
 

 



Formulation of Two Body Scattering 
 Time-dependent 

Schrodinger Equation 
 
 
 
 
Its solution is 
 
 
 
 
Reference Wave-Packet 
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 This physical requirement implies a certain 
restriction on the range of the potentials; 

 Expressed mathematically 
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 This equation defines the Moller operator 

 

 

 The Moller operator         produces the scattering 
state         ) which goes over into the free state           
for  

 Extending the definition for any finite time 
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 By differentiation, we get   

 

 

 Giving us the commutation relation. 

 

 

 Domain of Moller operators is the Hilbert space of 
square integrable free states. 
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 Work by Faddeev has shown that the domain can , 
however, be extended to include states of sharp 
momentum. 

 We are thus allowed to use momentum eigen states                      

        instead of wave-packets          and  

 Apply the Moller operators          on them to get 
scattering states        consisting of a plane wave plus 
an outgoing spherical wave.  

 The commutation relation given above shows                                 
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 Applying the Hermitian conjugate operator      

 to the bound states of H, i.e.,             they give 
zero; 

 

 Expression on the r.h.s is zero because states 

                           are eigenstates of H having 
different energies. Since states         form a 
complete set,    
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 Time limit in             can be replaced by Euler limit: 

 

 

          

 

Note      

 

 

By introducing Euler limit, time dependence 
disappears in scattering theory 
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Resolvent Equation & L-S Equation 
 We can not carry out the integration in the 

integral representation for         , for the simple 
reason                         do not commute;  the two 
exponential functions 

                 

 Since Moller operators can operate on plane wave 
states, we write 
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 Here we get the definition of a resolvent or Green’s 
function 

 And obtain an important relation 

 

 Which marks a transition from time-dependent to 
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 Introducing the free resolvent  

 

 And using the relation 

 

 We get, by multiplying with 

 The operator identities 

    
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 With this identity and the relation.  

 

 

 Now.  

 

 

 This gives the well-known L-S equation 
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 In configuration space representation 

 

 

Note that the free resolvent         has a cut along the 
positive real E-axis. On which side of the cut we 
should stay in order to fulfil the required boundary 
condition is decided by the                    . The L-S 
equation in configuration space 
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 This shows Schmidt norm can be finite when (i) 
the integral over absolute square of the potential 
exists –excluding Coulomb and hard core 
potentials; 

 (ii) the imaginary part of           is not zero—
excluding thereby the scattering energies’ 

 Reason? Recall: the domain of Moller operators 

 has been extended! 

 A finite Schmidt norm is only a sufficient 
condition not a necessary one  
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 In order that L-S equation has a unique solution, it 
is sufficient to investigate if Schmidt norm of the 
kernel is finite, viz., 

 

 The square of the Schimdt norm 
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 A necessary condition is that the kernel of the integral 
equation must be compact( completely continuous).  

 

Lovelace ( Phys.Rev.135, B1225 (‘64)) shows 
that the kernel remains compact in the 
Banach space of continuous bounded 
functions with continuous bounded 
derivatives. 



 S-matrix: A link between the scattering states and the 
measurable data: 

 

 

 

 This enables us to express 
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 The S-matrix in operator form is 

 With momentum eigen states, its matrix-element 
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 Recall the Green’s function satisfies L-S type 
equation.  

 

 This eqn can be recast as 

 

 

 

 

 

 

 The resolvent is thus related to the operator t(z), -
- the t-matrix  ,  which is less singular than g(z). 
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 In momentum representation, the kinematic 
singularities of g(z) show up explicitly: 

 

 

 Using this result in S-matrix.  

 

 

 

 

 

 Here we use                                   in the expression 
for the S=matrix . In the second term,   
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 Using the identity  

 

 

 

 

 Note the two        functions in the S-matrix. One 
refers to “no scattering (since               )” and the 
other stands for energy conservation. All 
information about scattering is contained in t-
matrix, related to 
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Unitarity Relation & Optical Theorem 
 For a Hermitian potential, unitarity of S-matrix, i.e  

                       
 
 

 

 ensures conservation law for probability flux. In 
operator form, 
 
 
 
 
 
 
 
 

 
 

 Writing explicitly 
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 It follows 

 

 

 

 

 

 

 

 This is the well-known optical theorem. 
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 Before studying three-body scattering, let us 
recall the relations between the two body t-
matrix and the resolvent  

 and comparing it with  

 

