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2.1. A based diagram and a monotone diagram

Let I be a graph without degree one vertices, and
G = G(I) a spatial graph in R3. LetT, (i=1,2,...,r) be
an ordered set of the components of I, and

G, =G(r; ) the corresponding spatial subgraph of
G = G(l). Let T, be a maximal tree of G..
Note: We consider a topological graph without

degree 2 verticies, so that T, =¢ if G, is a knot or
link, and T, = one vertex if G, has just one vertex
(of degree=3).



Let T=T, UT,U ... UT,. Call it a base of G.
Note: There are only finitely many bases of G.

G is obtained from a basis T by attaching edges

(i.e., arcs or loops) to T.

Let D be a diagram of a spatial graph G=G(I'), and
D; the sub-diagram of D corresponding to T.

Let cy(D;) be the number of crossing points of D
whose upper or lower crossing points belong to
D..



Definition. D is a based diagram (on base T),
written as (D;T) if ¢,(D+)=0.
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Lemma. For VY base T of G, V diagram D of G
is deformed into a based diagram on T by
generalized Reidemeister moves.

The generalirez Reidemeister moves:
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Let a be an edge of G=G(I') attaching to a base T.

Definition. An edge diagram D, in a diagram

D of G is monotone if:
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A sequence on the edges of a based graph (G,T)
is regularly ordered if an order on the edges

such that any edge belonging to G; is smaller
than any edge belonging to G; for i<j is
specified.



Definition. A based diagram (D;T) is monotone
if there is a regularly ordered edge sequence a ;
(i=1,2,---,m) of (G,T) such that Dy, is monotone
and Dy, is upper than Do, fori<j.
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2.2. Complexity

Definition.

The warping degree d(D;T) of a based diagram
(D;T) is the least number of crossing changes on
edge diagrams attaching to T needed to obtain a
monotone diagram from (D;T).

The crossing number of (D;T) is denoted by ¢(D;T).

If D is a knot or link diagram or an edge diagram,
then the warping degree and crossing number of
D are denoted by d(D) and c(D), respectively.



A similar notion for a knot or link is given in:

[Lickorish-Millett 1987] W. B. R. Lickorish and K. C. Millett, A
polynomial invariant of oriented links, Topology 26(1987), 107-141.

[Fujimura 1988] S. Fujimura, On the ascending number of knots,
thesis, Hiroshima University, 1988.

[Fung 1996] T. S. Fung, Immersions in knot theory, a dissertation,
Columbia University, 1996.

[Kawauchi 2007] A. Kawauchi, Lectures on knot theory (in
Japanese),

Kyoritu Shuppan, 2007.

[Ozawa 2010] M. Ozawa, Ascending number of knots and links.
J. Knot Theory Ramifications 19 (2010), 15-25.

[Shimizu 2010] A. Shimizu, The warping degree of a knot diagram,
J. Knot Theory Ramifications 19(2010), 849-857.



Properties of the warping degree
For the warping degree d of an oriented
edge diagram D,

d(D,) + d(-D,) = ¢(D,),
d(D,) = min{ d (D), d(-D_)}.




Definition.

The complexity of a based diagram (D;T) is the
pair cd(D;T)= (c(D;T), d(D;T)). The complexity of a
spatial graph G is

v(G) = min{cd(D;T)| (D;T)E[D¢l}
in the dictionary order. Let y(G)= (c, (G), d (G)).
Our basic viewpoint of complexity. This complexity

is reducible by a crossing change \/ < \/ or
AN /
a splice\/=>> ( or — until we obtain a graph
N\ N
in a plane.



2.3. The warping degree and an unknotted graph

Definition.
The warping degree of G is :
d(G)= min{d(D;T)| (D;T) €[D;]}

Definition.
G is unknotted if d(G)= 0.

When I consists of loops,
G is unknotted <& G is a trivial link.



Assume I has a vertex of degree=3.
Lemma 2.3.1. For V G, 3 finitely many crossing
changes on G to make G with d(G)=0.

Lemma 2.3.2. ForV given graph " ,3 only
finitely many G of I’ with d(G)=0 up to
equivalences.

Lemma 2.3.3. If d(G)=0, then 3 T such that
G/T is equivalent to STV S'V... VSICR2.




Lemma 2.3.4. A connected G with d(G)=0 is
deformed into a basis T by a sequence of edge

reductions:
D= = A

Corollary 2.3.5. For V G with d(G)=0, 3 T such
that every edge (arc or loop) attachingto T is in

a trivial constituent knot.



