
Knot theory for spatial graphs 

 
[Lecture 2]  
Unknotting notions on the spatial graphs  
 
 
 
 
 
 

 
Akio Kawauchi 

 
 

Osaka City University  
Advanced Mathematical Institute 

 



References for this special topics 

 [1] A. Kawauchi, On a complexity of a spatial graph. in: Knots 

and soft-matter physics, Topology of polymers and related 
topics in physics, mathematics and biology, Bussei Kenkyu 
92-1 (2009-4), 16-19.  

[2] A. Kawauchi, On transforming a spatial graph into a plane 
graph,in: Statistical Physics and Topology of Polymers with 
Ramifications to Structure and Function of DNA and Proteins, 
Progress of Theoretical Physics Supplement, No. 191(2011),  

     235-244. 

 



 
 
 
 
 
  
 
 
 
 
 

 

  

 

2.1. A based diagram and a monotone diagram 

Let Γ be a graph without degree one vertices, and 

 G = G(Γ) a spatial graph in R3.  Let Γi  (i=1,2,…,r) be  

an ordered set of  the components of Γ, and  

Gi =G(Γi ) the corresponding spatial subgraph of  

G = G(Γ).  Let Ti be a  maximal tree of Gi. 

Note: We consider a topological graph without  

degree 2 verticies, so that Ti ＝φ  if Gi is a knot or  

link, and Ti = one vertex  if  Gi  has just one vertex  

(of degree≧3).  
 



 
 
 
 
 
  
 
 
 
 
 

 

  

 

 

 

 

 
 

Let T= T1 ∪T2∪ … ∪Tr . Call it a base of G.  

Note: There are only finitely many bases of G.  

G is obtained from a basis T by attaching edges  

(i.e., arcs or  loops) to T. 
 

Let D be a diagram of  a spatial graph G=G(Γ), and  

DT the sub-diagram of D corresponding to T.   

Let  cD(DT) be the number of  crossing points of D  

whose upper or lower crossing points belong  to  

DT. 
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Definition.   D is a based diagram (on base T),  

written as (D;T) if cD(DT)=0. 
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Lemma.  For ∀base T of G, ∀diagram D of G 
is deformed into  a based  diagram on T by 
generalized Reidemeister moves.  
 
The generalirez Reidemeister moves: 



 

Let  α be an edge of G=G(Γ) attaching to a base T.  

 

Definition.  An edge diagram Dα  in a diagram   

D  of G is monotone  if: 

 

 

 

 

 
 
 
 
 
 



 

A sequence on the edges of a based graph  (G ,T ) 

is regularly  ordered  if  an  order on the edges  

such that any edge belonging to Gi  is smaller  

than any edge belonging to Gj  for  i<j  is  

specified. 
 

 



Definition.   A based diagram (D;T) is monotone   

if there is a regularly ordered edge sequence α i  

(i=1,2,…,m) of  (G ,T)  such that Dαi is monotone  

and Dαi  is upper than Dαj for i<j . 
 

 



Definition.  
The warping degree d(D;T) of a based diagram  
(D;T) is the least number of  crossing changes on  
edge diagrams attaching to T needed  to obtain a  
monotone diagram from (D;T). 
 
The crossing number of (D;T) is denoted by c(D;T).  
 
If D is a knot or link diagram or an edge diagram,  
then the warping degree and crossing number of  
D are denoted by d(D) and c(D), respectively. 
 

 
 

 

 

 

 

 

 

2.2. Complexity  
 



A similar notion for a knot or link is given  in : 
 
[Lickorish-Millett 1987] W. B. R. Lickorish and K. C. Millett, A  
polynomial invariant of oriented links, Topology 26(1987), 107-141. 
 
[Fujimura 1988] S. Fujimura, On the ascending number of knots,  
thesis, Hiroshima University, 1988.  
 
[Fung 1996] T. S. Fung, Immersions in knot theory, a dissertation,  
Columbia University, 1996.  
 