 

 

 

 leads to the relation 

 

 Or ,equivalently 

000)( gtggzg 

0000

00000

00

][

][

)()(

gtgVVgg

gtggVgg

zgVggzg







tgVVt 0

VgtVt 0



Three Body Scattering 
 Introduction:    Consider three particles 1,2,3 having 

masses                          interacting through two body 
potentials, denoted by 

 

 We write its Hamiltonian 

 

 In three particle space, two body sub-systems have 
an important role. Recognizing this, we introduce 
channel Hamiltonians: 
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 Note that because of translational invariance of 
two body potentials, three body C.M motion 
becomes a momentum eigenstate and can be 
factored out resulting in two independent 
momenta,  

 Asymptotic states with two particles in a bound 
state, as for example, in elastic scattering are eigen 
states of   

 For the full Hamiltonian 
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 Generalizing the definition of Moller operators and 
boundary conditions to three particle scattering, we 
write time-development of a 3-particle wavepacket 

 While reference wavepackets develop according to 

 

 

 

 

 The wavepacket       describes the free motion of 
particle  i (i=1,2,3) relative to the other two particles 
which are in their mth bound state. For i=0, we can 
have a wavepacket        with three free particles. 
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 The boundary condition is formulated by 
requiring 

 

 This leads to the representation 

 

 

 

 And to the definition of Moller operators 

 

 

 Note that here a separate Moller operator is 
needed for every channel i--- signalling the 
complications in 3- body problem. Indeed, one is 
required to prove that Moller operators exist and 
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 That they can be applied to states of sharp energy. 
The study of these mathematical details has been 
carried out by Faddeev. 

 The domain of Moller operators defined above is 
the space of channel states: 

 

 Transition from time limit to Euler limit is also 
possible in 3-particle scattering: 

 

 

 G(z) is the full resolvent satisfying 
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Difficulty with the L-S Equation 
 In terms of the channel resolvents ( i ). 

 The L-S equation for the scattering state 

 

 

 Note that 

 

 Using this result, we get the L-S equation 

 

 

 Solution to the L-S equation is not uniquely determined. 
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 Because the homogeneous equation 

 

 has solutions for energies in the scattering region. 
Consider, for instance, another channel state 

 

 For such a state 

 

 Because the state                    is not an eigenstate of 

 Therefore, we get 

 This equation tells us that the homogeneous eqn which 
belongs to the inhomogeneous L-S eqn. has non trivial 
solutions of the scattering states 

   in channels  
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Kernel Disconnected 
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Here the         function belonging to the total C.M motion 

is omitted . However, the          functions associated with 

the two body potentials signify that the third particle 

remains free when the other two are interacting –the 

kernel           of the integral equation thus becomes 

disconnected . As a result the matrix-element of the 

kernel of L-S equation is not an £  operator.  
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 . In momentum representation, the matrix element of 
the kernel 

 

 

 

 

 In the C.M of the 3-particle system, one can get rid of 
the total momentum conserving        function.But the 
integrand still contains terms like 

 As a result, its                    is infinite and the kernel K is 
no longer £ 

 3

3

3332

2

2221

1

111

3

1

2

321321

321321

)()()(

)2/(

)(

pVpkkpVpkkpVpkk

mkiE

kkkkkk
kkkKkkk

i

ii


























 211 )( kk



)( KKTr

2

2

2



The Faddeev Equations 
 In order to remove these difficulties, Faddeev’s 

starting point is to study the L-S equation for the 
three body T-matrix: 

 

 

 This equation also suffers from the same 
disadvantage as the L-S equation for the three 
particle states               ,viz.,the kernel is no longer 
Hilbert-Scmidt type together with the non-
uniqueness of the L-S equation.      

 

TGVVT
i

i

i

i

0

3

1

3

1






 i

m



 The turning point in Faddeev’s approach is to 
suggest that the scattering operator can be split 
into three parts as  

 

 where               represents the sum of all the 
diagrams contributing to T(E) in which particle 2 
and 3 are the last to interact. Diagramatically, each 
of the three parts are as shown. 

