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Example A: 

 

 

 

 

Question.  In what sense , this object  is  

                                        “knotted” or “unknotted” ? 
 
In this talk, the answer will be “β-unknotted”   

but “knotted”, “γ-knotted” and “Γ-knotted”  

under some definitions introduced from now. 

 

 

 

 



Some points of S. B. Prusiner’s theory are: 
 
(1) By losing the N-terminal region,  Prion precursor  
protein changes into Cellular PrP (PrPc) or Scrapie PrP  
(PrPSC ) , and α-helices change into β-sheets.  
(2) The conformations of PrPc and PrPSC may differ  
although the linear structures are the same. 
(3) There is one S-S combination. 
  

●Z. Huang et al., Proposed three-dimensional Structure for 
the cellular prion protein, Proc. Natl. Acad. Sci. USA, 
91(1994), 7139-7143. 

● K. Basler et al., Scrapie and cellular PrP isoforms are 
encoded by  the same chromosomal gene, Cell 46(1986), 
417-428. 

 
 
 
 

Example B:  Proteins attached to a  cell surface                                   



     Prion Precursor Protein 



Definition.  A prion-string  is a spatial graph  

K = l (K)∪α(K)   in the upper half space  H3 

consisting of S-S loop   l(K)  and GPI-tail  α(K)  

joining the S-S vertex in   l(K)  with the  

GPI-anchor in ∂H3.  

 

 
 
 

α(K)  

l(K) 



Topological models of prion-proteins 
（cf. [J. Math. System Sci.  2012]） 

 
 

 

[J. Math. System Sci. 2012]  
A. Kawauchi and K. Yoshida,  Topology of prion proteins,  
Journal of Mathematics and System Science 2(2012), 237-248.  



http://www.scumdoctor.com/Japanese/disease-prevention/infectious-
diseases/virus/ebola/Pictures-Of-The-Effects-Of-Ebola.html 

 A virus of  EBOLA  
haemorrhagic fever  
    

Example C:    A string-shaped virus 



3.１. A spatial graph attached to a surface  

Let Γ be a finite graph, and v1(Γ ) the set of degree  

one vertices.  Assume |v1(Γ )|≧2. 

Let F be a compact  surface in R3. 

Definition.   

A spatial graph on F of Γ is  the image G of an 

embedding f: Γ → R3  such that  

(1) G meets  F with G∩F=f (v1(Γ ))= v1(G),  

(2) G-v1(G) is contained in one component of R3-F, 

(3)∃a homeomorphism h: R3 → R3  such that 

      h(G∪F) is a polyhedron. 

 



・ F does not need ∂F=φ. 

・ Though Γ , G or F may be disconnected, but 
assume  that |Fc∩v1(G)| ≧2 for∀comp. Fc of F. 

・ Ignore the degree 2 vertices in G. 
 
Definition.  A spatial graph G on F is equivalent  to a  

spatial graph G' on F’ if ∃an orientation-preserving  

homeomorphism h: R3 → R3 such that    

                                h(F∪G)=F’∪G'. 
 

Let [G] be the class of spatial graphs G’ on F’ which  

are equivalent to G on F.  

 



 

Definition.   G on F is unknotted if ∃a 2-cell Δ’ in  

∀comp. F’ of F such that the union Δ of all  

Δ’ contains v1(G) and  the shrinked spatial graph  

G^  with v1(G^)=φ (i.e. a spatial graph obtained  

from G by shrinking ∀Δ’ into a point)  is  

unknotted in R3. 
  

3.2. An unknotted graph on a surface and 
the  induced unknotting number 

 
 



 
 Note.  If ∀F’ =S2 or a 2-cell,  then [G^ ] does not  

depend on a choice of Δ.  

However, in a genral F, [G^ ] depends on a choice  

of Δ, although the shrinked graph  Γ^ with  

v1(Γ^ )=φassociated with F is uniquely defined.  



 

Because ∀G^  is  a spatial graph of the same  

graph Γ^, we have: 

 

Lemma.  For ∀ given graph Γ and ∀ given F in  

R3, ∃only finitely many unknotted graphs G of Γ  

on F up to equivalences.  
 

 

   

  



Let O = {unknotted graphs of Γ^}. 
 

Definition. 

The unknotting number u(G) of a spatial graph G 

of Γ on F  is the distance from the set {G^} to O by  

crossing changes on edges attaching to a base:   

u(G) = ρ({G^},O).  

 



3.3. A β-unknotted graph on a surface  and  

the  induced unknotting number  
 
 

Definition.   G on F is β-unknotted if ∃a 2-cell  

Δ’ in ∀component F’ of F such that the union Δ  

of all Δ’ contains v1(G)  and  the shrinked spatial  

graph G^  with v1(G^)=φ is β-unknotted in R3. 

 

                   unknotted  ⇒ β-unknotted 

 
 



Let Oβ = {β-unknotted graphs of Γ^}. 

 

Definition. 

