Knot Theory for spatial graphs

[Lecture 3] Spatial graphs with degree one vertices attaching to a surface

cf. A. Kawauchi, Spatial graphs attaching to a surface, in preparation.

Akio Kawauchi

Osaka City University Advanced Mathematical Institute

<u>Question</u>. In what sense , this object is "knotted" or "unknotted" ?

In this talk, the answer will be "β-unknotted" but "knotted", "γ-knotted" and "Γ-knotted" under some definitions introduced from now.

Example B: Proteins attached to a cell surface Some points of S. B. Prusiner's theory are:

By losing the N-terminal region, Prion precursor protein changes into Cellular PrP (PrP^c) or Scrapie PrP (PrP^{SC}), and α-helices change into β-sheets.
The conformations of PrP^c and PrP^{SC} may differ although the linear structures are the same.
There is one S-S combination.

Z. Huang et al., Proposed three-dimensional Structure for the cellular prion protein, Proc. Natl. Acad. Sci. USA, 91(1994), 7139-7143.

K. Basler et al., Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene, Cell 46(1986), 417-428.

Prion Precursor Protein

From:

K. Yamanouchi & J. Tateishi Editors, Slow Virus Infection and Prion (in Japanese), Kindaishuppan Co. Ltd. (1995)

Definition. A prion-string is a spatial graph $K = I(K) \cup \alpha(K)$ in the upper half space H^3 consisting of <u>S-S loop</u> I(K) and <u>GPI-tail</u> $\alpha(K)$ joining the S-S vertex in I(K) with the GPI-anchor in ∂H^3 .

Type IType IIType III

Topological models of prion-proteins (cf. [J. Math. System Sci. 2012])

[J. Math. System Sci. 2012]

A. Kawauchi and K. Yoshida, Topology of prion proteins, Journal of Mathematics and System Science 2(2012), 237-248.

Example C: A string-shaped virus

A virus of EBOLA haemorrhagic fever

http://www.scumdoctor.com/Japanese/disease-prevention/infectiousdiseases/virus/ebola/Pictures-Of-The-Effects-Of-Ebola.html **3.1.** A spatial graph attached to a surface

Let Γ be a finite graph, and $v_1(\Gamma)$ the set of degree one vertices. Assume $|v_1(\Gamma)| \ge 2$.

Let F be a compact surface in R³.

Definition.

A <u>spatial graph on F</u> of Γ is the image G of an embedding f: $\Gamma \rightarrow R^3$ such that

(1) G meets F with $G \cap F = f(v_1(\Gamma)) = v_1(G)$,

(2) $G-v_1(G)$ is contained in one component of R^3-F ,

(3) \exists a homeomorphism h: $\mathbb{R}^3 \rightarrow \mathbb{R}^3$ such that h(G U F) is a polyhedron.

- F does not need $\partial F = \Phi$.
- Though Γ, G or F may be disconnected, but assume that $|F_c ∩ v_1(G)| ≥ 2$ for \forall comp. F_c of F.
- Ignore the degree 2 vertices in G.

<u>Definition.</u> A spatial graph G on F is <u>equivalent</u> to a spatial graph G' on F' if \exists an orientation-preserving homeomorphism h: $\mathbb{R}^3 \rightarrow \mathbb{R}^3$ such that $h(F \cup G) = F' \cup G'$.

Let [G] be the class of spatial graphs G' on F' which are equivalent to G on F.

3.2. An unknotted graph on a surface and the induced unknotting number

Definition. G on F is <u>unknotted</u> if \exists a 2-cell Δ ' in \forall comp. F' of F such that the union Δ of all Δ ' contains $v_1(G)$ and the <u>shrinked spatial graph</u> G^ with $v_1(G^{A}) = \phi$ (i.e. a spatial graph obtained from G by shrinking $\forall \Delta$ ' into a point) is unknotted in R³.

- <u>Note</u>. If $\forall F' = S^2$ or a 2-cell, then [G^] does not depend on a choice of Δ .
- However, in a genral F, [G^] depends on a choice
- of Δ , although the <u>shrinked graph</u> Γ^{Λ} with
- $v_1(\Gamma^{-}) = \phi$ associated with F is uniquely defined.

