Knot theory for spatial graphs

[Lecture 2] Unknotting notions on the spatial graphs

Akio Kawauchi

Osaka City University Advanced Mathematical Institute

References for this special topics

- [1] A. Kawauchi, On a complexity of a spatial graph. in: Knots and soft-matter physics, Topology of polymers and related topics in physics, mathematics and biology, Bussei Kenkyu 92-1 (2009-4), 16-19.
- [2] A. Kawauchi, On transforming a spatial graph into a plane graph,in: Statistical Physics and Topology of Polymers with Ramifications to Structure and Function of DNA and Proteins, Progress of Theoretical Physics Supplement, No. 191(2011), 235-244.

2.1. A based diagram and a monotone diagram Let **r** be a graph without degree one vertices, and G = G(Γ) a spatial graph in R³. Let Γ_i (i=1,2,...,r) be an ordered set of the components of Γ , and $G_i = G(\Gamma_i)$ the corresponding spatial subgraph of $G = G(\Gamma)$. Let T_i be a <u>maximal tree</u> of G_i . Note: We consider a topological graph without degree 2 verticies, so that $T_i = \phi$ if G_i is a knot or link, and T_i = one vertex if G_i has just one vertex (of degree \geq 3).

Let $T = T_1 \cup T_2 \cup \dots \cup T_r$. Call it a <u>base</u> of G. <u>Note:</u> There are only finitely many bases of G. G is obtained from a basis T by attaching <u>edges</u> (i.e., arcs or loops) to T.

Let D be a diagram of a spatial graph $G=G(\Gamma)$, and D_T the sub-diagram of D corresponding to T. Let $c_D(D_T)$ be the number of crossing points of D whose upper or lower crossing points belong to D_T .

<u>Definition.</u> D is a <u>based diagram</u> (on base T), written as (D;T) if $c_D(D_T)=0$.

Lemma. For ∀base T of G, ∀diagram D of G is deformed into a based diagram on T by generalized Reidemeister moves.

The generalirez Reidemeister moves:

Let α be an edge of G=G(Γ) attaching to a base T.

<u>Definition</u>. An edge diagram D_{α} in a diagram D of G is <u>monotone</u> if:

A sequence on the edges of a based graph (G ,T) is <u>regularly ordered</u> if an order on the edges such that any edge belonging to G_i is smaller than any edge belonging to G_j for i<j is specified. <u>Definition.</u> A based diagram (D;T) is <u>monotone</u> if there is a regularly ordered edge sequence α_i (i=1,2,...,m) of (G,T) such that D_{α_i} is monotone and D_{α_i} is upper than D_{α_i} for i<j.

2.2. Complexity

Definition.

The <u>warping degree</u> d(D;T) of a based diagram (D;T) is the least number of crossing changes on edge diagrams attaching to T needed to obtain a monotone diagram from (D;T).

The crossing number of (D;T) is denoted by c(D;T).

If D is a knot or link diagram or an edge diagram, then the warping degree and crossing number of D are denoted by d(D) and c(D), respectively.

A similar notion for a knot or link is given in :

[Lickorish-Millett 1987] W. B. R. Lickorish and K. C. Millett, A polynomial invariant of oriented links, Topology 26(1987), 107-141.

[Fujimura 1988] S. Fujimura, On the ascending number of knots, thesis, Hiroshima University, 1988.

[Fung 1996] T. S. Fung, Immersions in knot theory, a dissertation, Columbia University, 1996.

[Kawauchi 2007] A. Kawauchi, Lectures on knot theory (in Japanese), Kyoritu Shuppan, 2007.

[Ozawa 2010] M. Ozawa, Ascending number of knots and links. J. Knot Theory Ramifications 19 (2010), 15-25.

[Shimizu 2010] A. Shimizu, The warping degree of a knot diagram, J. Knot Theory Ramifications 19(2010), 849-857.

