Knot theory for spatial graphs

[Lecture 2]
Unknotting notions on the spatial graphs

Akio Kawauchi

Osaka City University Advanced Mathematical Institute

References for this special topics

[1] A. Kawauchi, On a complexity of a spatial graph. in: Knots and soft-matter physics, Topology of polymers and related topics in physics, mathematics and biology, Bussei Kenkyu 92-1 (2009-4), 16-19.
[2] A. Kawauchi, On transforming a spatial graph into a plane graph,in: Statistical Physics and Topology of Polymers with Ramifications to Structure and Function of DNA and Proteins, Progress of Theoretical Physics Supplement, No. 191(2011), 235-244.

2.1. A based diagram and a monotone diagram

 Let Γ be a graph without degree one vertices, and $\mathbf{G}=\mathbf{G}(\boldsymbol{\Gamma})$ a spatial graph in R^{3}. Let $\Gamma_{\mathrm{i}}(\mathbf{i}=\mathbf{1}, \mathbf{2}, \ldots, r)$ be an ordered set of the components of Γ, and $\mathrm{G}_{\mathrm{i}}=\mathrm{G}\left(\Gamma_{\mathrm{i}}\right)$ the corresponding spatial subgraph of $\mathbf{G}=\mathbf{G}(\Gamma)$. Let $\mathrm{T}_{\mathbf{i}}$ be a maximal tree of G_{i}. Note: We consider a topological graph without degree 2 verticies, so that $T_{i}=\boldsymbol{\phi}$ if G_{i} is a knot or link, and $T_{i}=$ one vertex if G_{i} has just one vertex (of degree $\geqq 3$).Let $T=T_{1} \cup T_{2} \cup \ldots T_{r}$. Call it a base of G. Note: There are only finitely many bases of G. G is obtained from a basis T by attaching edges (i.e., arcs or loops) to T.

Let D be a diagram of a spatial graph $G=G(\Gamma)$, and D_{T} the sub-diagram of D corresponding to T. Let $c_{D}\left(D_{T}\right)$ be the number of crossing points of D whose upper or lower crossing points belong to D_{T}.

Definition. D is a based diagram (on base T), written as ($D ; T$) if $c_{D}\left(D_{T}\right)=0$.

Lemma. For \forall base \mathbf{T} of \mathbf{G}, \forall diagram D of G is deformed into a based diagram on T by generalized Reidemeister moves.

The generalirez Reidemeister moves:

Let α be an edge of $\mathrm{G}=\mathrm{G}(\Gamma)$ attaching to a base T .

Definition. An edge diagram D_{α} in a diagram D of \mathbf{G} is monotone if:

A sequence on the edges of a based graph (G ,T) is regularly ordered if an order on the edges such that any edge belonging to $\mathbf{G}_{\mathbf{i}}$ is smaller than any edge belonging to \mathbf{G}_{j} for $\mathrm{i}<j$ is specified.

Definition. A based diagram ($D ; T$) is monotone

 if there is a regularly ordered edge sequence α_{i} ($\mathrm{i}=1,2, \cdots, \mathrm{~m}$) of (G, T) such that $D_{\alpha_{i}}$ is monotone and $D_{\alpha_{i}}$ is upper than $D_{\alpha_{j}}$ for $i<j$.

2.2. Complexity

Definition.

The warping degree $d(D ; T)$ of a based diagram $(D ; T)$ is the least number of crossing changes on edge diagrams attaching to T needed to obtain a monotone diagram from ($\mathrm{D} ; \mathrm{T}$).

The crossing number of $(\mathrm{D} ; \mathrm{T})$ is denoted by $\mathrm{c}(\mathrm{D} ; \mathrm{T})$.
If D is a knot or link diagram or an edge diagram, then the warping degree and crossing number of D are denoted by $d(D)$ and $c(D)$, respectively.