Because $\forall G^{\wedge}$ is a spatial graph of the same graph Γ^{\wedge} , we have:

<u>Lemma</u>. For \forall given graph Γ and \forall given F in R³, \exists only finitely many unknotted graphs G of Γ on F up to equivalences.

Let O = {unknotted graphs of Γ^}.

Definition.

The <u>unknotting number</u> u(G) of a spatial graph G of Γ on F is the distance from the set {G^} to O by crossing changes on edges attaching to a base: $u(G) = \rho({G^}, O).$ 3.3. A β-unknotted graph on a surface and the induced unknotting number

Definition. G on F is <u>β-unknotted</u> if \exists a 2-cell Δ' in \forall component F' of F such that the union Δ of all Δ' contains v₁(G) and the shrinked spatial graph G^ with v₁(G^)= ϕ is β-unknotted in R³.

unknotted $\Rightarrow \beta$ -unknotted

Let $O_{\beta} = \{\beta \text{-unknotted graphs of }\Gamma^{\}}$.

Definition.

The <u>β-unknotting number</u> $u_{\beta}(G)$ of a spatial graph G of Γ on F is the distance from the set {G^} to O_{β} by crossing changes on edges attaching to a base: $u_{\beta}(G) = \rho(\{G^{\wedge}\}, O_{\beta}).$

3.4. A γ-unknotted graph on a surface and the induced unknotting number

<u>Definition.</u> G on F is <u>y-unknotted</u> if \exists a 2-cell Δ' in \forall component F' of F such that the union Δ of all Δ' contains $v_1(G)$ and the shrinked spatial graph G^ with $v_1(G^{A}) = \phi$ is y-unknotted in R³.

 γ -unknotted \Rightarrow β -unknotted

Given G, let

${D_{G^{,\gamma}}} = {(D;T) \in [D_{G^{,\gamma}}] | c(D;T)=c_{\gamma}(G^{,\gamma}), \forall G^{,\gamma}}.$ <u>Definition.</u>

The <u>y-unknotting number</u> $u_{\gamma}(G)$ of a spatial graph G of Γ on F is the distance from $\{D_{G^{\Lambda},\gamma}\}$ to O by crossing changes on edges attaching to a base:

$$u_{\gamma}(G) = \rho(\{D_{G^{*},\gamma}\}, O\}).$$

<u>Note</u>. G on F is γ -unknotted $\Leftrightarrow u_{\gamma}(G) = 0$.

3.5. Γ-unknotted graph on a surface and the induced unknotting numbers

<u>Definition.</u> G on F is <u> Γ -unknotted</u> if \exists a 2-cell Δ' in \forall component F' of F such that the union Δ of all Δ' contains $v_1(G)$ and the shrinked spatial graph G^ with $v_1(G^{A}) = \phi$ obtained from G by shrinking $\forall \Delta'$ into a point is Γ -unknotted in R³.

 Γ -unknotted \Rightarrow γ -unknotted \Rightarrow unknotted

 $\Rightarrow \beta$ -unknotted

Let $O_{\Gamma^{n}} = \{\Gamma^{n} - \text{unknotted graphs}\}$. Then $O_{\beta} \supset O \supset O_{\Gamma^{n}}$.

Definition.

The Γ-unknotting number u^Γ(G) of G on F is the distance from the set $\{G^{A}\}$ to $O_{\Gamma^{A}}$ by crossing changes on edges attaching to a base: $u^{\Gamma}(G) = \rho(\{G^{A}\}, O_{\Gamma^{A}})$ The (γ,Γ)-<u>unknotting number</u> u^Γ_ν(G) of G on F is the distance from $\{D_{G^{,\nu}}\}$ to O_{Γ} by crossing changes on edges attaching to a base: $u_{\nu}^{G}(G) = \rho(\{D_{G^{,\nu}}\}, O_{\Gamma^{,\nu}}\})$.

3.6. Properties on the unknotting numbers

<u>Theorem 3.6.1</u>. The topological invariants $u_{\beta}(G), u(G), u^{\Gamma}(G), u_{\gamma}(G), u_{\gamma}^{\Gamma}(G)$ of \forall spatial graph G of \forall graph Γ on \forall surface F satisfy the following inequalities :

$$u_{\beta}(G) \leq u(G) \leq \{u_{\gamma}(G), u^{\Gamma}(G)\} \leq u_{\gamma}^{\Gamma}(G),$$

and are distinct for some graphs G of some Γ on F=S².

