

Gradient descent assimilation for the point vortex model

Emma Suckling, Leonard A. Smith and Hailiang Du

Centre for the Analysis of Time Series, London School of Economics www2.lse.ac.uk/CATS

International Conference on Data Assimilation, Bangalore, 14 July 2011

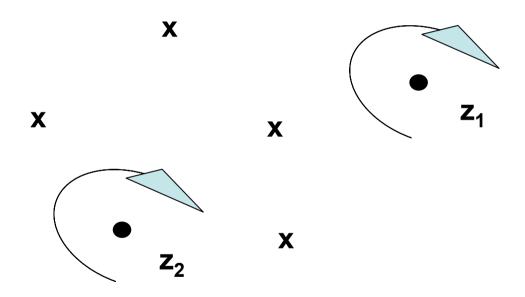
Outline

- Lagrangian data
- The point vortex model
- Gradient descent methodology
- Assimilation with full observations
- Partial observations
- Summary

Lagrangian data assimilation

- Much of the data for geophysical systems are Lagrangian
- Lagrangian observations refer to a sequence of position measurements along the flow trajectory
 - Data not in terms of model variables
- Solution is to augment the state space by including coordinates of Lagrangian tracers

 We want to assimilate noisy observations of a passive tracer into the model of flow for point vortices



 Vortex dynamics governed by local fluid velocity; superposition of vortex velocities

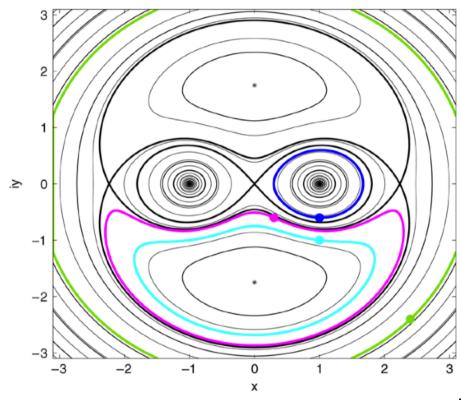
$$\frac{dz_m}{dt} = \frac{i}{2\pi} \sum_{l=1,m\neq l}^{N_v} \frac{\Gamma_l}{z_m^* - z_l^*} \quad \text{where} \quad \frac{N_v = \text{No. vortices}}{\Gamma_l = \text{Circulation strength}}$$

Sequence of tracer positions, governed by

$$\frac{d\xi_n}{dt} = \frac{i}{2\pi} \sum_{n,l=1}^{N_v} \frac{\Gamma_l}{\xi_n^* - z_l^*}$$

- Model of point vortex flow for 2 vortices, 1 tracer
- Assimilate tracer trajectories and solve equations of motion given a set of initial conditions
- Forecast vortex positions in the case of partial observations of the system
 - Comparison with EKF, Particle filter

- Stream function for point vortex model
- Flow transformed to Lagrangian coordinates
- Tracer paths for different initial conditions can follow different types of flow



E. T. Spiller et al., Physica 237 (2008)

Existing methods

Failure rate for existing methods with different initial conditions

	0.3 - 0.6i	1 – 0.6 <i>i</i>	1 – <i>i</i>	2.4 – 2.4 <i>i</i>
standard PF	7.8%	3.0%	4.6%	12.0%
standard BPF w/doubling	6.4%	2.6%	2.6%	9.6%
cloud expanding BPF	0.4%	0.2%	0.2%	4.0%
directed doubling BPF	0.4%	0.0%	0.0%	4.8%
perturbed observation BPF	1.6%	1.6%	2.0%	7.0%
extended Kalman filter	4.6%	78.2%	0.6%	2.0%