 Splitting the basic L-S equation into 3-equations 
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 Substituting for the T operator in terms of its 
components, we write  

 

 Multiplying by                           from the left, yields 

 

 

 Note the first term, which by iteration can be shown to 
be a two body t-operator  

 

 so is the first part of the second term. One can 
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Faddeev Equations 
 Similarly the other two components          and      

can be transformed and the set of three coupled T-
matrices can be expressed in the matrix form 

 

 

 

 

 

 These coupled equations are the Faddeev Eqns. 
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 These new equations exhibit two strking features: 
( i ) while the two body t-matrices appearing in the 
kernel are indeed disconnected, but since only the 
off-diagonal elements of       are present,  any 
iteration of the kernel will suppress the trouble 
some    -functions. On iterating once the Faddeev 
equations take the form          
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 With 

 

 

 

 

 We see that the kernel         contains only the 
connected elements. As for example the element 

                 can be interpreted through a diagram as: 

 The second feature is that now the two particle T-
matrices    appear as operators in 3-particle space. 
The evaluation of the operator product 
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                 implies the integration over all possible 
intermediate states                         ,    involving the 
independent momenta, 

  where now 

 As a result the two body t- matrices appearing in the 
Faddeev kernel are now off-the-energy shell. 

 The next important work of Faddeev was to show that 
the operator         is compact or even square integrable ( 
with some restrictions on the two body potentials) for 
all real ( physical) values of z. Note that 
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Compactness of the Kernel 
 diverges for                 and                        because the 

t-matrices (showing poles at bound states) as well 
as the free propagator are singular. For example 

 

 

 The limit as z becomes real has been studied  in 
great detail by Faddeev. He shows that for real z the 
fifth power of the kernel is a compact operator in a 
certain Banach space ensuring that the solutions 
are unique. For interactions involving 
superposition of Yukawa potentials, analysis 
becomes considerably simplified. 

BEz minRe 0Im z

iiii

iiii

iiii
pMqz

ppqq
qpzGqp





2/2/

)()(
,)(

220,










Banach Spaces 
 A vector space V over the real or complex numbers 

with a norm           such that every Cauchy sequence ( 
w.r.t metric d(x,y)=            ) in V has a limit in V. 

 The familiar Eucldean space K, where the norm of 

  x=                           

 is given by 

 is a Banach space. 

 The space of all continuous functions f :       

                      defined on a closed interval [a,b] becomes 
a Banach space if we can define the norm of such a 
function. 
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 Let us now see how Faddeev eqns resolve the problem of non-
uniqueness of the solutions. In order to see this, let us recast these 
eqns in terms of the three body resolvent G. Starting from the 
equation 

 

 

 Splitting the T-matrix into three terms 

 

 

 

 The integral equations for the components           are derived by 
inserting the Faddeev equations to get 
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 Recall that                                       Substituting it  in the above, we 
get 

 

 

 

 

 

 Consider an eigenstate                     of the total  

Hamiltonian H corresponding to an initial state  

Here the subscript ‘i’ refers to the channel index which 
may take on the values i=0,1,2,3 and ‘n’ contains 
additional information on the bound state 
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 For the particular case i=1, we have a situation in which 
particle 1 is free and the pair (2,3) is bound. This 
corresponds to the case when the Hamiltonian                               
,                        where  

   

 

 Thus for the eigenstate 

 

 

 Operating the first of the resolvent equations  

 

  on the initial state  
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 Using the definition 

 We write 

 

 Now  
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 Is the solution of the inhomogeneous eqn  unique? To see, 
write the homogeneous eqn corresponding to the first eqn: 

 

 Now  

 

 

 

 This gives  

 

 Multiplying by         from left, we get 
 

 

 

 

 

 Similarly 
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 Adding the three eqns for the three components,        
,                        of        

 we get the Schrodinger eqn,  

 

 

 which is a solution of the homogeneous part of the 
Faddeev three coupled eqns for        and clearly 
corresponds to the three body bound state.                                                                    
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Lovelace Equations 

 A slightly different version of Faddeev Equations 
leading directly to the transition matrix elements for a 
process  

 Define 
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 Here                     is the interaction between the outgoing 
particles in the channel f. If, for example, f=2, then      is the 
interaction between particle 2 and the bound pair (1,3) ,i.e, 
21+23  . 

 The off-shell transition matrix-elements for a process  i α     
f β  are given by 
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The physical on-shell T-matrix is clearly obtained by setting                      

and taking the limit          .          To establish the relationship 

between the Faddeev operators       and the Lovelace operators      

and       we use the Faddeev equations and obtain the Lovelace 

equations 
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