Given Dy, the cross index of o; and a; (i#)):
g(a, 0u)=[1-(-1) #PxinPl]/2 (=0 or 1).
_ Da

cross index =0 cross index =1

The total cross index of ' on D;:
g(l; D;) =2;; &(ay, ;).
Lemma 2.3.6. Let d(G)=0. Then
min{c(D;T)|(D;T) €[Dg¢], d(D;T)=0} = &(I; D;).




Conway-Gordon Theorem.

Every spatial 6-complete graph K, contains a
non-trivial constituent link.

Every spatial 7-complete graph K, contains a
non-trivial constituent knot.

&

An unknotted K, An unknotted K,




2.4. The y-warping degree and a y-unknotted
graph

Definition.
The y-warping degree of G is the number d, (G)

for the complexity y(G)= (c, (G), d (G)) of G.

Definition. G is y-unknotted if d, (G) =0.

v-unknotted=unknotted



2.5. A l-unknotted graph and the (y,l')-warping
degree

Let y(I') =min{y(G) | G is a spatial graph of I'}.

Definition.
A l-unknotted graph G is a spatial graph of I
with y(G) = y(I).




Note.
(1) Let y(I)=(c(T), d,(I)). Then d (I)=0.
l-unknotted=y-unknotted=unknotted.

(2) ¢, (r)=0 if and only if I' is a plane graph.

(3) A spatial plane graph G is l-unknotted
< G is equivalent to a graph in a plane.



Definition.
O = {unknotted graphs of I'}.

0% = {y-unknotted graphs on (D;T)E[D]
with cd(D;T)=y(G)}.

o, =U {0(3' | G is a spatial graph of I'}
= {y-unknotted graphs of I'}.

O, = {l-unknotted graphs}.
Then 0O 0, O O,.

Note: OF CO, or OYnO,= ¢ for every G.



Definition. -
The (y,)-warping degree d,(G) of G is:

d,(G) =d,(G)+ p(0 ;,0,).

(p denotes the Gordian distance.)
By definition, d(G)= dv(G)é d E(G).

-
dv(G) =0 if and only if G is -unknotted.



2.6. Examples

Example 1.6. 1. Let G = @ :

G has ¢ (G)=2, for G has a Hopf link as a
constituent link.

d(G)=d (G)=0.

Because G is a planar graph, if G is -unknotted,

then c (G)=0, a contradiction.
Hence d; (G) =1.




Lemma 2.6.2. (1) ([Fung 1996] , [Ozawa 2010])
If K is a knot with d(K)=1, then K is a non-trivial
twist knot.

(2) If G is a O-curve with d(G)=1, then the 3
constituent knots of G consist of two trivial

knots and one non-trivial twist knot .



Example 2.6.3. (([Fung 1996] , [Ozawa 2010],

[Shimizu 2010])
&
For K= 5,, we have

¢, (K)=5, d(K)=1< d,(K)=d, (K)=2.



Example 2.6.4.

(\
For K =9 6,,

¢, (K)=6, d(K)=d,(K)=d" (K)=2.
In fact, d " (K) = 2:

By Lemma, d(K)=2 (, for K is not any twist
knot).




Example 2.6.5. (Kinoshita’s ©-curve)

For G= @, we have

¢,(G) =7 and d(G)=d (K)= dE (G)= 2.



) =)
: — \
a based diagramof G a monotone diagram

O(\?=Or implies p(O?,Or)=O. Hence d, (G)= dE (G).
Since G is non-trivial and the 3 constituent knots

are trivial, we have d(G)=2 by Lemma.
Hence, if ¢, (G)=7, then d(G)=d, (G)=d(G)=2.



By the diagram, ¢ (G) =7. We show ¢ (G) 7.
By the classification of algebraic tangles with

crossing numbers=6 in:

H. Moriuchi, Enumeration of algebraic tangles with applications
to theta-curves and handcuff graphs, Kyungpook Math. J.
48(2008), 337-357

the Kinoshita’s 8-curve G cannot have any
based diagram with crossing number =6 .

Hence c (G)=7.



2.7. A B-unknotted graph

ForabaseT=T,UT,U...UT of G, let B be the
disjoint union of mutually disjoint 3-ball
neighborhoods B; of T in S? (i=1,2,...,r).

Let B¢ = cl(S3-B) be the complement domain of B
with L=B°‘nG=a,Ua,U...Ua_ an n-string tangle
in B¢, called the complementary tangle of T.




Definition. G is B-unknotted if 3 a base T of G
whose complementary tangle (BS,L) is trivial.

O 2D
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A trivial complementary tangle

Example 1.7.1. For a O-curve I, 3 eo-many

B-unknotted graphs G of I' up to equivalences.