E. T. Spiller et al., Physica 237 (2008)

 In some methods assimilation fails in the region of saddle points

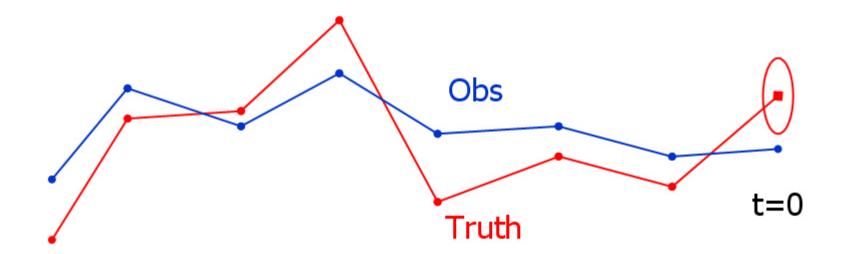
Gradient descent assimilation

• Let $x_t \subseteq \mathbb{R}^m$ be the trajectory of the model for a series of states at times t=1...n, given by

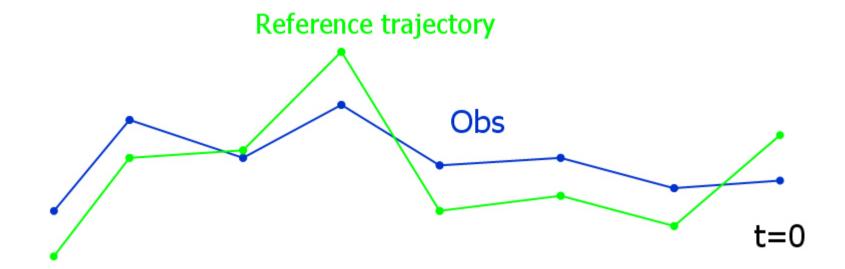
$$x_{t+1} = F(x_t)$$

- We have a sequence of n noisy (IID distributed) observations, s_t , of the m dimensional system
- In the perfect model scenario F is known exactly, so is the noise model

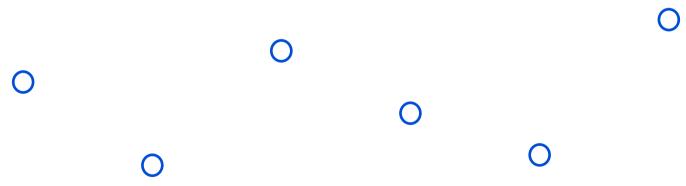
Goal: To generate a trajectory consistent with the model dynamics and observations



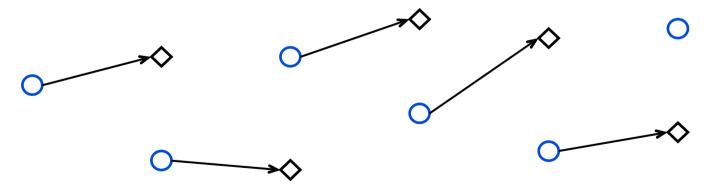
How to find a reference trajectory?



- For the sequence of n observations each with m dimensions, define an extended sequence space of $n \times m$ dimensions
 - 6n for 2-point vortex model
- Create initial trajectory, u, by 1-step forecast from observations



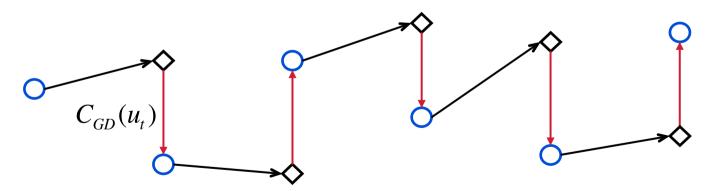
- For the sequence of n observations each with m dimensions, define an extended state space of n×m dimensions
 - 6n for 2-point vortex model
- Create initial trajectory, u, by 1-step forecast from observations



Define the mismatch (error cost function) as:

$$C_{GD}(u) = \sum_{t=1}^{n} |F(u_t) - u_{t+1}|^2$$

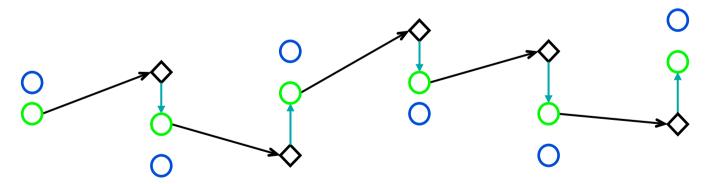
 Apply gradient descent algorithm, starting at the observations to minimise the set of mismatches simultaneously