A similar notion for a knot or link is given in :

[Lickorish-Millett 1987] W. B. R. Lickorish and K. C. Millett, A polynomial invariant of oriented links, Topology 26(1987), 107-141.
[Fujimura 1988] S. Fujimura, On the ascending number of knots, thesis, Hiroshima University, 1988.
[Fung 1996] T. S. Fung, Immersions in knot theory, a dissertation, Columbia University, 1996.
[Kawauchi 2007] A. Kawauchi, Lectures on knot theory (in Japanese),
Kyoritu Shuppan, 2007.
[Ozawa 2010] M. Ozawa, Ascending number of knots and links. J. Knot Theory Ramifications 19 (2010), 15-25.
[Shimizu 2010] A. Shimizu, The warping degree of a knot diagram, J. Knot Theory Ramifications 19(2010), 849-857.

Properties of the warping degree

 For the warping degree \vec{d} of an oriented edge diagram D_{α},$$
\begin{gathered}
\vec{d}\left(D_{\alpha}\right)+\vec{d}\left(-D_{\alpha}\right)=c\left(D_{\alpha}\right), \\
d\left(D_{\alpha}\right)=\min \left\{\vec{d}\left(D_{\alpha}\right), \vec{d}\left(-D_{\alpha}\right)\right\} .
\end{gathered}
$$

Example. $d(\sigma-)=1$, for

Definition.

The complexity of a based diagram ($\mathrm{D} ; \mathrm{T}$) is the pair $c d(D ; T)=(c(D ; T), d(D ; T))$. The complexity of a spatial graph G is

$$
\gamma(\mathrm{G})=\min \left\{\mathrm{cd}(\mathrm{D} ; \mathrm{T}) \mid(\mathrm{D} ; \mathrm{T}) \in\left[\mathrm{D}_{\mathrm{G}}\right]\right\}
$$

in the dictionary order. Let $\gamma(G)=\left(c_{\gamma}(G), d_{\gamma}(G)\right)$.
Our basic viewpoint of complexity. This complexity is reducible by a crossing change $>\Leftrightarrow>$ or a splice $\rangle \Rightarrow$) (or until we obtain a graph in a plane.

2.3. The warping degree and an unknotted graph

Definition.
The warping degree of G is : $d(G)=\min \left\{d(D ; T) \mid(D ; T) \in\left[D_{G}\right]\right\}$

Definition.
G is unknotted if $\mathrm{d}(\mathrm{G})=0$.
When Γ consists of loops, \mathbf{G} is unknotted $\Leftrightarrow \mathbf{G}$ is a trivial link.

Assume Γ has a vertex of degree $\geqq 3$.
Lemma 2.3.1. For $\forall G, \exists$ finitely many crossing changes on G to make G with $d(G)=0$.

Lemma 2.3.2. For \forall given graph Γ, \exists only finitely many G of Γ with $d(G)=0$ up to equivalences.

Lemma 2.3.3. If $d(G)=0$, then $\exists \mathrm{T}$ such that G / T is equivalent to $S^{1} \vee S^{1} \bigvee \ldots V S^{1} \subset R^{2}$.

Lemma 2.3.4. A connected G with $d(G)=0$ is

 deformed into a basis T by a sequence of edge reductions:

Corollary 2.3.5. For $\forall \mathrm{G}$ with $\mathrm{d}(\mathrm{G})=0, \exists \mathrm{~T}$ such that every edge (arc or loop) attaching to T is in a trivial constituent knot.

Given D_{T}, the cross index of α_{i} and $\alpha_{j}(i \neq j)$:

cross index $=0$
The total cross index of Γ on D_{T} :

$$
\varepsilon\left(\Gamma ; D_{T}\right)=\sum_{i<j} \varepsilon\left(\alpha_{i}, \alpha_{j}\right) .
$$

Lemma 2.3.6. Let $d(G)=0$. Then $\min \left\{c(D ; T) \mid(D ; T) \in\left[D_{G}\right], d(D ; T)=0\right\}=\varepsilon\left(\Gamma ; D_{T}\right)$.

Conway-Gordon Theorem.

Every spatial 6-complete graph K_{6} contains a non-trivial constituent link.
Every spatial 7-complete graph K_{7} contains a non-trivial constituent knot.

