then the death of an individual of the other type. Combining the rates given by 
eqs.(4–7) where birth and death rates are constant, we obtain 

( ) ( )( )
( ) ( )( )

2

2

1 1

1 1

M

M

W n m n m mn

W n m n m c mn

α

α

, → + , − =

, → − , + =
 

 

The same expression is obtained if fm n N+ = . 

Numerical resolution of fixation probabilities 

Two different kinds of numerical resolution were used to check the validity of our analytical 
results on the fixation probabilities: A Gillespie stochastic algorithm and direct resolution of 
eq. (8). 

Gillespie algorithm 

The stochastic equations given by the rates (4–7) can be seen as 2 chemical reactions for the 

species { }iA A S= , : 



2i ik k
i i iA A A

+ −

→ ; →∅  
 

which we solve by the classical Gillespie algorithm [23] written in C++. We are interested 
here only in the fixation probability and not in the fixation time; the program can therefore be 
accelerated by computing only the nature of the event that occurs at each turn (and not its 
time of occurrence). In general, to solve for the fixation probability, R = 106 stochastic 
trajectories are generated. 

Direct resolution 

Equation (8) constitutes a linear system and can therefore be solved by standard numerical 
packages. For the present case however, the unknowns, i.e. the fixation probabilities π(m,n) 
don’t constitute a vector but a second rank tensor; the tensor formed from the rates W is of 
rank 4. To adapt our linear system to standard linear solvers, we have to re-index the 

unknowns and decrease their rank by one: ( )m n k, a . We have chosen the following 
scheme, which corresponds to a sequential scanning of the anti-diagonal lines (Figure 5a): 

( ) ( )( )1 1 2ik m n N nδ δ, = − + − / +
 

(19) 

where im n Nδ = + − . The ( )m n,  points belong to the interior of the trapezoid 

i fN m n N≤ + ≤ , n ≥ 1, m ≥ 1. 

Figure 5 Tensor reindexation. (a) To each 2 d index (m,n), a new 1 d index k is associated 
by scanning sequentially the anti-diagonal lines. (b) The re-indexation transforms the 

tensorial equation (8) into a normal linear system 
k k k

kW Bπ ′
′ = , where πk are the unknowns 

The re-indexation transforms the equation (8) into a normal linear system 

( ) ( )( ) ( )
( )

0
k I k

k k W k kπ π
′∈

′ ′− → =∑
  

where I(k) designates the 1 d indexes of the four nearest neighbors of the point (m,n), where 

( )k k m n= , . The above equations can be written in standard matrix notation 

k k k
kW Bπ ′

′ =  
(20) 

where 
kπ ′

 are the unknowns. 
k

kW ′  is a sparse matrix, which apart from the diagonal elements, 

has at most four non-zero elements per line : if k is the image of element (m,n), then 0k
kW ′ ≠  

only if k′ is the image of one of the four nearest neighbors of (m,n), in which case its value is 



given according to rates (4–7). The right hand side vector Bk is a sparse vector provided by 

the limit conditions ( 0 ) 1m nπ = , = : if k′, one of the 4 nearest neighbors of the element k 

belongs to the border m = 0, then 1kπ ′ =  and the corresponding 
k

kW ′  is transferred to the right 
hand side to constitute the vector Bk. Note that because we index the interior of the trapezoid, 
the index k itself can never belong to the border. 

Once the linear system (20) has been constituted, it can be solved by any linear solver. We 
have used the commercial package matlab for these manipulations. 
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