Knot Theory for spatial graphs

[Lecture 3] Spatial graphs with degree one vertices attaching to a surface

cf. A. Kawauchi, Spatial graphs attaching to a surface, in preparation.

Akio Kawauchi

Osaka City University
Advanced Mathematical Institute

<u>Question</u>. In what sense, this object is "knotted" or "unknotted"?

In this talk, the answer will be "β-unknotted" but "knotted", "γ-knotted" and "Γ-knotted" under some definitions introduced from now.

Example B: Proteins attached to a cell surface Some points of S. B. Prusiner's theory are:

- (1) By losing the N-terminal region, Prion precursor protein changes into Cellular PrP (PrPc) or Scrapie PrP (PrPSC), and α -helices change into β -sheets.
- (2) The conformations of PrP^c and PrP^{sc} may differ although the linear structures are the same.
- (3) There is one S-S combination.
- Z. Huang et al., Proposed three-dimensional Structure for the cellular prion protein, Proc. Natl. Acad. Sci. USA, 91(1994), 7139-7143.
- K. Basler et al., Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene, Cell 46(1986), 417-428.

Prion Precursor Protein

K. Yamanouchi & J. Tateishi Editors, Slow Virus Infection and Prion (in Japanese), Kindaishuppan Co. Ltd. (1995)

Definition. A prion-string is a spatial graph $K = I(K) \cup \alpha(K)$ in the upper half space H^3 consisting of S-S loop I(K) and GPI-tail $\alpha(K)$ joining the S-S vertex in I(K) with the GPI-anchor in ∂H^3 .

Topological models of prion-proteins

(cf. [J. Math. System Sci. 2012])

- [J. Math. System Sci. 2012]
- A. Kawauchi and K. Yoshida, Topology of prion proteins, Journal of Mathematics and System Science 2(2012), 237-248.

Example C: A string-shaped virus

A virus of EBOLA haemorrhagic fever

http://www.scumdoctor.com/Japanese/disease-prevention/infectious-diseases/virus/ebola/Pictures-Of-The-Effects-Of-Ebola.html

3.1. A spatial graph attached to a surface

Let Γ be a finite graph, and $v_1(\Gamma)$ the set of degree one vertices. Assume $|v_1(\Gamma)| \ge 2$.

Let F be a compact surface in R³.

Definition.

- A <u>spatial graph on F</u> of Γ is the image G of an embedding f: $\Gamma \rightarrow \mathbb{R}^3$ such that
- (1) G meets F with $G \cap F = f(v_1(\Gamma)) = v_1(G)$,
- (2) $G-v_1(G)$ is contained in one component of R^3-F ,
- (3) \exists a homeomorphism h: $\mathbb{R}^3 \rightarrow \mathbb{R}^3$ such that h(G U F) is a polyhedron.

- F does not need δF=Φ.
- Though Γ , G or F may be disconnected, but assume that $|F_c \cap v_1(G)| \ge 2$ for \forall comp. F_c of F_c
- Ignore the degree 2 vertices in G.

<u>Definition.</u> A spatial graph G on F is <u>equivalent</u> to a spatial graph G' on F' if \exists an orientation-preserving homeomorphism h: $R^3 \rightarrow R^3$ such that $h(F \cup G) = F' \cup G'$.

Let [G] be the class of spatial graphs G' on F' which are equivalent to G on F.

3.2. An unknotted graph on a surface and the induced unknotting number

Definition. G on F is unknotted if \exists a 2-cell Δ' in \forall comp. F' of F such that the union Δ of all Δ ' contains $v_1(G)$ and the <u>shrinked spatial graph</u> G^* with $v_1(G^*) = \phi$ (i.e. a spatial graph obtained from G by shrinking \forall Δ' into a point) is unknotted in R^3 .

Note. If $\forall F' = S^2$ or a 2-cell, then [G^] does not depend on a choice of Δ .

However, in a genral F, [G^] depends on a choice of Δ , although the <u>shrinked graph</u> Γ with $v_1(\Gamma) = \phi$ associated with F is uniquely defined.

Because $\forall G^{\wedge}$ is a spatial graph of the same graph Γ^{\wedge} , we have:

Lemma. For \forall given graph Γ and \forall given Γ in \mathbb{R}^3 , \exists only finitely many unknotted graphs Γ on Γ on Γ up to equivalences.