An unknotted K_{6}
An unknotted K_{7}
2.4. The γ-warping degree and a γ-unknotted graph

Definition.
The γ-warping degree of G is the number $d_{\nu}(G)$ for the complexity $\gamma(G)=\left(c_{\gamma}(G), d_{\gamma}(G)\right)$ of G.

Definition. G is γ-unknotted if $d_{v}(G)=0$.
γ-unknotted \Rightarrow unknotted
2.5. A 「-unknotted graph and the (\downarrow, Γ)-warping

degree

Let $\gamma(\Gamma)=\min \{\gamma(G) \mid G$ is a spatial graph of $\Gamma\}$.

Definition.

A Γ-unknotted graph G is a spatial graph of Γ with $\gamma(\mathbf{G})=\gamma(\Gamma)$.

Note.

(1) Let $\gamma(\Gamma)=\left(c_{\gamma}(\Gamma), d_{\gamma}(\Gamma)\right)$. Then $d_{\nu}(\Gamma)=0$. Γ-unknotted $\Rightarrow \gamma$-unknotted \Rightarrow unknotted.
$(2) c_{\gamma}(\Gamma)=0$ if and only if Γ is a plane graph.
(3) A spatial plane graph G is 「-unknotted $\Leftrightarrow \mathbf{G}$ is equivalent to a graph in a plane.

Definition.

$\mathrm{O}=\{$ unknotted graphs of $\Gamma\}$.
$\mathbf{O}_{v}^{\mathrm{G}}=\left\{\gamma\right.$-unknotted graphs on $(\mathrm{D} ; \mathrm{T}) \in\left[\mathrm{D}_{G}\right]$
with $\operatorname{cd}(\mathrm{D} ; \mathrm{T})=\gamma(\mathrm{G})\}$.

$$
\begin{aligned}
O_{v} & =U\left\{O_{V}^{G} \mid G \text { is a spatial graph of } \Gamma\right\} \\
& =\{\gamma \text {-unknotted graphs of } \Gamma\} . \\
O_{\Gamma} & =\{\Gamma \text {-unknotted graphs }\} .
\end{aligned}
$$

Then $0 \supset \mathrm{O}_{\boldsymbol{\gamma}} \supset \mathrm{O}_{\mathrm{r}}$.
Note: $O_{\gamma}^{G} \subset O_{\Gamma}$ or $O_{\gamma}^{G} \cap O_{\Gamma}=\phi$ for every G.

Definition.

The (γ, Γ)-warping degree $d_{V}^{\Gamma}(G)$ of G is:

$$
d_{v}^{\Gamma}(G)=d_{v}(G)+\rho\left(O_{v}^{G}, O_{r}\right) .
$$

(ρ denotes the Gordian distance.)

By definition, $\quad d(G) \leqq d_{V}(G) \leqq d_{V}{ }_{(}(G)$.
$d_{v}{ }_{v}(\mathbf{G})=0$ if and only if G is Γ-unknotted.

2.6. Examples

Example 1.6. 1. Let $\mathbf{G}=$ \pm

G has $\mathrm{c}_{\gamma}(\mathrm{G})=\mathbf{2}$, for \mathbf{G} has a Hopf link as a constituent link. $d(G)=d_{V}(G)=0$.
Because \mathbf{G} is a planar graph, if \mathbf{G} is Γ-unknotted, then $\mathrm{c}_{\gamma}(\mathrm{G})=0$, a contradiction.
Hence $d_{v}(G)=1$.

Lemma 2.6.2. (1) ([Fung 1996] , [Ozawa 2010])

 If K is a knot with $d(K)=1$, then K is a non-trivial twist knot.
(2) If G is a θ-curve with $d(G)=1$, then the 3 constituent knots of \mathbf{G} consist of two trivial knots and one non-trivial twist knot .

Example 2.6.3. (([Fung 1996] , [Ozawa 2010], [Shimizu 2010])

For $K=()_{5_{2}, \text { we have }}$

$$
c_{v}(K)=5, d(K)=1<d_{\nu}(K)=d_{\nu}(K)=2 .
$$

Example 2.6.4.