Properties of the warping degree For the warping degree \vec{d} of an *oriented* edge diagram D_{α} , $\vec{d}(D_{\alpha}) + \vec{d}(-D_{\alpha}) = c(D_{\alpha}),$ $d(D_{\alpha}) = \min\{\vec{d}(D_{\alpha}), \vec{d}(-D_{\alpha})\}.$ **Example**. d(-) =1, for \vec{d} (\rightarrow __)=1, \vec{d} (\rightarrow __)=3.

Definition.

- The <u>complexity</u> of a based diagram (D;T) is the pair cd(D;T)= (c(D;T), d(D;T)). The <u>complexity</u> of a spatial graph G is
 - $\gamma(G) = \min\{cd(D;T) | (D;T) \in [D_G]\}$
- in the dictionary order. Let $\gamma(G) = (c_{\gamma}(G), d_{\gamma}(G))$.
- Our basic viewpoint of complexity. This complexity

is reducible by a crossing change $\swarrow \Leftrightarrow \checkmark$ or a splice $\checkmark \Rightarrow$ (or \bigcirc until we obtain a graph in a plane.

2.3. The warping degree and an unknotted graph

Definition.

The <u>warping degree</u> of G is : d(G)= min{d(D;T) | (D;T)∈[D_G]}

Definition.

G is <u>unknotted</u> if d(G)= 0.

When Γ consists of loops, G is unknotted ⇔ G is a trivial link.

Assume Γ has a vertex of degree ≥ 3 . <u>Lemma 2.3.1</u>. For \forall G, \exists finitely many crossing changes on G to make G with d(G)=0.

<u>Lemma 2.3.2</u>. For \forall given graph Γ , \exists only finitely many G of Γ with d(G)=0 up to equivalences.

Lemma 2.3.3. If d(G)=0, then $\exists T$ such that G/T is equivalent to $S^1 \lor S^1 \lor ... \lor S^1 \subset R^2$.

Lemma 2.3.4. A connected G with d(G)=0 is deformed into a basis T by a sequence of edge reductions:

<u>Corollary 2.3.5.</u> For \forall G with d(G)=0, \exists T such that every edge (arc or loop) attaching to T is in a trivial constituent knot.

cross index =0

cross index =1

The <u>total cross index</u> of Γ on D_T : $\epsilon(\Gamma; D_T) = \sum_{i < j} \epsilon(\alpha_i, \alpha_j).$ <u>Lemma 2.3.6.</u> Let d(G)=0. Then $\min\{c(D;T)|(D;T) \in [D_G], d(D;T)=0\} = \epsilon(\Gamma; D_T).$

Conway-Gordon Theorem.

Every spatial 6-complete graph K₆ contains a non-trivial constituent link. Every spatial 7-complete graph K₇ contains a

non-trivial constituent knot.

An unknotted K₆

An unknotted K₇

2.4. The γ-warping degree and a γ-unknotted graph

Definition.

The γ -<u>warping degree</u> of G is the number $d_{\gamma}(G)$ for the complexity $\gamma(G) = (c_{\gamma}(G), d_{\gamma}(G))$ of G.

<u>Definition</u>. G is γ -<u>unknotted</u> if d_y(G) =0.

γ-unknotted⇒unknotted

<u>2.5. A Γ-unknotted graph and the (γ,Γ)-warping</u> <u>degree</u>

Let $\gamma(\Gamma) = \min{\gamma(G) \mid G \text{ is a spatial graph of } \Gamma}$.

Definition.

A Γ -<u>unknotted</u> graph G is a spatial graph of Γ with $\gamma(G) = \gamma(\Gamma)$.

Note.

- (1) Let $\gamma(\Gamma) = (c_{\gamma}(\Gamma), d_{\gamma}(\Gamma))$. Then $d_{\gamma}(\Gamma) = 0$.
 - Γ -unknotted⇒γ-unknotted⇒unknotted.
- (2) $c_{\gamma}(\Gamma)=0$ if and only if Γ is a plane graph.
- (3) A spatial plane graph G is Γ-unknotted⇔ G is equivalent to a graph in a plane.

Definition.