Let $O = \{unknotted graphs of \Gamma^{\wedge}\}.$

Definition.

The <u>unknotting number</u> u(G) of a spatial graph G of Γ on F is the distance from the set $\{G^{\wedge}\}$ to O by crossing changes on edges attaching to a base: $u(G) = \rho(\{G^{\wedge}\}, O)$.

3.3. A β-unknotted graph on a surface and the induced unknotting number

<u>Definition.</u> G on F is <u>β-unknotted</u> if \exists a 2-cell Δ' in \forall component F' of F such that the union Δ of all Δ' contains $v_1(G)$ and the shrinked spatial graph G^{\wedge} with $v_1(G^{\wedge}) = \phi$ is β -unknotted in R^3 .

unknotted $\Rightarrow \beta$ -unknotted

Let $O_{\beta} = \{\beta \text{-unknotted graphs of } \Gamma^{\wedge}\}.$

Definition.

The β -unknotting number $u_{\beta}(G)$ of a spatial graph G of Γ on F is the distance from the set $\{G^{\Lambda}\}$ to O_{β} by crossing changes on edges attaching to a base: $u_{\beta}(G) = \rho(\{G^{\Lambda}\}, O_{\beta})$.

3.4. A y-unknotted graph on a surface and the induced unknotting number

<u>Definition.</u> G on F is <u>γ-unknotted</u> if \exists a 2-cell Δ ' in \forall component F' of F such that the union Δ of all Δ ' contains $v_1(G)$ and the shrinked spatial graph G^{\wedge} with $v_1(G^{\wedge}) = \phi$ is γ -unknotted in R^3 .

 γ -unknotted \Rightarrow unknotted \Rightarrow β -unknotted

Given G, let

$$\{D_{G^{\wedge},\gamma}\}=\{(D;T)\in [D_{G^{\wedge}}]\mid c(D;T)=c_{\gamma}(G^{\wedge}), \forall G^{\wedge}\}.$$
Definition.

The <u>y-unknotting number</u> $u_{\gamma}(G)$ of a spatial graph G of Γ on F is the distance from $\{D_{G^{\prime},\gamma}\}$ to O by crossing changes on edges attaching to a base:

$$u_{\gamma}(G) = \rho(\{D_{G^{\prime},\gamma}\},O).$$

Note. G on F is γ -unknotted $\Leftrightarrow u_{\nu}(G) = 0$.

3.5. **Graph on a surface and the induced unknotting numbers**

<u>Definition.</u> G on F is <u>Γ-unknotted</u> if \exists a 2-cell Δ' in \forall component F' of F such that the union Δ of all Δ' contains $v_1(G)$ and the shrinked spatial graph G^{\wedge} with $v_1(G^{\wedge}) = \phi$ obtained from G by shrinking \forall Δ' into a point is Γ^{\wedge} -unknotted in \mathbb{R}^3 .

Γ-unknotted⇒γ-unknotted⇒unknotted
⇒ β-unknotted

Let $O_{\Gamma^{\wedge}}=\{\Gamma^{\wedge}-\text{unknotted graphs}\}$. Then $O_{\beta}\supset O\supset O_{\Gamma^{\wedge}}$.

Definition.

The Γ -unknotting number $u^{\Gamma}(G)$ of G on F is the distance from the set $\{G^{\Lambda}\}$ to $O_{\Gamma^{\Lambda}}$ by crossing changes on edges attaching to a base:

$$u^{\Gamma}(G) = \rho(\{G^{\wedge}\}, O_{\Gamma^{\wedge}})$$

The (γ,Γ) -unknotting number $u_{\gamma}^{\Gamma}(G)$ of G on F is the distance from $\{D_{G^{\wedge},\gamma}\}$ to O_{Γ} by crossing changes on edges attaching to a base: $u_{\gamma}^{G}(G) = \rho(\{D_{G^{\wedge},\gamma}\},O_{\Gamma^{\wedge}})$.

3.6. Properties on the unknotting numbers

Theorem 3.6.1. The topological invariants $u_{\beta}(G)$, u(G), $u^{\Gamma}(G)$, $u_{\gamma}(G)$, $u_{\gamma}(G)$, $u_{\gamma}(G)$ of \forall spatial graph G of \forall graph Γ on \forall surface F satisfy the following inequalities :

$$u_{\beta}(G) \leq u(G) \leq \{u_{\gamma}(G), u^{\Gamma}(G)\} \leq u_{\gamma}^{\Gamma}(G),$$

and are distinct for some graphs G of some Γ on $F=S^2$.