[Kawauchi 2007] A. Kawauchi, Lectures on knot theory (in 

Japanese),  
Kyoritu  Shuppan, 2007. 
 
[Ozawa 2010] M. Ozawa, Ascending number of knots and links.  
J. Knot Theory Ramifications 19 (2010), 15-25. 
 
[Shimizu 2010]  A. Shimizu, The warping degree of a knot diagram,  
J. Knot Theory Ramifications 19(2010), 849-857. 

 

 

 

 
 

 

 

 

 

 

 



Properties of the warping degree 
For the warping degree      of an oriented  
edge diagram Dα, 
                        (Dα) +    (-Dα)  = c(Dα),   
   
                 d(Dα) = min{    (Dα),    (-Dα)}. 
 
Example. d(               ) =1,  for 
  
             (           )=1,         (                     )=3.                          
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Definition. 

The complexity of a  based diagram (D;T) is the  

pair  cd(D;T)= (c(D;T), d(D;T)). The complexity of a  

spatial graph G is  

      γ(G) = min{cd(D;T)| (D;T)∈[DG]} 

in the dictionary order. Let γ(G)= (cγ (G), dγ(G)).  

Our basic viewpoint of complexity. This complexity  

is reducible by  a crossing change          ⇔             or   

a splice    ⇒   or            until we obtain a graph  

in a plane. 

 

 
 
 

 

 



Definition.   
The warping degree of G is :  
       d(G)= min{d(D;T)| (D;T)∈[DG]} 
 
Definition.   
G is unknotted if d(G)= 0.  
 

When Γ consists of loops,  
        G is unknotted ⇔ G  is a trivial link.   
 

 
  
 
 

   
   
 
         
 
 

2.3. The warping degree and an unknotted graph 



Assume Γ has a vertex of degree≧3. 

Lemma 2.3.1. For∀G, ∃finitely many crossing  

changes on G to make G with d(G)=0. 

 

Lemma 2.3.2.  For∀given graph Γ ,∃only  

finitely many  G  of Γ  with d(G)=0  up to  

equivalences.  

 

Lemma 2.3.3. If d(G)=0, then ∃T such that 

G/T is equivalent to S1∨S1∨... ∨S1⊂R2. 

 

   

  



Lemma 2.3.4.   A connected G with d(G)=0  is  

deformed  into a basis T by  a sequence of edge  

reductions:   
  

                         ⇒                          ⇒ 

   

Corollary 2.3.5. For ∀ G with d(G)=0, ∃T such  

that every edge (arc or loop) attaching to T is  in  

a trivial constituent knot.                                          



Given DT , the cross index of αi and αj (i≠j): 

ε(αi,αj)=[1-(-1) #(Dαi∩Dαj)]/2 (=0 or 1). 

 

 

 

 

The total cross index of Γ on DT : 

                   ε(Γ; DT) =∑i<j ε(αi,αj). 

Lemma 2.3.6.  Let d(G)=0.  Then  

min{c(D;T)|(D;T)∈[DG], d(D;T)=0} = ε(Γ; DT). 

cross index =0 cross index =1 

Dαi Dαi 

Dαj 

Dαj 

DT DT 



 

Conway-Gordon Theorem.   
Every spatial 6-complete graph K6  contains a 
non-trivial constituent link. 
Every spatial 7-complete graph K7  contains a  
non-trivial constituent knot. 
 
 

 
 
 
 
 

  

         An unknotted  K6             An  unknotted K7   



2.4.  The γ-warping degree and a γ-unknotted   

graph 
 
Definition.  

The γ-warping degree of G is the number dγ (G)  

for the complexity γ(G)= (cγ (G), dγ(G)) of G. 
 
Definition.  G is γ-unknotted if dγ (G) =0. 

 

γ-unknotted⇒unknotted 

 

 



 
2.5. A Γ-unknotted  graph and the (γ,Γ)-warping  
degree  
 
Let  γ(Γ) =min{γ(G) | G is a spatial graph of Γ}. 
 