- O = {unknotted graphs of Γ}.
- $O_{\gamma}^{G} = \{\gamma \text{-unknotted graphs on } (D;T) \in [D_{G}] \ \text{with } cd(D;T) = \gamma(G) \}.$
- $O_{\gamma} = U \{O_{\gamma}^{G} | G \text{ is a spatial graph of } \Gamma \}$ = {γ-unknotted graphs of Γ}.
- $O_{\Gamma} = \{\Gamma \text{-unknotted graphs}\}.$

Then $O \supset O_{\gamma} \supset O_{\Gamma}$.

<u>Note</u>: $\mathbf{O}_{\gamma}^{G} \subset \mathbf{O}_{\Gamma}$ or $\mathbf{O}_{\gamma}^{G} \cap \mathbf{O}_{\Gamma} = \mathbf{\Phi}$ for every G.

Definition. The (γ,Γ)-warping degree $d_{\gamma}^{\Gamma}(G)$ of G is: $d_{\gamma}^{\Gamma}(G) = d_{\gamma}(G) + \rho(O_{\gamma}^{G},O_{\Gamma}).$

(p denotes the Gordian distance.)

By definition,
$$d(G) \leq d_{\gamma}(G) \leq d_{\gamma}^{\Gamma}(G)$$
.

 $d_{\gamma}^{\prime}(G) = 0$ if and only if G is Γ -unknotted.

2.6. Examples

G has $c_{\gamma}(G)=2$, for G has a Hopf link as a constituent link. $d(G)=d_{\gamma}(G)=0$. Because G is a planar graph, if G is Γ -unknotted, then $c_{\gamma}(G)=0$, a contradiction.

Hence $d_{\gamma}(G) = 1$.

Lemma 2.6.2. (1) ([Fung 1996], [Ozawa 2010]) If K is a knot with d(K)=1, then K is a non-trivial twist knot.

(2) If G is a θ-curve with d(G)=1, then the 3 constituent knots of G consist of two trivial knots and one non-trivial twist knot.

<u>Example 2.6.3.</u> (([Fung 1996] , [Ozawa 2010], [Shimizu 2010])

 $c_v(K)=5$, $d(K)=1 < d_v(K)=d_v(K)=2$.

By Lemma, $d(K) \ge 2$ (, for K is not any twist knot).

Example 2.6.5. (Kinoshita's θ-curve)

 $c_{\gamma}(G) = 7$ and $d(G) = d_{\gamma}(K) = d_{\gamma}^{\Gamma}(G) = 2$.

a based diagram of G a monotone diagram

 $O_{\gamma}^{G}=O_{\Gamma}$ implies $\rho(O_{\gamma}^{G},O_{\Gamma})=0$. Hence $d_{\gamma}(G)=d_{\gamma}^{\Gamma}(G)$. Since G is non-trivial and the 3 constituent knots are trivial, we have $d(G) \ge 2$ by Lemma. Hence, if $c_{\gamma}(G)=7$, then $d(G)=d_{\gamma}(G)=d_{\gamma}^{\Gamma}(G)=2$.

By the diagram, $c_{\gamma}(G) \leq 7$. We show $c_{\gamma}(G) \geq 7$. By the classification of algebraic tangles with crossing numbers ≤ 6 in:

H. Moriuchi, Enumeration of algebraic tangles with applications to theta-curves and handcuff graphs, Kyungpook Math. J.
48(2008), 337-357

the Kinoshita's θ -curve G cannot have any based diagram with crossing number ≤ 6 . Hence $c_{\gamma}(G)=7$. For a base $T = T_1 \cup T_2 \cup ... \cup T_r$ of G, let B be the disjoint union of mutually disjoint 3-ball neighborhoods B_i of T_i in S^3 (i=1,2,...,r). Let $B^c = cl(S^3-B)$ be the complement domain of B with $L=B^c \cap G=a_1 \cup a_2 \cup ... \cup a_n$ an n-string tangle in B^c , called the <u>complementary tangle</u> of T. <u>Definition</u>. G is <u> β -unknotted</u> if \exists a base T of G whose complementary tangle (B^c,L) is trivial.

A trivial complementary tangle

Example 1.7.1. For a θ -curve Γ , $\exists \infty$ -many

 β -unknotted graphs G of Γ up to equivalences.