For $K=$
6

$$
c_{\gamma}(K)=6, d(K)=d_{\gamma}(K)=d_{\gamma}^{\ulcorner }(K)=2 .
$$

In fact, $d_{\gamma}^{\Gamma}(K) \leqq 2:$

By Lemma, $d(K) \geqq \mathbf{2}$ (, for K is not any twist knot).

Example 2.6.5. (Kinoshita's $\boldsymbol{\theta}$-curve)
For $G=$, we have

$$
c_{\gamma}(G)=7 \text { and } d(G)=d_{\gamma}(K)=d_{\gamma}^{\Gamma}(G)=2 .
$$

a based diagram of G a monotone diagram
$O_{\nu}^{G}=O_{\Gamma}$ implies $\rho\left(O_{\gamma}^{G}, O_{\Gamma}\right)=0$. Hence $d_{\gamma}(G)=d_{\nu}^{\Gamma}(G)$. Since G is non-trivial and the 3 constituent knots are trivial, we have $\mathrm{d}(\mathrm{G}) \geqq \mathbf{2}$ by Lemma. Hence, if $c_{v}(G)=7$, then $d(G)=d_{v}(G)=d_{v}{ }_{v}(G)=2$.

By the diagram, $\mathrm{c}_{\nu}(\mathrm{G}) \leqq 7$. We show $\mathrm{c}_{\gamma}(\mathrm{G}) \geqq 7$.

 By the classification of algebraic tangles with crossing numbers $\leqq 6$ in:H. Moriuchi, Enumeration of algebraic tangles with applications to theta-curves and handcuff graphs, Kyungpook Math. J. 48(2008), 337-357
the Kinoshita's θ-curve G cannot have any based diagram with crossing number $\leqq 6$.
Hence $c_{\gamma}(G)=7$.

2.7. A β-unknotted graph

For a base $T=T_{1} \cup T_{2} \cup \ldots T_{r}$ of G, let B be the disjoint union of mutually disjoint 3-ball neighborhoods B_{i} of T_{i} in $S^{3}(i=1,2, \ldots, r)$.
Let $B^{c}=c l\left(S^{3}-B\right)$ be the complement domain of B with $L=B^{c} \cap G=a_{1} \cup a_{2} \cup \ldots \cup a_{n}$ an n-string tangle in B^{c}, called the complementary tangle of T.

Definition. G is β-unknotted if \exists a base T of \mathbf{G}

 whose complementary tangle (B^{c}, L) is trivial.

A trivial complementary tangle
Example 1.7.1. For a θ-curve $\Gamma, \exists \infty$-many β-unknotted graphs G of Γ up to equivalences.

Example 1.7.2. Triviality of the complementary

 tangle (B^{c}, L) depends on a choice of a base.

Example 1.7.3. If G is β-unknotted, then G is a free graph (i.e., $\pi_{1}\left(R^{3}-G\right)$ is a free group), but the converse is not true.

A free $\boldsymbol{\beta}$-knotted graph

By definitions and examples explained above, we have:

Theorem.
Γ-unknotted $\Rightarrow \gamma$-unknotted \Rightarrow unknotted $\Rightarrow \beta$-unknotted \Rightarrow free.
These concepts are mutually distinct.

Note: Given a Г, ヨ only finitely many 「-unknotted, γ-unknotted, or unknotted graphs of Γ.

2.8. The unknotting number

Let $\mathrm{O}=$ \{unknotted graphs of $\Gamma\}$.

Definition.

The unknotting number $\mathbf{u}(\mathbf{G})$ of a spatial graph \mathbf{G} of Γ is the distance from \mathbf{G} to \mathbf{O} by crossing changes on edges attaching to a base:

$$
u(G)=\rho(G, 0)
$$

2.9. A β-unknotting number

Let $O_{\beta}=\{\beta$-unknotted graphs of $\Gamma\}$.
Definition.
The β-unknotting number $u_{\beta}(G)$ of a spatial graph
G of Γ is the distance from G to O_{β} by crossing changes on edges attaching to a base:

$$
u_{\beta}(G)=\rho\left(G, O_{\beta}\right) .
$$

2.10. A γ-unknotting number

Given G, let

$$
\left\{D_{G, v}\right\}=\left\{(\mathrm{D} ; \mathrm{T}) \in\left[\mathrm{D}_{\mathrm{G}}\right] \mid \mathrm{c}(\mathrm{D} ; \mathrm{T})=\mathrm{c}_{\nu}(\mathrm{G})\right\}
$$

(the set of minimal crossing based diagrams).