The β-unknotting number uβ(G) of a spatial graph  

G of Γ on F  is the distance from the set {G^} to  

Oβ by crossing changes on edges attaching to a  

base:            uβ(G) = ρ({G^},Oβ).  

 



Definition.   G on F is γ-unknotted if ∃a 2-cell  

Δ’ in ∀component F’ of F such that the union Δ  

of all Δ’ contains v1(G)  and  the shrinked spatial  

graph G^  with v1(G^)=φ is γ-unknotted in R3. 

 

γ-unknotted⇒unknotted ⇒ β-unknotted 
  

3.4. A γ-unknotted graph on a surface and 
the  induced unknotting number  
 



Given G, let   

      {DG^,γ }= {(D;T)∈[DG^] | c(D;T)=cγ(G^), ∀G^}. 

Definition. 

The γ-unknotting number uγ(G) of a spatial graph  

G of Γ on F  is the distance from {DG^,γ} to O by  

crossing changes on edges attaching to a base:   

                     uγ(G) = ρ({DG^,γ },O). 

Note. G on F is γ-unknotted ⇔ uγ(G) =0. 

 

 



Definition.   G on F is Γ-unknotted if ∃a 2-cell  

Δ’ in ∀component F’ of F such that the union Δ  

of all Δ’ contains v1(G)  and  the shrinked spatial  

graph G^  with v1(G^)=φ obtained from G by  

shrinking ∀Δ’ into a point is Γ^-unknotted in R3. 
 

Γ-unknotted⇒γ-unknotted⇒unknotted  

                                                          ⇒ β-unknotted 

 
 
 

 
3.5. Γ-unknotted graph on a surface and the   
induced unknotting numbers  
 
   
 
  
 
 

   
   
 
         
 
 

 



Let  OΓ^={Γ^-unknotted graphs}. Then Oβ⊃O⊃ OΓ^. 
 
Definition.  

The Γ-unknotting number uΓ(G) of G on F is the  

distance from the set {G^} to OΓ^  by crossing  

changes on edges attaching to a base:   

uΓ(G) = ρ({G^},OΓ^)  

 The (γ,Γ)-unknotting number u   (G) of G on F is  

the distance from {DG^,γ} to OΓ by crossing changes  

on edges attaching to a base: u   (G) =ρ({DG^,γ},OΓ^). 

 

   

   

 

         
 
 

Γ  
   γ
 

 

G 
   γ
 

 



3.6. Properties on the unknotting numbers 
 
Theorem 3.6.1.  The topological  invariants  

uβ(G), u(G),  uΓ(G), uγ (G), u   (G)  
of ∀spatial graph G of ∀graph  Γ on ∀surface F  
satisfy the following inequalities :  
            
        uβ(G) ≦ u(G)≦｛uγ (G),uΓ(G)｝≦ u  (G), 
 
and are distinct for some graphs G of some Γ on  
F=S2.   
 
 
 
 

Γ  
   γ
 

 

Γ  
   γ
 

 



Γ  
   γ
 

 

Theorem 3.6.2.  For ∀given graph Γ , ∀surface F  

in R3 and ∀ integer n≧1, ∃∞-many spatial  

graphs G of Γ on F such that 
 
            uβ(G)= u(G)= uγ (G)= uΓ(G)= u   (G)=n.  
 

 

 

 



Proof of Theorem 4.6.1. The inequalities are direct  

from definitions.  

We show that these invariants are distinct. 

(1)                 

                    G=                                

 

G^ has cγ(G^)=2 and hence uβ(G)=u(G)=uγ(G)=0.  

On the other hand, we have   

                               uΓ(G)=u   (G)=1,  

for G^ is a spatial graph of a plane graph with a Hopf  

link as a constituent link and hence not Γ-unknotted. 

 

 

Γ  
γ
 

 



(2) 
                     G= 
 
 

G^=108  has u(108)=2 and uγ (108)=3  
by [Nakanishi 1983] and [Bleiler 1984]. 
 
Hence 
 
         uβ(G)= u(G) =uΓ(G)=2< uγ (G)=u   (G)=3. 
 

 

 

 

 

 

 

Γ  
γ
 

 



(3)   

                         

                         G= 

 

 

Then uβ(G)= 0. Since G^ is a Θ-curve,  

        u(G^)=0 ⇔ G^ is isotopic to a plane graph. 

Thus, u(G)≧1 and we have    

                    u(G) =uΓ(G)=uγ (G)=u   (G)=1.  //  
Γ  
   γ
 

 



Proof of Theorem 3.6.2.   

Assume v1(Γ)≠φ.   

Assume Γ and F are connected for simplicity. 

Let F be in the interior of  a 3-ball B⊂S3, and  

S2=∂B.  

Let G0  be a Γ-unknotted graph on S2 in Bc=cl(S3-B)  

and extend it to a Γ-unknotted graph G1 on F by  

taking in B a 1-handle H joining a 2-cell Δ0 of S2  

and a 2-cell Δ1 of F and then taking |v1(Γ)| parallel  

arcs in H.  