Define the mismatch (error cost function) as:

$$C_{GD}(u) = \sum_{t=1}^{n} |F(u_t) - u_{t+1}|^2$$

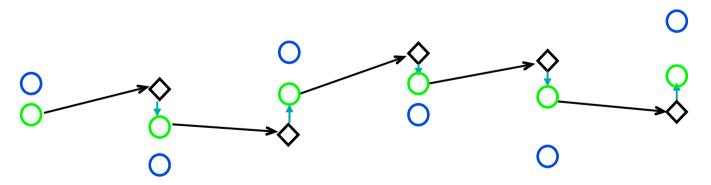
 Apply gradient descent algorithm, starting at the observations to minimise the set of mismatches simultaneously



Define the mismatch (error cost function) as:

$$C_{GD}(u) = \sum_{t=1}^{n} |F(u_t) - u_{t+1}|^2$$

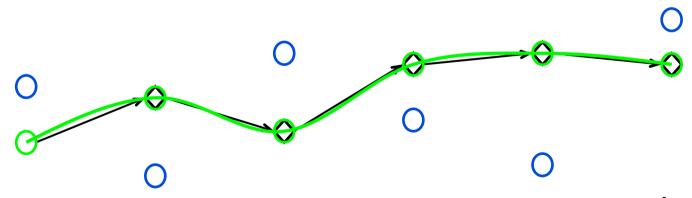
 Apply gradient descent algorithm, starting at the observations to minimise the set of mismatches simultaneously



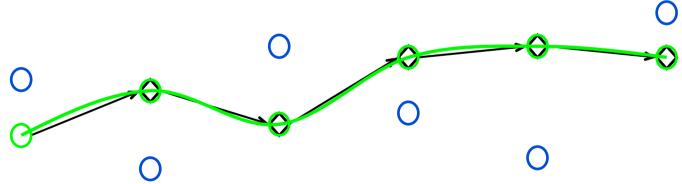
Define the mismatch (error cost function) as:

$$C_{GD}(u) = \sum_{t=1}^{n} |F(u_t) - u_{t+1}|^2$$

 Apply gradient descent algorithm, starting at the observations to minimise the set of mismatches simultaneously

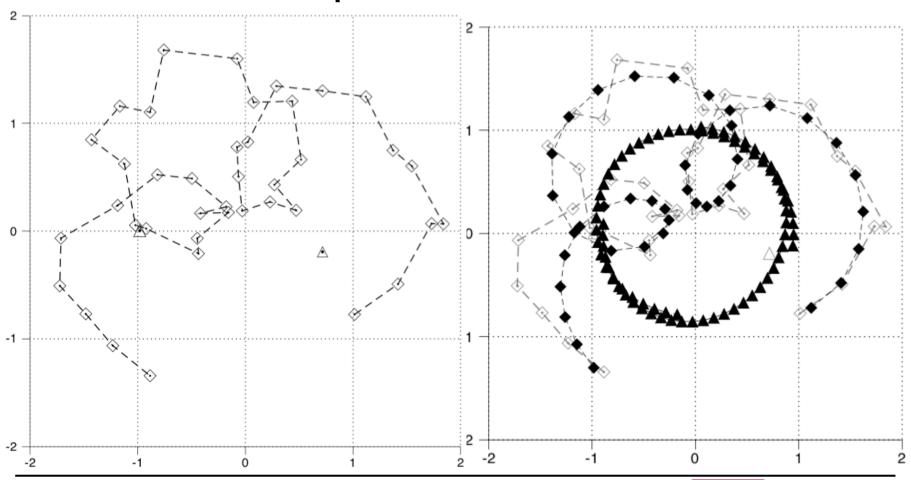


- Assimilation converges to a trajectory of the model 'near' the 'true' trajectory
- Observations are used as a starting point, but ignored after initial descent