 
Definition.   
A Γ-unknotted  graph G is a spatial graph of Γ  
with γ(G) = γ(Γ). 
                  
  
 
 

   
   
 
         
 
 

Definition 



 
 
Note.    
 
 (1) Let γ(Γ)= (c γ(Γ), d γ(Γ)). Then dγ(Γ)=0.  
  

Γ-unknotted⇒γ-unknotted⇒unknotted. 
 

(2) c γ (Γ)=0 if and only if Γ is a plane graph. 
 
(3) A spatial plane graph G is Γ-unknotted  
    ⇔ G is equivalent to a graph in a plane.                    
 
  
 
 

   
   
 
         
 
 

Definition 



Definition. 
        O    = {unknotted graphs of Γ}. 
      
    O    = {γ-unknotted graphs on (D;T)∈[DG]     
                                                     with cd(D;T)=γ(G)}.     
    
    Oγ    = ∪{O   |G is a spatial graph of Γ} 
               = {γ-unknotted graphs of Γ}. 
    
   OΓ   = {Γ-unknotted graphs}. 
 
Then  O⊃ Oγ ⊃ OΓ. 
 
Note:  O   ⊂OΓ   or  O  ∩OΓ = φ for every G. 
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Definition.   
The (γ,Γ)-warping degree  d   (G) of G is: 
 

d   (G) =dγ(G)+ ρ(O   ,OΓ). 
 

(ρ denotes the Gordian distance.) 
 
 
By definition,     d(G)≦ dγ(G)≦ d    (G). 
 
d    (G) =0 if and only if  G is Γ-unknotted. 
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2.6. Examples 

 

Example 1.6. 1.  Let  G =               .  

 

G has cγ(G)=2, for G has a Hopf link as a  

constituent link.  

d(G)=dγ(G)= 0. 

Because G is a planar graph, if G  is Γ-unknotted,  

then c γ(G)=0, a contradiction.  

Hence d   (G) =1.  
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Lemma 2.6.2.  (1) ([Fung 1996] , [Ozawa 2010])  

If K is a knot with d(K)=1, then K is a non-trivial  

twist knot. 

                                       = 

 

 (2) If G is a θ-curve with d(G)=1, then the 3  

constituent knots of G consist of two trivial  

knots and one non-trivial twist knot .  
 



Example 2.6.3. (([Fung 1996] , [Ozawa 2010],  

[Shimizu 2010]) 

 

 

For K=                                52 , we have  

 

 

          cγ (K)=5,  d(K)=1< dγ(K)= d   (K)=2. 
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Example 2.6.4.   

 

For    K =                    62, 

    cγ
 (K)=6,  d(K)= dγ(K)= d   (K)=2. 

In fact, d   (K)≦2: 

 

 

 

By Lemma, d(K)≧2  (, for K is not any twist  

knot). 
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Example 2.6.5. (Kinoshita’s θ-curve)       
     
 
        
For G =                    ,  we have  
 
 
 
 
 
    cγ(G) = 7 and d(G)= dγ(K)= d   (G)= 2. 
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        a based diagram of G      a monotone diagram            
  
O  =OΓ  implies ρ(O  ,OΓ)=0. Hence dγ(G)= d   (G).  
Since G is non-trivial and the 3 constituent knots 
are trivial, we have d(G)≧2 by Lemma. 
Hence,  if cγ (G)=7, then  d(G)= dγ (G)= d   (G)=2. 
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 By the diagram, cγ(G) ≦7.  We show  cγ(G) ≧7. 

By the classification of algebraic tangles with  

crossing numbers≦6 in:  
 

H. Moriuchi, Enumeration of algebraic tangles with applications  

to theta-curves and handcuff graphs, Kyungpook Math. J.  

48(2008), 337-357 
 

the Kinoshita’s θ-curve G cannot have any  

based diagram with crossing number ≦6 .   

Hence cγ(G)=7.  

 



2.7. A β-unknotted graph 

 

For a base T= T1∪T2∪…∪Tr of G, let B be the  

disjoint union of  mutually disjoint 3-ball  

neighborhoods Bi of Ti in S3 (i=1,2,...,r).  