 

 



A Γ-unknotted  
 graph G1 on F 

 A Γ-spatial graph  
       G on F 



Note that G0
^= G0 / Δ0 and G1

^= G1 / Δ1 are  

isotopic Γ-unknotted graphs in S3.  

We take a Γ-spatial graph G on F with v1(G)⊂Δ1  

such that G^ =G / Δ1 is  a connected sum  

G1
^#K(n) of an edge of G1

^ (in  a part of  G0 ) and  

K(n) attaching to a base of G1
^, where K(n) is the  

n-fold connected sum of a trefoil knot K.  

Then    u (G)≦ n.   

 

 

 

Γ  
γ
 

 



We show uβ (G)≧ n.  

Let uβ (G)= uβ (G^’) for  G^’ =G / Δ’ for a 2-cell  

Δ’ in F. 

Assume that uβ (G)=k and a β-unknotted graph  

(G^’)’ is  obtained from G^’ by k crossing  

changes on edges αi (i=1,2,…,m) attaching to a  

base T’ in G^’.   

As it is explained in the case v1(Γ)= F =φ,  we  

take orientations on the edges αi (i=1,2,…,m)  

and take an epimorphism χ: H1(E(G^’))→Z . 

 

 

 

 



By Lemma A, |m(G^’,T’) ∞ – m((G^’)’ ,T’) ∞ |≦k.  

Note that m((G^’)’,T’) ∞ =m-1.  

Let C’= G^’∩B and G’= G^’∩Bc. Then G^’=G’∪C’.  

Let E(G’)=cl(Bc-N(G’)), E(C’)=cl(B-N(C’)) and  

∂’E(C’)= E(C’)∩∂B. 

⊃ 
E(C’) 

∂’E(C’) 



Let E(G’)∞, E(C’)∞ and ∂’E(C’)∞ be the lifts of  

E(G’), E(C’) and ∂’E(C’) under the covering   

E(G^’)∞→E(G^’), respectively.  

Let   

                M(G’)∞ = H1(E(G’)∞)  and 

         M(C’,∂’C’)∞ = H1(E(C’)∞,∂’E(C’)∞).  

 

 

 

 



Proof. By excision,  

         Hd(E(G^’)∞, E(G’)∞)= Hd(E(C’)∞,∂’E(C’)∞).  

Since Hd(E(C’),∂’E(C’))=0 for d=1,2, we see from  
A. Kawauchi, Three dualities on the integral homology of infinite  

cyclic coverings of manifolds, Osaka J. Math. 23(1986),633-651. 

that H2(E(C’)∞,∂’E(C’)∞)=0 and M(C’,∂’C’)∞ is a  

torsion Λ-module with DM(C’,∂’C’)∞=0. 

Lemma B.   ∃a short exact sequence  
0→M(G’)∞ → M(G^’,T’)∞ →M(C’,∂’C’)∞ →0, 

Further, the finite Λ-torsion part DM(C’,∂’C’)∞ =0. 



The homology exact sequence of the pair  

(E(G^’)∞, E(G’)∞) induces an exact sequence: 

0→ H1(E(G’)∞) → H1(E(G^’)∞)  

                                       → H1(E(G^’)∞, E(G’)∞) →0.  

This sequence is equivalent to an exact  

sequence 

 

  0→M(G’)∞ → M(G^’,T’)∞ →M(C’,∂’C’)∞ →0. // 



Note that M(G’)∞ =M(G^,T)∞ for a base T of G^  

corresponding to the base T’of G^’.  

By an argument of the case v(Γ)= F =φ, 

m(G’)∞ =m(G^,T) ∞ = m+n-1  

for the minimal number m(G’)∞  of Λ-generators  

of M(G’) ∞.  

 

 



Lemma C 
A. Kawauchi, On the integral homology of infinite cyclic  
coverings of links, Kobe J. Math. 4(1987),31-41. 

Let M’ be a Λ-submodule of a finitely generated  
Λ-module M. Let m’ and m be the minimal  
numbers of Λ-generators of M’ and M,  
respectively. If D(M/M’) =0, then  m’ ≦ m. 
 
 

Proof.  For a Λ-epimorphism f: Λm →M, let 
B=f-1(M’)⊂Λm, which is mapped onto M’. 
Since Λm/B is isomorphic to M/M’ which has 
projective dimension ≦1, B is Λ-free, i.e., B=Λb 

with b≦m. Hence   m’ ≦b ≦m. // 



By Lemma C, 

 m(G^’,T’)∞ ≧m(G’)∞ = m+n-1.  

Since m((G^’)’ ,T’) ∞ = m-1, we have  

      k ≧ m(G^’,T’) ∞ – m((G^’)’ ,T’) ∞ ≧ n. 

Hence uβ (G)≧ n and  

  

uβ(G)= u(G)= uγ (G)= uΓ(G)= u   (G)=n.// 

 

  

Γ  
   γ
 

 