Example 1.7.2. Triviality of the complementary tangle (B^c,L) depends on a choice of a base.

<u>Example 1.7.3.</u> If G is β -unknotted, then G is a <u>free</u> <u>graph (i.e., $\pi_1(\mathbb{R}^3-G)$) is a free group), but the</u> converse is not true.

A free β -knotted graph

By definitions and examples explained above, we have:

Theorem.

Γ-unknotted⇒γ-unknotted⇒unknotted ⇒ β-unknotted ⇒ free. These concepts are mutually distinct.

<u>Note</u>: Given a Γ, \exists only finitely many Γ-unknotted, γ-unknotted, or unknotted graphs of Γ. Let O = {unknotted graphs of Γ}.

Definition.

The <u>unknotting number</u> u(G) of a spatial graph G of Γ is the distance from G to O by crossing changes on edges attaching to a base: $u(G) = \rho(G,O).$ Let $O_{\beta} = \{\beta \text{-unknotted graphs of } \Gamma\}$.

Definition.

The <u> β -unknotting number</u> $u_{\beta}(G)$ of a spatial graph G of Γ is the distance from G to O_{β} by crossing changes on edges attaching to a base:

 $u_{\beta}(G) = \rho(G,O_{\beta}).$

2.10. A γ-unknotting number

Given G, let

 ${D_{G,\gamma}} = {(D;T) \in [D_G] | c(D;T)=c_{\gamma}(G)}$

(the set of minimal crossing based diagrams). <u>Definition.</u>

The <u>y-unknotting number</u> $u_{\gamma}(G)$ of a spatial graph G of Γ is the distance from $\{D_{G,\gamma}\}$ to O by crossing changes on edges attaching to a base: $u_{\gamma}(G) = \rho(\{D_{G,\gamma}\}, O).$ <u>Note</u>. G is y-unknotted $\Leftrightarrow u_{\gamma}(G) = 0.$

2.11. Γ-unknotting number

Let $O_{\Gamma} = \{\Gamma - unknotted graphs\}.$

Definition.

The Γ -<u>unknotting number</u> $u^{\Gamma}(G)$ of G is the distance from G to O_{Γ} by crossing changes on edges attaching to a base:

u^Γ(G) = ρ(G,O_Γ)

Definition.

The (γ, Γ) -unknotting number u_{γ}^{Γ} (G) of G is the distance from $\{D_{G,\gamma}\}$ to O_{Γ} by crossing changes on edges attaching to a base:

2.12. Dsitinctness of the unknotting numbers

<u>Theorem 2.5.1</u>. The unknotting numbers $u_{\beta}(G), u(G), u^{\Gamma}(G), u_{\gamma}(G), u^{\Gamma}_{\gamma}(G)$ of \forall spatial graph G of \forall graph Γ are mutually distinct topological invariants and satisfy the following inequalities :

 $u_{\beta}(G) \leq u(G) \leq \{u_{\gamma}(G), u^{\Gamma}(G)\} \leq u_{\gamma}^{\Gamma}(G).$

<u>Proof.</u> The inequalities are direct from definitions. We show that these invariants are distinct.

(1)

G has $c_{\gamma}(G)=2$ and hence $u_{\beta}(G)=u(G)=u_{\gamma}(G)=0$. On the other hand, we have $u^{\Gamma}(G)=u^{\Gamma}_{\gamma}(G)=1$,

for G is a spatial graph of a plane graph with a Hopf link as a constituent link and hence not Γ-unknotted.

G=10₈ has u(10₈)=2 and u_{γ} (10₈)=3 by [Nakanishi 1983] and [Bleiler 1984]. Hence

[Nakanishi 1983] Y. Nakanishi, Unknotting numbers and knot diagrams with the minimum crossings, Math. Sem. Notes Kobe Univ. 11 (1983), no. 2, 257-258. [Bleiler 1984] S. A. Bleiler, A note on unknotting number, Math. Proc. Cambridge Philos. Soc. 96 (1984), 469-471.