<u>Theorem 3.6.2.</u> For \forall given graph Γ , \forall surface F in R³ and \forall integer n ≥ 1 , $\exists \infty$ -many spatial graphs G of Γ on F such that

 $u_{\beta}(G) = u(G) = u_{\gamma}(G) = u^{\Gamma}(G) = u_{\gamma}^{\Gamma}(G) = n.$

<u>Proof of Theorem 4.6.1.</u> The inequalities are direct from definitions.

We show that these invariants are distinct.

$$G=$$

G^ has $c_{\gamma}(G^{\gamma})=2$ and hence $u_{\beta}(G)=u(G)=u_{\gamma}(G)=0$. On the other hand, we have

for G[^] is a spatial graph of a plane graph with a Hopf link as a constituent link and hence not Γ-unknotted.

 G^{-10}_{8} has $u(10_{8})=2$ and $u_{\gamma}(10_{8})=3$ by [Nakanishi 1983] and [Bleiler 1984].

Hence

(3)

Then $u_{\beta}(G)=0$. Since G^ is a Θ -curve, $u(G^{\circ})=0 \Leftrightarrow G^{\circ}$ is isotopic to a plane graph. Thus, $u(G) \ge 1$ and we have $u(G) = u^{\Gamma}(G) = u_{\gamma}(G) = u_{\gamma}^{\Gamma}(G) = 1$. //

Proof of Theorem 3.6.2.

<u>Assume v₁(Γ)≠φ.</u>

Assume Γ and F are connected for simplicity.

Let F be in the interior of a 3-ball $B \subset S^3$, and $S^2=\partial B$.

Let G_0 be a Γ -unknotted graph on S^2 in $B^c=cl(S^3-B)$ and extend it to a Γ -unknotted graph G_1 on F by taking in B a 1-handle H joining a 2-cell Δ_0 of S^2 and a 2-cell Δ_1 of F and then taking $|v_1(\Gamma)|$ parallel arcs in H.

A Γ -unknotted A Γ -spa graph G_1 on F G o

A Γ-spatial graph G on F

Note that $G_0^{-1} = G_0 / \Delta_0$ and $G_1^{-1} = G_1 / \Delta_1$ are isotopic Γ -unknotted graphs in S³.

We take a Γ -spatial graph G on F with $v_1(G) \subset \Delta_1$ such that $G^{-1} = G / \Delta_1$ is a connected sum

 $G_1^{HK}(n)$ of an edge of $G_1^{(n)}$ (in a part of $G_0^{(n)}$) and K(n) attaching to a base of $G_1^{(n)}$, where K(n) is the n-fold connected sum of a trefoil knot K. Then $u_{V}^{\Gamma}(G) \leq n$. We show $u_{\beta}(G) \ge n$. Let $u_{\beta}(G) = u_{\beta}(G^{\prime})$ for $G^{\prime} = G / \Delta'$ for a 2-cell Δ' in F.

Assume that u_{β} (G)=k and a β -unknotted graph (G^') is obtained from G^' by k crossing changes on edges α_i (i=1,2,...,m) attaching to a base T' in G^'.

As it is explained in the case $v_1(\Gamma) = F = \phi$, we take orientations on the edges α_i (i=1,2,...,m) and take an epimorphism χ : $H_1(E(G^{\prime})) \rightarrow Z$.

By Lemma A, $|m(G^{\prime},T^{\prime})_{\infty} - m((G^{\prime})^{\prime},T^{\prime})_{\infty}| \leq k$. Note that $m((G^{\prime})^{\prime},T^{\prime})_{\infty} = m-1$. Let C'= G^{\prime} \cap B and G'= G^{\prime} \cap B^c. Then G^{\prime}=G' \cup C'. Let E(G')=cl(B^c-N(G')), E(C')=cl(B-N(C')) and ∂ 'E(C')= E(C') \cap ∂ B.