Theorem 3.6.2. For \forall given graph Γ , \forall surface F in R³ and \forall integer n \geq 1, \exists ∞-many spatial graphs G of Γ on F such that

$$u_{\beta}(G)=u(G)=u_{\gamma}(G)=u^{\Gamma}(G)=u_{\gamma}^{\Gamma}(G)=n.$$

<u>Proof of Theorem 4.6.1.</u> The inequalities are direct from definitions.

We show that these invariants are distinct.

G^ has $c_{\gamma}(G^{\prime})=2$ and hence $u_{\beta}(G)=u(G)=u_{\gamma}(G)=0$. On the other hand, we have

$$u^{\Gamma}(G)=u^{\Gamma}_{\nu}(G)=1$$
,

for G[^] is a spatial graph of a plane graph with a Hopf link as a constituent link and hence not Γ-unknotted.

 G^{-10}_{8} has $u(10_{8})=2$ and $u_{\gamma}(10_{8})=3$ by [Nakanishi 1983] and [Bleiler 1984].

Hence

$$u_{\beta}(G) = u(G) = u^{\Gamma}(G) = 2 < u_{\gamma}(G) = u_{\gamma}(G) = 3.$$

(3)

Then $u_{\beta}(G)=0$. Since G^{\bullet} is a Θ -curve, $u(G^{\bullet})=0 \Leftrightarrow G^{\bullet}$ is isotopic to a plane graph. Thus, $u(G) \geq 1$ and we have $u(G) = u^{\Gamma}(G) = u^{\Gamma}(G) = u^{\Gamma}(G) = 1$. //

Proof of Theorem 3.6.2.

Assume $v_1(\Gamma) \neq \phi$.

Assume Γ and Γ are connected for simplicity.

Let F be in the interior of a 3-ball $B \subseteq S^3$, and $S^2=\partial B$.

Let G_0 be a Γ -unknotted graph on S^2 in B^c =cl(S^3 -B) and extend it to a Γ -unknotted graph G_1 on Γ by taking in B a 1-handle H joining a 2-cell Δ_0 of S^2 and a 2-cell Δ_1 of Γ and then taking $|v_1(\Gamma)|$ parallel arcs in H.

A Γ-unknotted graph G₁ on F

A Γ-spatial graph G on F

Note that $G_0^- = G_0 / \Delta_0$ and $G_1^- = G_1 / \Delta_1$ are isotopic Γ -unknotted graphs in S^3 .

We take a Γ -spatial graph G on F with $v_1(G) \subset \Delta_1$ such that $G^* = G / \Delta_1$ is a connected sum $G_1^* + K(n)$ of an edge of G_1^* (in a part of G_0^*) and K(n) attaching to a base of G_1^* , where K(n) is the n-fold connected sum of a trefoil knot K. Then $u_v^{\Gamma}(G) \leq n$.

We show $u_{\beta}(G) \ge n$.

Let $u_{\beta}(G) = u_{\beta}(G^{\prime\prime})$ for $G^{\prime\prime} = G / \Delta'$ for a 2-cell Δ' in F.

Assume that u_{β} (G)=k and a β -unknotted graph (G^') is obtained from G^' by k crossing changes on edges α_i (i=1,2,...,m) attaching to a base T' in G^'.

As it is explained in the case $v_1(\Gamma) = F = \phi$, we take orientations on the edges α_i (i=1,2,...,m) and take an epimorphism χ : $H_1(E(G^{\Lambda'})) \rightarrow Z$.

By Lemma A, $|m(G^{\prime\prime},T^{\prime})_{\infty} - m((G^{\prime\prime})^{\prime\prime},T^{\prime\prime})_{\infty}| \leq k$. Note that $m((G^{\prime\prime})^{\prime\prime},T^{\prime\prime})_{\infty}=m-1$.

Let C'= $G^{\prime} \cap B$ and G'= $G^{\prime} \cap B^{c}$. Then $G^{\prime} = G' \cup C'$. Let $E(G') = cl(B^{c} - N(G'))$, E(C') = cl(B - N(C')) and $\partial' E(C') = E(C') \cap \partial B$.