Let Bc = cl(S3-B) be the complement domain of B  

with L=Bc∩G=a1∪a2∪…∪an  an n-string tangle  

in Bc, called the complementary tangle of T. 
 



Definition. G is β-unknotted if ∃a base T of G  

whose complementary tangle (Bc,L) is trivial. 
      
 

 

A trivial complementary tangle 

Example 1.7.1.  For a θ-curve Γ, ∃∞-many  

β-unknotted graphs G of Γ up to equivalences.  

 

 



Example 1.7.2. Triviality of the complementary  

tangle (Bc,L) depends on a choice of a base. 

 

 

 

Example 1.7.3. If  G is β-unknotted, then G is a free  

graph (i.e., π1(R3-G) is a free group), but  the  

converse is not true. 

 

 

 

A free β-knotted graph 

 



By definitions and examples explained above,  

we have: 

Theorem.  

   Γ-unknotted⇒γ-unknotted⇒unknotted  

                                         ⇒ β-unknotted ⇒ free. 

  These concepts are mutually distinct. 

 

Note: Given a Γ, ∃only finitely many Γ-unknotted,  

γ-unknotted, or  unknotted graphs of Γ. 



2.8. The  unknotting number 

 

Let O = {unknotted graphs of Γ}. 
 

Definition. 

The unknotting number u(G) of a spatial graph G 

of Γ is the distance from G to O by crossing  

changes on edges attaching to a base:   

u(G) = ρ(G,O).  

 



2.9. A β-unknotting number  
 

Let Oβ = {β-unknotted graphs of Γ}. 
 

Definition. 

The β-unknotting number uβ(G) of a spatial graph  

G of Γ is the distance from G to Oβ by crossing  

changes on edges attaching to a base:   

uβ(G) = ρ(G,Oβ).  

 



2.10. A γ-unknotting number 

Given G, let   

      {DG,γ }= {(D;T)∈[DG] | c(D;T)=cγ(G)} 

        (the set of  minimal crossing based diagrams). 

Definition. 

The γ-unknotting number uγ(G) of a spatial graph  

G of Γ is the distance from {DG,γ} to O by crossing  

changes on edges attaching to a base:   

                     uγ(G) = ρ({DG,γ },O). 

Note. G is γ-unknotted ⇔ uγ(G) =0. 

 
 



2.11. Γ-unknotting number  

Let  OΓ={Γ-unknotted graphs}.  

Definition.  

The Γ-unknotting number uΓ(G) of G is the distance  

from G to OΓ  by crossing changes on edges  

attaching to a base:   

                             uΓ(G) = ρ(G,OΓ)  

  

   

   

 

         
 
 



Definition.  

The (γ,Γ)-unknotting number u   (G) of G is the 

distance from {DG,γ} to OΓ by crossing changes on  

edges attaching to a base:  

                            u    (G) =ρ({DG,γ},OΓ). 
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2.12. Dsitinctness of the unknotting numbers 
 
Theorem 2.5.1.  The unknotting numbers  

uβ(G), u(G),  uΓ(G), uγ (G), u   (G)  

of ∀spatial graph G of ∀graph  Γ  are mutually  

distinct topological invariants and satisfy the  

following inequalities :  
            

        uβ(G) ≦ u(G)≦｛uγ (G),uΓ(G)｝≦ u (G).   
 

 

 

 

Γ  
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Γ  
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Proof. The inequalities are direct from definitions.  

We show that these invariants are distinct. 

(1)                 

                    G=                                

 

G  has cγ(G)=2 and hence uβ(G)=u(G)=uγ(G)=0.  

On the other hand, we have   

                               uΓ(G)=u   (G)=1,  

for G is a spatial graph of a plane graph with a Hopf  

link as a constituent link and hence not Γ-unknotted. 

 

 

Γ  
γ
 

 



(2) 
Let   G=                                                  . 