Definition.

The \boldsymbol{v}-unknotting number $\mathbf{u}_{\boldsymbol{\gamma}}(\mathrm{G})$ of a spatial graph G of Γ is the distance from $\left\{\mathrm{D}_{\mathrm{G}, \gamma}\right\}$ to \mathbf{O} by crossing changes on edges attaching to a base:

$$
u_{\nu}(G)=\rho\left(\left\{D_{G, v}\right\}, O\right) .
$$

Note. G is γ-unknotted $\Leftrightarrow u_{\nu}(G)=0$.

2.11. Γ-unknotting number

Let $\mathrm{O}_{\mathrm{r}}=\{\Gamma$-unknotted graphs $\}$.
Definition.
The Γ-unknotting number $u^{\ulcorner }(G)$ of G is the distance from G to O_{Γ} by crossing changes on edges attaching to a base:

$$
u^{\top}(G)=\rho\left(G, O_{r}\right)
$$

Definition.

The (γ, Γ)-unknotting number $u_{\gamma}^{\Gamma}(G)$ of G is the distance from $\left\{\mathrm{D}_{\mathrm{G}, \gamma}\right\}$ to O_{r} by crossing changes on edges attaching to a base:

$$
\mathbf{u}_{v}^{\Gamma}(\mathrm{G})=\rho\left(\left\{\mathrm{D}_{\mathrm{G}, \gamma}\right\}, \mathrm{O}_{\Gamma}\right) .
$$

2.12. Dsitinctness of the unknotting numbers

Theorem 2.5.1. The unknotting numbers

$$
u_{\beta}(G), u(G), u^{\Gamma}(G), u_{v}(G), u_{v}^{\Gamma}(G)
$$

of \forall spatial graph G of \forall graph Γ are mutually distinct topological invariants and satisfy the following inequalities :

$$
u_{\beta}(\mathrm{G}) \leqq \mathrm{u}(\mathrm{G}) \leqq\left\{\mathrm{u}_{v}(\mathrm{G}), \mathrm{u}^{\ulcorner }(\mathrm{G})\right\} \leqq \mathrm{u}_{v}(\mathrm{G})
$$

Proof. The inequalities are direct from definitions.
We show that these invariants are distinct.
(1)

G has $c_{\gamma}(G)=2$ and hence $u_{\beta}(G)=u(G)=u_{\gamma}(G)=0$.
On the other hand, we have

$$
u^{\ulcorner }(G)=u_{v}^{\Gamma}(G)=1
$$

for \mathbf{G} is a spatial graph of a plane graph with a Hopf
link as a constituent link and hence not Γ-unknotted.
(2) Let $G=$

$\mathrm{G}=10_{8}$ has $\mathrm{u}\left(10_{8}\right)=2$ and $\mathrm{u}_{\mathrm{v}}\left(10_{8}\right)=3$ by
[Nakanishi 1983] and [Bleiler 1984]. Hence

$$
u_{\beta}(G)=u(G)=u^{\ulcorner }(G)=2<u_{v}(G)=u_{v}(G)=3 .
$$

[Nakanishi 1983] Y. Nakanishi, Unknotting numbers and knot diagrams with the minimum crossings, Math. Sem. Notes Kobe Univ. 11 (1983), no. 2, 257-258.
[Bleiler 1984] S. A. Bleiler, A note on unknotting number, Math. Proc. Cambridge Philos. Soc. 96 (1984), 469-471.
(3)

Then $u_{\beta}(G)=0$.