Since G is a O-curve,

u(G)=0 ⇔ G is isotopic to a plane graph.

G has a trefoil constituent knot.

Hence $u(G) \ge 1$.

Thus, we have $u(G) = u^{\Gamma}(G) = u_{\gamma}(G) = u_{\gamma}^{\Gamma}(G) = 1.//$

2.13. The values of the unknotting numbers

<u>Theorem 2.13.1.</u> For \forall given graph Γ and \forall integer $n \ge 1$, $\exists \infty$ -many spatial graphs G of Γ such that $u_{\beta}(G) = u(G) = u_{\gamma}(G) = u^{\Gamma}(G) = u^{\Gamma}(G) = u_{\gamma}(G) = n$.

Infinite cyclic covering homology of a spatial graph

- For a spatial graph G of Γ in S³=R³ U { ∞ }with a base T and <u>oriented</u> edges α_i (i=1,2,...,s) attaching to T.
- Let E(G)=cl(S³-N(G)) for a regular neighborhood N(G) of G in S³.
- Let χ : H₁(E(G)) \rightarrow Z be the epimorphism sending the meridians of α_i (i=1,2,...,m) to 1 \in Z. Let E(G) $_{\infty} \rightarrow$ E(G) be the ∞ -cyclic cover of E(G) associated with χ .

Let $\Lambda = Z[t,t^{-1}]$.

The homology $H_1(E(G)_{\infty})$ is a finitely generated Λ -module which we denote by M(G,T)_{∞}. We take an exact sequence (over Λ) $\Lambda^{a} \rightarrow \Lambda^{b} \rightarrow M(G,T)_{\infty} \rightarrow 0,$ where we take $a \ge b$. A matrix A(G,T)_{∞} over A representing the homomorphism $\Lambda^a \rightarrow \Lambda^b$ is called a presentation matrix of the module $M(G,T)_{\infty}$.

- For an integer d ≥ 0 , the <u>dth</u> ideal $\varepsilon_d(G,T)_{\infty}$ of $M(G,T)_{\infty}$ is the ideal generated by all the (b-d)-minors of A(G,T)_{\infty}.
- The ideals $\varepsilon_d(G,T)_{\infty}$ (d=0,1,2,3,...) are invariants of the Λ -module M(G,T)_{∞}.
- Let (Δ_d) be the smallest principal ideal containing $\varepsilon_d(G,T)_{\infty}$. Then the Laurent polynomial $\Delta_d \in \Lambda$ is called the <u>dth Alexamder polynomial</u> of M(G,T)_{\infty}. If G is a knot (with T= ϕ), then $\Delta_0 \in \Lambda$ is called the <u>Alexander polynomial</u> of the knot G.

Assume that G* is obtained from G by k crossing changes on α_i (i=1,2,...,m). Then χ induces the epimorphism $\chi^*:H_1(E(G^*)) \rightarrow Z$. Let m(G,T)_{∞} and m(G*,T)_{∞} be the numbers of minimal Λ -generators of the Λ -modules M(G,T)_{∞} and M(G*,T)_{∞}, respectively. We use the following lemma:

<u>Lemma A.</u>

A. Kawauchi, Distance between links by zero-linking twists, Kobe J. Math.13(1996), 183-190.

 $|m(G,T)_{\infty} - m(G^*,T)_{\infty}| \leq k.$

Proof.

G* is obtained from G by k crossing changes on the edges α_i (i=1,2,...,m). G is also obtained from G* by k crossing changes on the corresponding edges α_i^* (i=1,2,...,m).

Let $W=E(G) \times I \bigcup_{i=1}^{k} D^2 \times D^2_i$ be a surgery trace from E(G) to $E(G^*)$ by 2-handles $D^2 \times D^2_i$ (i=1,2,...,k), which is also a surgery trace from $E(G^*)$ to E(G) by the "dual" 2-handles $D^2 \times D^2_i$ (i=1,2,...,k).