Let $E(G')_{\infty}$, $E(C')_{\infty}$ and $\partial' E(C')_{\infty}$ be the lifts of E(G'), E(C') and $\partial' E(C')$ under the covering $E(G^{\prime})_{\infty} \rightarrow E(G^{\prime})$, respectively. Let

 $M(G')_{\infty} = H_1(E(G')_{\infty}) \text{ and}$ $M(C',\partial'C')_{\infty} = H_1(E(C')_{\infty},\partial'E(C')_{\infty}).$

<u>Lemma B.</u> \exists a short exact sequence $0 \rightarrow M(G')_{\infty} \rightarrow M(G^{\prime},T')_{\infty} \rightarrow M(C',\partial'C')_{\infty} \rightarrow 0,$ Further, the finite Λ -torsion part $DM(C',\partial'C')_{\infty} = 0.$

Proof. By excision,

 $H_{d}(E(G^{\prime})_{\infty}, E(G^{\prime})_{\infty}) = H_{d}(E(C^{\prime})_{\infty}, \partial^{\prime}E(C^{\prime})_{\infty}).$

Since $H_d(E(C'),\partial'E(C'))=0$ for d=1,2, we see from

A. Kawauchi, Three dualities on the integral homology of infinite cyclic coverings of manifolds, Osaka J. Math. 23(1986),633-651.

that $H_2(E(C')_{\infty},\partial' E(C')_{\infty})=0$ and $M(C',\partial' C')_{\infty}$ is a torsion Λ -module with $DM(C',\partial' C')_{\infty}=0$.

The homology exact sequence of the pair $(E(G^{\prime})_{\infty}, E(G^{\prime})_{\infty})$ induces an exact sequence: $0 \rightarrow H_1(E(G^{\prime})_{\infty}) \rightarrow H_1(E(G^{\prime\prime})_{\infty})$ $\rightarrow H_1(E(G^{\prime\prime})_{\infty}, E(G^{\prime})_{\infty}) \rightarrow 0.$ This sequence is equivalent to an exact

 $0 \rightarrow \mathsf{M}(\mathsf{G}')_{\infty} \rightarrow \mathsf{M}(\mathsf{G}^{\prime\prime},\mathsf{T}')_{\infty} \rightarrow \mathsf{M}(\mathsf{C}^{\prime},\partial^{\prime}\mathsf{C}^{\prime})_{\infty} \rightarrow 0. //$

sequence

Note that $M(G')_{\infty} = M(G^{T})_{\infty}$ for a base T of G^ corresponding to the base T'of G^'.

By an argument of the case v(Г)= F = ϕ ,

$$m(G')_{\infty} = m(G^{T})_{\infty} = m + n - 1$$

for the minimal number $m(G')_{\infty}$ of Λ -generators of $M(G')_{\infty}$.

Lemma C

A. Kawauchi, On the integral homology of infinite cyclic coverings of links, Kobe J. Math. 4(1987),31-41.

Let M' be a A-submodule of a finitely generated

Λ-module M. Let m' and m be the minimal

numbers of Λ -generators of M' and M,

respectively. If D(M/M') = 0, then $m' \leq m$.

<u>Proof.</u> For a Λ -epimorphism f: $\Lambda^m \rightarrow M$, let B=f⁻¹(M') $\subset \Lambda^m$, which is mapped onto M'. Since Λ^m/B is isomorphic to M/M' which has projective dimension ≤ 1 , B is Λ -free, i.e., B= Λ^b with b \leq m. Hence m' \leq b \leq m. // By Lemma C,

$$\begin{split} m(G^{\prime\prime},T^{\prime})_{\infty} &\geqq m(G^{\prime})_{\infty} = m+n-1. \\ \text{Since } m((G^{\prime\prime})^{\prime},T^{\prime})_{\infty} = m-1, \text{ we have} \\ k &\geqq m(G^{\prime\prime},T^{\prime})_{\infty} - m((G^{\prime\prime})^{\prime},T^{\prime})_{\infty} \geqq n. \\ \text{Hence } u_{\beta}(G) \geqq n \text{ and} \end{split}$$

$$u_{\beta}(G) = u(G) = u_{\gamma}(G) = u^{\Gamma}(G) = u^{\Gamma}_{\gamma}(G) = n.//$$