Example 1.7.2. Triviality of the complementary
tangle (B¢,L) depends on a choice of a base.

Example 1.7.3. If G is B-unknotted, then G is a free
graph (i.e., m,(R3-G) is a free group), but the
converse is not true.

57)

A free B-knotted graph



By definitions and examples explained above,
we have:
Theorem.
I-unknotted=y-unknotted=unknotted
= B-unknotted = free.

These concepts are mutually distinct.

Note: Given a I, 3 only finitely many lN-unknotted,
v-unknotted, or unknotted graphs of I.




2.8. The unknotting number

Let O = {unknotted graphs of I'}.

Definition.

The unknotting number u(G) of a spatial graph G

of I'is the distance from G to O by crossing

changes on edges attaching to a base:

u(G) = p(G,0).



2.9. A B-unknotting number

Let Og = {B-unknotted graphs of I'}.

Definition.

The B-unknotting number u,(G) of a spatial graph

G of I'is the distance from G to O by crossing

changes on edges attaching to a base:

ug(G) = p(G,0p).



2.10. A y-unknotting number
Given G, let
{Dg, }={(D;T)E[Dg] | c(D;T)=c,(G)}
(the set of minimal crossing based diagrams).

Definition.

The y-unknotting number u (G) of a spatial graph
G of I'is the distance from {D ,} to O by crossing
changes on edges attaching to a base:

u,(G) = p({Dg, },0).
Note. G is y-unknotted < u (G) =0.




2.11. l-unknotting number
Let O={l-unknotted graphs}.
Definition.

The l-unknotting number u'(G) of G is the distance

from G to O; by crossing changes on edges
attaching to a base:
u'(G) = p(G,0;)



Definition.

The (y,l)-unknotting number uc (G) of G is the
distance from {D;} to O by crossing changes on
edges attaching to a base:

uc (G) =p({DG,V}:Or)-




2.12. Dsitinctness of the unknotting numbers

Theorem 2.5.1. The unknotting numbers
us(G), u(G), u'(G), u, (G), uE (G)

of V spatial graph G of ¥V graph I' are mutually

distinct topological invariants and satisfy the

following inequalities :

ug(G) = u(G)={u, (G),u"(G)} = U (G).



Proof. The inequalities are direct from definitions.

We show that these invariants are distinct.

(1)
gee

G has ¢ (G)=2 and hence ug(G)=u(G)=u,(G)=0.
On the other hand, we have
uf(G)=ul, (G)=1,
for G is a spatial graph of a plane graph with a Hopf
link as a constituent link and hence not l'-unknotted.



(2)
Let G= é\ < 5\
N

G=10; has u(10,4)=2 and u, (105)=3 by
[Nakanishi 1983] and [Bleiler 1984] . Hence

us(G)= u(G) =u'(G)=2< u, (G)=U, (G)=3.

[Nakanishi 1983] Y. Nakanishi, Unknotting numbers and knot
diagrams with the minimum crossings, Math. Sem. Notes Kobe
Univ. 11 (1983), no. 2, 257-258.

[Bleiler 1984] S. A. Bleiler, A note on unknotting number, Math.
Proc. Cambridge Philos. Soc. 96 (1984), 469-471.



(3)
G = \) Then ug(G)=0.

In fact: @ _ (@

Since G is a O-curve,
u(G)=0 < G is isotopic to a plane graph.
G has a trefoil constituent knot.
Hence u(G)=1.
Thus, we have u(G) =u(G)=u, (G)=u  (G)=1.//



2.13. The values of the unknotting nhumbers

Theorem 2.13.1. ForV given graph I and V integer

n=1, 3 eo-many spatial graphs G of I' such that
ug(G)= u(G)= u, (G)= u'(G)= ur (G)=n.
Y



Infinite cyclic covering homology of a spatial graph

For a spatial graph G of I'in S3=R3 U {oo}with a
base T and oriented edges a.(i=1,2,...,s)

attaching to T.

Let E(G)=cl(S3-N(G)) for a regular neighborhood
N(G) of G in S3.

Let x: H,(E(G))>Z be the epimorphism sending the
meridians of a, (i=1,2,...,m) to 1€ Z.

Let E(G)..~> E(G) be the oo-cyclic cover of E(G)
associated with y.




Let A=Z[t,t1].
The homology H,(E(G)..) is a finitely generated
A-module which we denote by M(G,T)...
We take an exact sequence (over A)

N2 > AP 5 M(G,T).. =0,
where we take ab. A matrix A(G,T)_, over A
representing the homomorphism A2 = AP is

called a presentation matrix of the module
M(GIT)oo'




For an integer d=0, the d*" ideal £,(G,T).. of
M(G,T).. is the ideal generated by all the
(b-d)-minors of A(G,T)...