Since G is a Θ-curve, $u(G)=0 \Leftrightarrow G$ is isotopic to a plane graph.
G has a trefoil constituent knot.
Hence $u(G) \geqq 1$.
Thus, we have $u(G)=u^{\ulcorner }(G)=u_{v}(G)=u_{v}(G)=1 . / /$

2.13. The values of the unknotting numbers

Theorem 2.13.1. For \forall given graph Γ and \forall integer $\mathrm{n} \geqq 1, \exists \infty$-many spatial graphs G of Γ such that

$$
u_{\beta}(G)=u(G)=u_{v}(G)=u^{\ulcorner }(G)=u_{V}(G)=n .
$$

Infinite cyclic covering homology of a spatial graph

For a spatial graph G of Γ in $S^{3}=R^{3} \cup\{\infty\}$ with a base T and oriented edges $\alpha_{i}(i=1,2, \ldots, s)$ attaching to T .
Let $\mathrm{E}(\mathrm{G})=\mathrm{Cl}\left(\mathrm{S}^{3}-\mathrm{N}(\mathrm{G})\right)$ for a regular neighborhood $N(G)$ of G in S^{3}.
Let $\chi: H_{1}(E(G)) \rightarrow Z$ be the epimorphism sending the meridians of $\alpha_{\mathrm{i}}(\mathrm{i}=1,2, \ldots, \mathrm{~m})$ to $1 \in \mathrm{Z}$.
Let $E(G)_{\infty} \rightarrow E(G)$ be the ∞-cyclic cover of $E(G)$ associated with χ.

Let $\Lambda=\mathrm{Z}\left[\mathrm{t}, \mathrm{t}^{-1}\right]$.
The homology $H_{1}\left(E(G)_{\infty}\right)$ is a finitely generated Λ-module which we denote by $\mathrm{M}(\mathrm{G}, \mathrm{T})_{\infty}$. We take an exact sequence (over Λ)

$$
\Lambda^{\mathrm{a}} \rightarrow \Lambda^{\mathrm{b}} \rightarrow \mathrm{M}(\mathrm{G}, \mathrm{~T})_{\infty} \rightarrow 0
$$

where we take $\mathrm{a} \geqq \mathrm{b}$. A matrix $\mathrm{A}(\mathrm{G}, \mathrm{T})_{\infty}$ over Λ representing the homomorphism $\Lambda^{\mathrm{a}} \rightarrow \Lambda^{\mathrm{b}}$ is called a presentation matrix of the module $\mathrm{M}(\mathrm{G}, \mathrm{T})_{\infty}$.

For an integer $d \geqq 0$, the $\underline{d}^{\text {th }}$ ideal $\varepsilon_{d}(G, T)_{\infty}$ of $\mathrm{M}(\mathrm{G}, \mathrm{T})_{\infty}$ is the ideal generated by all the (b-d)-minors of $A(G, T)_{\infty}$. The ideals $\varepsilon_{d}(G, T)_{\infty}(d=0,1,2,3, \ldots)$ are invariants of the Λ-module $\mathrm{M}(\mathrm{G}, \mathrm{T})_{\infty}$. Let $\left(\Delta_{d}\right)$ be the smallest principal ideal containing $\varepsilon_{d}(G, T)_{\infty}$. Then the Laurent polynomial $\Delta_{d} \in \Lambda$ is called the $\underline{d}^{\text {th }}$ Alexamder polynomial of $M(G, T)_{\infty}$. If G is a knot (with $T=\phi$), then $\Delta_{0} \in \Lambda$ is called the Alexander polynomial of the knot \mathbf{G}.

Assume that \mathbf{G}^{*} is obtained from \mathbf{G} by \mathbf{k} crossing changes on $\alpha_{i}(i=1,2, \ldots, m)$. Then χ induces the epimorphism $\chi^{*}: H_{1}\left(E\left(G^{*}\right)\right) \rightarrow Z$.
Let $m(G, T)_{\infty}$ and $m\left(G^{*}, T\right)_{\infty}$ be the numbers of minimal Λ-generators of the Λ-modules $\mathrm{M}(\mathrm{G}, \mathrm{T})_{\infty}$ and $M\left(G^{*}, T\right)_{\infty}$, respectively.
We use the following lemma:

Lemma A.