 

 
G=108  has u(108)=2 and uγ (108)=3  by  

[Nakanishi 1983] and [Bleiler 1984] .  Hence 
 
         uβ(G)= u(G) =uΓ(G)=2< uγ (G)=u   (G)=3. 
 
[Nakanishi 1983] Y. Nakanishi, Unknotting numbers and knot  
diagrams with the minimum crossings, Math. Sem. Notes Kobe  
Univ. 11 (1983), no. 2, 257-258.  
[Bleiler 1984] S. A. Bleiler, A note on unknotting number, Math.  
Proc. Cambridge Philos. Soc. 96 (1984), 469-471. 
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(3)   

        G  =            Then uβ(G)= 0.  

 

In fact: 

 

Since G is a Θ-curve,  

        u(G)=0 ⇔ G is isotopic to a plane graph. 

G has a trefoil constituent knot.  

Hence    u(G)≧1. 

Thus, we have   u(G) =uΓ(G)=uγ (G)=u   (G)=1.//  Γ  
   γ
 

 

＝ 
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2.13. The values of the unknotting numbers 

 

Theorem 2.13.1.  For∀given graph Γ and ∀integer  

n≧1, ∃∞-many spatial graphs G of Γ such that 

              uβ(G)= u(G)= uγ (G)= uΓ(G)= u   (G)=n. 

 
 

 

 

 



Infinite cyclic covering homology of a spatial graph 
 
For a spatial graph G of Γ in S3=R3∪{∞}with a  
base T  and  oriented edges αi(i=1,2,…,s)  
attaching to T.   
Let E(G)=cl(S3-N(G)) for a regular neighborhood  
N(G) of G in S3. 
Let χ: H1(E(G))→Z be the epimorphism sending the  
meridians of αi (i=1,2,…,m) to 1∈Z.  
Let E(G)∞→ E(G) be the ∞-cyclic cover of E(G)  
associated with χ.   
 
 
 
 



Let Λ=Z[t,t-1].  

The homology H1(E(G)∞) is a finitely generated  

Λ-module which we denote by M(G,T)∞. 

We take an exact sequence (over Λ) 

Λa → Λb → M(G,T)∞ →0,  

where we take a≧b. A matrix A(G,T)∞ over Λ  

representing the homomorphism Λa → Λb is  

called a presentation matrix of the module  

M(G,T)∞. 

 

 

 

 



For an integer d≧0, the dth ideal εd(G,T)∞  of  

M(G,T)∞ is the ideal generated by all the  

(b-d)-minors of A(G,T)∞. 

The ideals εd(G,T)∞ (d=0,1,2,3,…) are invariants of  

the Λ-module M(G,T)∞. 

Let (Δd) be the smallest principal ideal containing  

εd(G,T)∞. Then the Laurent polynomial Δd∈Λ is  

called the dth Alexamder polynomial of M(G,T)∞. 

If G is a knot (with T=φ), then Δ0∈Λ  is called  

the Alexander polynomial of the knot G. 

 

 

 



Assume that G* is obtained from G by k crossing  
changes on αi (i=1,2,…,m). Then  χ induces the  
epimorphism χ*:H1(E(G*))→Z .  
Let m(G,T)∞ and m(G*,T)∞ be the numbers of   
minimal Λ-generators of the Λ-modules M(G,T)∞  
and M(G*,T)∞, respectively.  
We use the following lemma:  
 
 
 
 

Lemma A. 
A. Kawauchi,  Distance between links by zero-linking twists,  
Kobe J. Math.13(1996), 183-190. 

              |m(G,T)∞ - m(G*,T)∞ |≦k. 



Proof. 

 

 

 

 

 

 

G* is obtained from G by k crossing changes on the  

edges αi (i=1,2,…,m). G is also obtained from G* by  

k crossing changes on the corresponding edges αi
*  

(i=1,2,…,m).  