Let $E(G')_{\infty}$, $E(C')_{\infty}$ and $\partial' E(C')_{\infty}$ be the lifts of E(G'), E(C') and $\partial' E(C')$ under the covering $E(G^{\wedge'})_{\infty} \rightarrow E(G^{\wedge'})$, respectively.

Let

$$M(G')_{\infty} = H_1(E(G')_{\infty})$$
 and $M(C',\partial'C')_{\infty} = H_1(E(C')_{\infty},\partial'E(C')_{\infty}).$

Lemma B. ∃ a short exact sequence $0 \rightarrow M(G')_{\infty} \rightarrow M(G^{\prime\prime},T')_{\infty} \rightarrow M(C',\partial'C')_{\infty} \rightarrow 0$, Further, the finite Λ-torsion part DM(C',∂'C')_{\infty} =0.

Proof. By excision,

 $H_d(E(G^{\prime\prime})_{\infty}, E(G^{\prime})_{\infty}) = H_d(E(C^{\prime\prime})_{\infty}, \partial^{\prime}E(C^{\prime\prime})_{\infty}).$ Since $H_d(E(C^{\prime\prime}), \partial^{\prime}E(C^{\prime\prime})) = 0$ for d=1,2, we see from A. Kawauchi, Three dualities on the integral homology of infinite cyclic coverings of manifolds, Osaka J. Math. 23(1986),633-651. that $H_2(E(C^{\prime\prime})_{\infty}, \partial^{\prime}E(C^{\prime\prime})_{\infty}) = 0$ and $M(C^{\prime\prime}, \partial^{\prime}C^{\prime\prime})_{\infty}$ is a torsion Λ -module with $DM(C^{\prime\prime}, \partial^{\prime}C^{\prime\prime})_{\infty} = 0$.

The homology exact sequence of the pair $(E(G^{\prime\prime})_{\infty}, E(G^{\prime\prime})_{\infty})$ induces an exact sequence: $0 \rightarrow H_1(E(G^{\prime\prime})_{\infty}) \rightarrow H_1(E(G^{\prime\prime})_{\infty})$ $\rightarrow H_1(E(G^{\prime\prime})_{\infty}, E(G^{\prime\prime})_{\infty}) \rightarrow 0.$

This sequence is equivalent to an exact sequence

$$0\rightarrow M(G')_{\infty} \rightarrow M(G^{\prime\prime},T')_{\infty} \rightarrow M(C',\partial'C')_{\infty} \rightarrow 0.$$

Note that $M(G')_{\infty} = M(G^{\Lambda},T)_{\infty}$ for a base T of G^ corresponding to the base T'of G^'.

By an argument of the case $v(\Gamma) = F = \phi$,

$$m(G')_{\infty} = m(G^{\wedge},T)_{\infty} = m+n-1$$

for the minimal number $m(G')_{\infty}$ of Λ -generators of $M(G')_{\infty}$.

Lemma C

A. Kawauchi, On the integral homology of infinite cyclic coverings of links, Kobe J. Math. 4(1987),31-41.

Let M' be a Λ -submodule of a finitely generated Λ -module M. Let m' and m be the minimal numbers of Λ -generators of M' and M, respectively. If D(M/M')=0, then m' \leq m.

<u>Proof.</u> For a Λ -epimorphism f: $\Lambda^m \rightarrow M$, let $B=f^{-1}(M') \subset \Lambda^m$, which is mapped onto M'. Since Λ^m/B is isomorphic to M/M' which has projective dimension ≤ 1 , B is Λ -free, i.e., $B=\Lambda^b$ with $b\leq m$. Hence $m'\leq b\leq m$. //

By Lemma C,

$$m(G^{\prime\prime},T^{\prime})_{\infty} \ge m(G^{\prime})_{\infty} = m+n-1.$$

Since $m((G^{\prime})',T')_{\infty} = m-1$, we have

$$k \ge m(G^{\prime},T')_{\infty} - m((G^{\prime})',T')_{\infty} \ge n.$$

Hence $u_{\beta}(G) \ge n$ and

$$u_{\beta}(G)=u(G)=u_{\gamma}(G)=u^{\Gamma}(G)=u_{\gamma}^{\Gamma}(G)=n.//$$