A. Kawauchi, Distance between links by zero-linking twists, Kobe J. Math.13(1996), 183-190.

$$
\left|\mathrm{m}(\mathrm{G}, \mathrm{~T})_{\infty}-\mathrm{m}\left(\mathrm{G}^{*}, \mathrm{~T}\right)_{\infty}\right| \leqq \mathrm{k}
$$

Proof.

(-1)-crossing
(+1)-twist on 0

(-1)-twist on 0

G* is obtained from \mathbf{G} by k crossing changes on the edges $\alpha_{i}(i=1,2, \ldots, m) . G$ is also obtained from G^{*} by k crossing changes on the corresponding edges $\alpha_{i}{ }^{*}$ ($i=1,2, \ldots, m$).

Let $W=E(G) \times I U_{i=1}^{k} D^{2} \times D_{i}^{2}$ be a surgery trace from $\mathrm{E}(\mathrm{G})$ to $\mathrm{E}\left(\mathrm{G}^{*}\right)$ by
2-handles $D^{2} \times D_{i}^{2}(i=1,2, \ldots, k)$, which is also a surgery trace from $\mathrm{E}\left(\mathrm{G}^{*}\right)$ to $\mathrm{E}(\mathrm{G})$ by the "dual" 2-handles $\mathrm{D}^{2} \times \mathrm{D}_{\mathrm{i}} \mathbf{(i = 1 , 2 , \ldots , k)}$.

By construction, χ and χ^{*} extend to an epimorphism $\chi^{+}: H_{1}(W) \rightarrow Z$.
Let $\left(W_{\infty} ; \mathrm{E}(\mathrm{G})_{\infty}, \mathrm{E}\left(\mathrm{G}^{*}\right)_{\infty}\right)$ be the ∞-cyclic cover of (W;E(G), E(G*)) associated with χ^{+}.

Let $m\left(W_{\infty}\right)$ be the minimal number of Λ-generators of the Λ-module $\mathrm{H}_{1}\left(\mathrm{~W}_{\infty}\right)$.

Then we have

$$
\begin{aligned}
& \mathrm{m}\left(\mathrm{~W}_{\infty}\right) \leqq \mathrm{m}(\mathrm{G}, \mathrm{~T})_{\infty} \\
& \mathrm{m}\left(\mathrm{~W}_{\infty}\right) \leqq \mathrm{m}\left(\mathrm{G}^{*}, \mathrm{~T}\right)_{\infty}
\end{aligned}
$$

Because, the natural homomorphisms

$$
\pi_{1}(E(G)) \rightarrow \pi_{1}(W) \text { and } \pi_{1}\left(E\left(G^{*}\right)\right) \rightarrow \pi_{1}(W)
$$

are onto, so that the natural homomorphisms
$H_{1}\left(E(G)_{\infty}\right) \rightarrow H_{1}\left(W_{\infty}\right)$ and $H_{1}\left(E\left(G^{*}\right)_{\infty}\right) \rightarrow H_{1}\left(W_{\infty}\right)$ are onto.

By the exact sequence of the pair $\left(\mathrm{W}_{\infty}, \mathrm{E}(\mathrm{G})_{\infty}\right)$

$$
H_{2}\left(W_{\infty}, E(G)_{\infty}\right) \rightarrow H_{1}\left(E(G)_{\infty}\right) \rightarrow H_{1}\left(W_{\infty}\right) \rightarrow 0
$$

and $H_{2}\left(W_{\infty}, E(G)_{\infty}\right)=\Lambda^{k}$, we obtain

$$
\mathrm{m}(\mathrm{G}, \mathrm{~T})_{\infty} \leqq \mathrm{k}+\mathrm{m}\left(\mathrm{~W}_{\infty}\right) \leqq \mathrm{k}+\mathrm{m}\left(\mathrm{G}^{*}, \mathrm{~T}\right)_{\infty} .
$$

Similarly,

$$
\mathrm{m}\left(\mathrm{G}^{*}, \mathrm{~T}\right)_{\infty} \leqq \mathrm{k}+\mathrm{m}\left(\mathrm{~W}_{\infty}\right) \leqq \mathrm{k}+\mathrm{m}(\mathrm{G}, \mathrm{~T})_{\infty} .
$$

Thus, we have

$$
\left|m(G, T)_{\infty}-m\left(G^{*}, T\right)_{\infty}\right| \leqq k . \quad / /
$$

Proof of Theorem 2.13.1.