The ideals £4(G,T).. (d=0,1,2,3,...) are invariants of
the A-module M(G,T)...

Let (A,) be the smallest principal ideal containing
€4(G,T)... Then the Laurent polynomial A,EAis
called the dt" Alexamder polynomial of M(G,T)...
If G is a knot (with T=¢), then A,EA is called

the Alexander polynomial of the knot G.




Assume that G* is obtained from G by k crossing
changes on a; (i=1,2,...,m). Then X induces the
epimorphism x*:H,(E(G*))>Z.

Let m(G,T)., and m(G*,T)_, be the numbers of
minimal A-generators of the A-modules M(G,T)_,
and M(G*,T).., respectively.

We use the following lemma:

Lemma A.

A. Kawauchi, Distance between links by zero-linking twists,
Kobe J. Math.13(1996), 183-190.

|m(G,T)..- m(G*,T). | =k.




== 00
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(-1)-crossing (+1)-crossing

G* is obtained from G by k crossing changes on the
edges a; (i=1,2,...,m). G is also obtained from G* by
k crossing changes on the corresponding edges a.’
(i=1,2,...,m).



Let W=E(G) X1 U2, D2X D2

be a surgery trace from E(G) to E(G*) by
2-handles D% X D2 (i=1,2,...,k), which is also a
surgery trace from E(G*) to E(G) by the “dual”
2-handles D% X D2 (i=1,2,...,k).

E(G) ~, wi | e

\
N (OE(G)) X I=(9E(G*)) X |



By construction, X and x* extend to an
epimorphism x*:H,(W)->Z.

Let (W_,;E(G)..,E(G*)..) be the eo-cyclic cover of
(W;E(G), E(G*)) associated with x*.

Let m(W_,) be the minimal number of
N-generators of the A-module H,(W.,).



Then we have
m(W_) = m(G*,T)...

Because, the natural homomorphisms
n,(E(G))-> (W) and m,(E(G*))-> m, (W)
are onto, so that the natural homomorphisms
H,(E(G)..)~> H,(W..) and H,(E(G¥).)-> H,(W..)
are onto.



By the exact sequence of the pair (W_,E(G)..)
H,(W..,E(G)..)> H,(E(G)..) 2 H,(W_)=>0

and H,(W.,,E(G)..)=N%, we obtain

m(G,T).. = k+m(W_) = k + m(G*,T).,.
Similarly,

m(G*T).. = k+m(W_) = k+m(G,T)..
Thus, we have

Im(G,T)..- m(G*,T).. |=Sk. //



Proof of Theorem 2.13.1.
Let G, be a l-unknotted graph.
Let K be a trefoil knot, and K(n) the n-fold
connected sum of K. Then

u(K(n))=u,(K(n))=n for Vn1.
Let G =G, #K(n) be the connected sum of K(n)
and an edge attaching to a base T, of G,,.
Then U, (G)= nsince c,(G) =c, (G, )+¢, (K(n)) .

We show u, (G)= n.



Assume that ug(G)=k. Then a B-unknotted graph
G* is obtained from G by k crossing changes on
edges a.(i=1,2,...,m) attaching to a base T in G.

We choose orientations on a, (i=1,2,...,m) as

it is stated in the following two cases.

Case (1): K(n) is in an edge a..

Case (ll): K(n) is in a component T’ of the base T.

In Case (1), take any orientations on a (i=1,2,...,m).



In Case (ll), let T, and T’, be the components of

T’-{p} for a point p €K(n), and «, (i=1,2,...,u) the
edges joining T', and T,

We take orientations of the edges «. (i=1,2,...,u)
going from T’, to T’, and any orientations of the

other edges a. (i=u+1,u+2,...,m).

>
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Let x: H,(E(G))>Z be the epimorphism sending
the oriented meridians of a, (i=1,2,...,m) to 1€ Z.
Then we have

in Case(l), M(G,T)..= A1 [A/(A.(t))]", and
in Case(ll), M(G,T).. = A™1(® [A/(D,(tY)]".

In either case, we have m(G,T) .. = m+n-1.



On the other hand, nt,(E(G*)) is a free group of
rank m and hence M(G*,T)_ =A™

Thus, m(G*,T)_ =m-1.

By Lemma A, |(m(G,T).-m(G*T). |=n=k.
Hence ug (G)= n and

ug(G)= u(G)= u, (G)= u"(G)=, (G)=n. //