(+1)-twist on O 

(-1)-twist on O 
O O 

(-1)-crossing (+1)-crossing 



Let  W=E(G)×I ∪     D2×D2
i    

be a surgery trace from E(G) to E(G*) by  

2-handles D2×D2
i (i=1,2,...,k), which is also a  

surgery trace from E(G*) to E(G) by the “dual”  

2-handles D2×D2
i (i=1,2,...,k). 

 k 
i =１ 

W 
E(G) E(G*) 

(∂E(G)) ×I=(∂E(G*))×I 



By construction, χ and χ* extend to an  

epimorphism  χ+:H1(W)→Z.  

Let (W∞;E(G)∞,E(G*)∞) be the ∞-cyclic cover  of  

(W;E(G), E(G*)) associated with χ+. 

 

Let m(W∞) be the minimal number of  

Λ-generators of the Λ-module  H1(W∞).  

 



Then  we have  

                       m(W∞) ≦m(G,T)∞ ,   

                       m(W∞) ≦ m(G*,T)∞ . 

 

Because, the natural homomorphisms  

π1(E(G))→ π1(W) and  π1(E(G*))→ π1(W) 

are onto, so that the natural homomorphisms  

H1(E(G)∞)→ H1(W∞) and  H1(E(G*)∞)→ H1(W∞) 

are onto.  



By the exact sequence of the pair (W∞,E(G)∞) 

H2(W∞,E(G)∞)→ H1(E(G)∞) → H1(W∞) → 0  

and H2(W∞,E(G)∞)=Λk, we obtain  

m(G,T)∞ ≦ k + m(W∞) ≦ k + m(G*,T)∞ . 

Similarly,  

m(G*,T)∞ ≦ k + m(W∞) ≦ k + m(G,T)∞ . 

Thus, we have  

 |m(G,T)∞ - m(G*,T)∞ |≦k. // 

 



Proof of Theorem 2.13.1.   
Let G0  be a Γ-unknotted graph.  
Let K be a trefoil knot, and K(n) the n-fold  
connected sum of K. Then  
             u(K(n))=uγ(K(n))=n  for ∀n≧1. 
Let  G =G0#K(n)  be the connected sum of K(n)  
and  an edge attaching to a base T0 of G0.  
Then u (G)≦ n since cγ(G) =cγ(G0 )+cγ (K(n)) . 
 
We show uβ (G)≧ n.  
 

Γ  
γ
 

 



Assume that uβ(G)=k. Then a β-unknotted graph  
G* is obtained from G  by k crossing changes on  
edges αi(i=1,2,…,m) attaching to a base T in G.   
 
We choose orientations on αi (i=1,2,…,m) as  
it is stated in the following two cases.   
Case (I): K(n) is in an edge αi.  
Case (II): K(n) is in a component T’ of the base T.  
 

In Case (I), take any orientations on αi (i=1,2,…,m). 
 
 



In Case (II), let T’1 and T’2 be the components of  
T’-{p} for a point p ∈K(n), and αi (i=1,2,…,u) the  
edges joining T’1 and T’2.  
We take  orientations of  the edges αi (i=1,2,…,u)  
going from T’2 to T’1 and any orientations of the  
other edges αi (i=u+1,u+2,…,m).  
 

 
 
 



 

Let χ: H1(E(G))→Z be the epimorphism sending 

 the oriented meridians of αi (i=1,2,…,m) to 1∈Z.  

Then we have  

in Case(I),  M(G,T)∞ = Λm-1  +  [Λ/(ΔK(t))]n, and  

in Case(II), M(G,T)∞ = Λm-1  +  [Λ/(ΔK(tu))]n. 

 

In either case, we have  m(G,T) ∞ = m+n-1. 

 

 

 

 
 

 

 



On the other hand, π1(E(G*)) is a free group of  

rank m and hence M(G*,T)∞ =Λm-1.  

Thus, m(G*,T)∞ =m-1.  

By Lemma A,    |(m(G,T)∞ -m(G*,T)∞ |=n≦k. 

Hence uβ (G)≧ n and  

uβ(G)= u(G)= uγ (G)= uΓ(G)= u   (G)=n. // Γ  
   γ
 

 