Let G_{0} be a Γ-unknotted graph. Let K be a trefoil knot, and $K(n)$ the n-fold connected sum of K. Then

$$
u(K(n))=u_{v}(K(n))=n \text { for } \forall n \geqq 1 .
$$

Let $G=G_{0} \# K(n)$ be the connected sum of $K(n)$ and an edge attaching to a base T_{0} of G_{0}. Then $\mathrm{u}_{\gamma}(\mathrm{G}) \leqq n$ since $\mathrm{c}_{\gamma}(\mathrm{G})=\mathrm{c}_{\gamma}\left(\mathrm{G}_{0}\right)+\mathrm{c}_{\gamma}(\mathrm{K}(\mathrm{n}))$.

We show $u_{\beta}(G) \geqq n$.

Assume that $u_{\beta}(G)=k$. Then a β-unknotted graph \mathbf{G}^{*} is obtained from \mathbf{G} by k crossing changes on edges $\alpha_{i}(i=1,2, \ldots, m)$ attaching to a base T in G.

We choose orientations on $\alpha_{i}(i=1,2, \ldots, m)$ as it is stated in the following two cases.

Case (I): $K(n)$ is in an edge α_{i}.
Case (II): $K(n)$ is in a component T^{\prime} of the base T.
In Case (I), take any orientations on $\alpha_{i}(i=1,2, \ldots, m)$.

In Case (II), let $\mathrm{T}^{\prime}{ }_{1}$ and $\mathrm{T}^{\prime}{ }_{2}$ be the components of $T^{\prime}-\{p\}$ for a point $p \in K(n)$, and $\alpha_{i}(i=1,2, \ldots, u)$ the edges joining T_{1} and $\mathrm{T}^{\prime}{ }_{2}$.
We take orientations of the edges $\alpha_{i}(i=1,2, \ldots, u)$ going from $\mathrm{T}^{\prime}{ }_{2}$ to $\mathrm{T}^{\prime}{ }_{1}$ and any orientations of the other edges $\alpha_{\mathrm{i}}(\mathrm{i}=\mathrm{u}+1, \mathrm{u}+2, \ldots, \mathrm{~m})$.

Let $\chi: H_{1}(E(G)) \rightarrow Z$ be the epimorphism sending

the oriented meridians of $\alpha_{i}(i=1,2, \ldots, m)$ to $1 \in Z$.
Then we have
in Case(I), $M(G, T)_{\infty}=\Lambda^{m-1} \oplus\left[\Lambda /\left(\Delta_{\mathrm{K}}(\mathrm{t})\right)\right]^{\mathrm{n}}$, and in Case(II), $M(G, T)_{\infty}=\Lambda^{m-1} \oplus\left[\Lambda /\left(\Delta_{K}\left(\mathbf{t}^{\mathrm{L}}\right)\right)\right]^{\mathrm{n}}$.

In either case, we have $\mathrm{m}(\mathrm{G}, \mathrm{T})_{\infty}=\mathrm{m}+\mathrm{n}-1$.

On the other hand, $\pi_{1}\left(\mathrm{E}\left(\mathrm{G}^{*}\right)\right)$ is a free group of rank m and hence $M\left(G^{*}, T\right)_{\infty}=\Lambda^{m-1}$.
Thus, $m\left(G^{*}, T\right)_{\infty}=m-1$.
By Lemma $A, \quad \mid\left(m(G, T)_{\infty}-m\left(G^{*}, T\right)_{\infty} \mid=n \leqq k\right.$. Hence $u_{\beta}(G) \geqq n$ and
$u_{\beta}(G)=u(G)=u_{v}(G)=u^{\ulcorner }(G)=u_{v}(G)=n . / /$