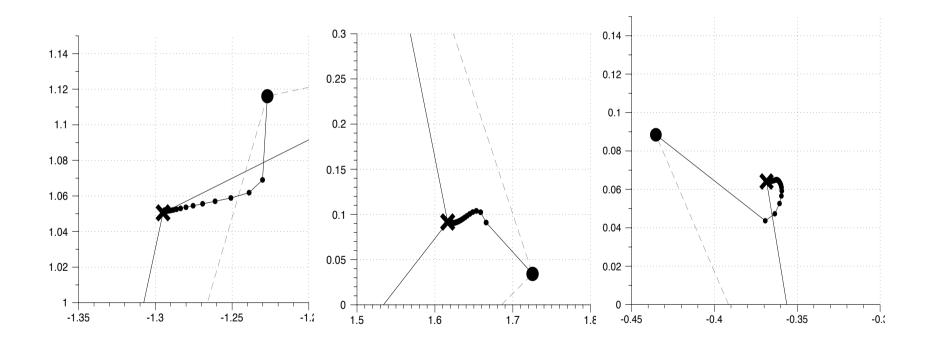
Assimilation with full observations

Tracer and vortex positions observed at all times



Assimilation with full observations

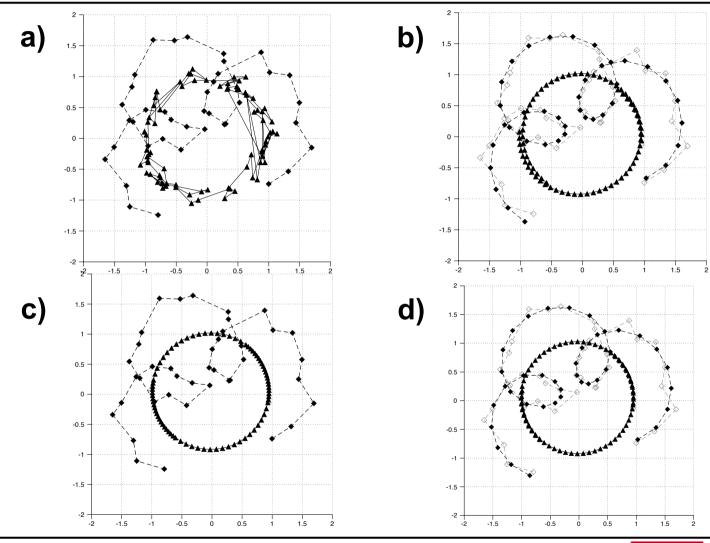
Movement of individual drifter positions over the assimilation



Partial observations

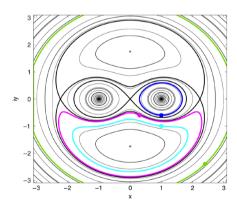
- Initial locations of vortices are observed as well as tracer positions at all times
- Assimilation is performed in a two-stage process
 - Estimates of the unobserved components of state x are calculated by resampling from observational noise on initial vortex positions
 - Integrate equations forward to populate full state
 - Gradient descent to search for a trajectory
 - Reset tracer positions to observed values and repeat with new estimate for vortex positions

Partial observations



Saddle point problem

- Some methods are known to fail to assimilate trajectories around saddle points
- Gradient descent assimilation has been shown overcome this problem
- Further investigations will be carried out in the future, including comparisons with available existing methods



Summary

- Methodology for applying gradient descent assimilation in PMS has been shown to work well
- Work is ongoing to provide robust comparisons with other methods in the point vortex model (Particle filter, EKF)
- Algorithm successfully applied for the case of partial observations
- Gradient descent assimilation has been successfully applied to imperfect model scenarios and is shown to provide informative estimates of model error (see Lenny Smith's talk for more on model error)