By construction, χ and χ^* extend to an epimorphism $\chi^+:H_1(W) \rightarrow Z$. Let $(W_{\infty};E(G)_{\infty},E(G^*)_{\infty})$ be the ∞ -cyclic cover of $(W;E(G), E(G^*))$ associated with χ^+ .

Let $m(W_{\infty})$ be the minimal number of Λ -generators of the Λ -module $H_1(W_{\infty})$.

Then we have $m(W_{\infty}) \leq m(G,T)_{\infty},$ $m(W_{\infty}) \leq m(G^*,T)_{\infty}.$

Because, the natural homomorphisms $\pi_1(E(G)) \rightarrow \pi_1(W)$ and $\pi_1(E(G^*)) \rightarrow \pi_1(W)$ are onto, so that the natural homomorphisms $H_1(E(G)_{\infty}) \rightarrow H_1(W_{\infty})$ and $H_1(E(G^*)_{\infty}) \rightarrow H_1(W_{\infty})$ are onto.

By the exact sequence of the pair $(W_{\infty}, E(G)_{\infty})$ $H_2(W_{\infty}, E(G)_{\infty}) \rightarrow H_1(E(G)_{\infty}) \rightarrow H_1(W_{\infty}) \rightarrow 0$ and $H_2(W_{\infty}, E(G)_{\infty}) = \Lambda^k$, we obtain $m(G,T)_{\infty} \leq k + m(W_{\infty}) \leq k + m(G^*,T)_{\infty}$. Similarly, $m(G^*,T)_{\infty} \leq k + m(W_{\infty}) \leq k + m(G,T)_{\infty}$. Thus, we have

 $|m(G,T)_{\infty} - m(G^*,T)_{\infty}| \leq k. //$

Proof of Theorem 2.13.1. Let G_0 be a Γ -unknotted graph. Let K be a trefoil knot, and K(n) the n-fold connected sum of K. Then $u(K(n))=u_{v}(K(n))=n$ for $\forall n \geq 1$. Let $G = G_0 \# K(n)$ be the connected sum of K(n)and an edge attaching to a base T_0 of G_0 . Then $u_{v}(G) \leq n$ since $c_{v}(G) = c_{v}(G_{0}) + c_{v}(K(n))$.

We show $u_{\beta}(G) \ge n$.

Assume that $u_{\beta}(G)=k$. Then a β -unknotted graph G* is obtained from G by k crossing changes on edges α_i (i=1,2,...,m) attaching to a base T in G.

We choose orientations on α_i (i=1,2,...,m) as it is stated in the following two cases.

Case (I): K(n) is in an edge α_i. Case (II): K(n) is in a component T' of the base T.

In Case (I), take any orientations on α_i (i=1,2,...,m).

In Case (II), let T'_1 and T'_2 be the components of T'-{p} for a point $p \in K(n)$, and α_i (i=1,2,...,u) the edges joining T'_1 and T'_2 . We take orientations of the edges α_i (i=1,2,...,u) going from T'_2 to T'_1 and any orientations of the other edges α_i (i=u+1,u+2,...,m).

- Let χ : H₁(E(G)) \rightarrow Z be the epimorphism sending the oriented meridians of α_i (i=1,2,...,m) to 1 \in Z. Then we have
- in Case(I), $M(G,T)_{\infty} = \Lambda^{m-1} \bigoplus [\Lambda/(\Delta_{K}(t))]^{n}$, and in Case(II), $M(G,T)_{\infty} = \Lambda^{m-1} \bigoplus [\Lambda/(\Delta_{K}(t^{u}))]^{n}$.
- In either case, we have $m(G,T)_{\infty} = m+n-1$.

On the other hand, $\pi_1(E(G^*))$ is a free group of rank m and hence $M(G^*,T)_{\infty} = \Lambda^{m-1}$. Thus, $m(G^*,T)_{\infty} = m-1$. By Lemma A, $|(m(G,T)_{\infty} - m(G^*,T)_{\infty}| = n \leq k$. Hence $u_{\beta}(G) \geq n$ and $u_{\beta}(G) = u(G) = u_{\gamma}(G) = u^{\Gamma}(G) = u^{\Gamma}_{\gamma}(G) = n$. //