
 

 



Formulation of Two Body Scattering 
 Time-dependent 

Schrodinger Equation 
 
 
 
 
Its solution is 
 
 
 
 
Reference Wave-Packet 
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 This physical requirement implies a certain 
restriction on the range of the potentials; 

 Expressed mathematically 
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 This equation defines the Moller operator 

 

 

 The Moller operator         produces the scattering 
state         ) which goes over into the free state           
for  

 Extending the definition for any finite time 
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 By differentiation, we get   

 

 

 Giving us the commutation relation. 

 

 

 Domain of Moller operators is the Hilbert space of 
square integrable free states. 
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 Work by Faddeev has shown that the domain can , 
however, be extended to include states of sharp 
momentum. 

 We are thus allowed to use momentum eigen states                      

        instead of wave-packets          and  

 Apply the Moller operators          on them to get 
scattering states        consisting of a plane wave plus 
an outgoing spherical wave.  

 The commutation relation given above shows                                 
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 Applying the Hermitian conjugate operator      

 to the bound states of H, i.e.,             they give 
zero; 

 

 Expression on the r.h.s is zero because states 

                           are eigenstates of H having 
different energies. Since states         form a 
complete set,    
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 Time limit in             can be replaced by Euler limit: 

 

 

          

 

Note      

 

 

By introducing Euler limit, time dependence 
disappears in scattering theory 
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Resolvent Equation & L-S Equation 
 We can not carry out the integration in the 

integral representation for         , for the simple 
reason                         do not commute;  the two 
exponential functions 

                 

 Since Moller operators can operate on plane wave 
states, we write 
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 Here we get the definition of a resolvent or Green’s 
function 

 And obtain an important relation 

 

 Which marks a transition from time-dependent to 
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 Introducing the free resolvent  

 

 And using the relation 

 

 We get, by multiplying with 

 The operator identities 
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 With this identity and the relation.  

 

 

 Now.  

 

 

 This gives the well-known L-S equation 
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 In configuration space representation 

 

 

Note that the free resolvent         has a cut along the 
positive real E-axis. On which side of the cut we 
should stay in order to fulfil the required boundary 
condition is decided by the                    . The L-S 
equation in configuration space 
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 This shows Schmidt norm can be finite when (i) 
the integral over absolute square of the potential 
exists –excluding Coulomb and hard core 
potentials; 

 (ii) the imaginary part of           is not zero—
excluding thereby the scattering energies’ 

 Reason? Recall: the domain of Moller operators 

 has been extended! 

 A finite Schmidt norm is only a sufficient 
condition not a necessary one  
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 In order that L-S equation has a unique solution, it 
is sufficient to investigate if Schmidt norm of the 
kernel is finite, viz., 

 

 The square of the Schimdt norm 
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 A necessary condition is that the kernel of the integral 
equation must be compact( completely continuous).  

 

Lovelace ( Phys.Rev.135, B1225 (‘64)) shows 
that the kernel remains compact in the 
Banach space of continuous bounded 
functions with continuous bounded 
derivatives. 



 S-matrix: A link between the scattering states and the 
measurable data: 

 

 

 

 This enables us to express 
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 The S-matrix in operator form is 

 With momentum eigen states, its matrix-element 
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 Recall the Green’s function satisfies L-S type 
equation.  

 

 This eqn can be recast as 

 

 

 

 

 

 

 The resolvent is thus related to the operator t(z), -
- the t-matrix  ,  which is less singular than g(z). 
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 In momentum representation, the kinematic 
singularities of g(z) show up explicitly: 

 

 

 Using this result in S-matrix.  

 

 

 

 

 

 Here we use                                   in the expression 
for the S=matrix . In the second term,   
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 Using the identity  

 

 

 

 

 Note the two        functions in the S-matrix. One 
refers to “no scattering (since               )” and the 
other stands for energy conservation. All 
information about scattering is contained in t-
matrix, related to 

 

 

piEtpppippS

getwei
i

e

pp

ti

t


 )()2/2/(2)(

),(2limlim

22

0




















pp




224 )()2( piEtp
d

d 









Unitarity Relation & Optical Theorem 
 For a Hermitian potential, unitarity of S-matrix, i.e  

                       
 
 

 

 ensures conservation law for probability flux. In 
operator form, 
 
 
 
 
 
 
 
 

 
 

 Writing explicitly 
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 It follows 

 

 

 

 

 

 

 

 This is the well-known optical theorem. 
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 Before studying three-body scattering, let us 
recall the relations between the two body t-
matrix and the resolvent  

 and comparing it with  

 

 

 

 

 leads to the relation 
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Three Body Scattering 
 Introduction:    Consider three particles 1,2,3 having 

masses                          interacting through two body 
potentials, denoted by 

 

 We write its Hamiltonian 

 

 In three particle space, two body sub-systems have 
an important role. Recognizing this, we introduce 
channel Hamiltonians: 
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 Note that because of translational invariance of 
two body potentials, three body C.M motion 
becomes a momentum eigenstate and can be 
factored out resulting in two independent 
momenta,  

 Asymptotic states with two particles in a bound 
state, as for example, in elastic scattering are eigen 
states of   

 For the full Hamiltonian 
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 Generalizing the definition of Moller operators and 
boundary conditions to three particle scattering, we 
write time-development of a 3-particle wavepacket 

 While reference wavepackets develop according to 

 

 

 

 

 The wavepacket       describes the free motion of 
particle  i (i=1,2,3) relative to the other two particles 
which are in their mth bound state. For i=0, we can 
have a wavepacket        with three free particles. 
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 The boundary condition is formulated by 
requiring 

 

 This leads to the representation 

 

 

 

 And to the definition of Moller operators 

 

 

 Note that here a separate Moller operator is 
needed for every channel i--- signalling the 
complications in 3- body problem. Indeed, one is 
required to prove that Moller operators exist and 
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 That they can be applied to states of sharp energy. 
The study of these mathematical details has been 
carried out by Faddeev. 

 The domain of Moller operators defined above is 
the space of channel states: 

 

 Transition from time limit to Euler limit is also 
possible in 3-particle scattering: 

 

 

 G(z) is the full resolvent satisfying 
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Difficulty with the L-S Equation 
 In terms of the channel resolvents ( i ). 

 The L-S equation for the scattering state 

 

 

 Note that 

 

 Using this result, we get the L-S equation 

 

 

 Solution to the L-S equation is not uniquely determined. 
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 Because the homogeneous equation 

 

 has solutions for energies in the scattering region. 
Consider, for instance, another channel state 

 

 For such a state 

 

 Because the state                    is not an eigenstate of 

 Therefore, we get 

 This equation tells us that the homogeneous eqn which 
belongs to the inhomogeneous L-S eqn. has non trivial 
solutions of the scattering states 

   in channels  
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Kernel Disconnected 
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Here the         function belonging to the total C.M motion 

is omitted . However, the          functions associated with 

the two body potentials signify that the third particle 

remains free when the other two are interacting –the 

kernel           of the integral equation thus becomes 

disconnected . As a result the matrix-element of the 

kernel of L-S equation is not an £  operator.  
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 . In momentum representation, the matrix element of 
the kernel 

 

 

 

 

 In the C.M of the 3-particle system, one can get rid of 
the total momentum conserving        function.But the 
integrand still contains terms like 

 As a result, its                    is infinite and the kernel K is 
no longer £ 
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The Faddeev Equations 
 In order to remove these difficulties, Faddeev’s 

starting point is to study the L-S equation for the 
three body T-matrix: 

 

 

 This equation also suffers from the same 
disadvantage as the L-S equation for the three 
particle states               ,viz.,the kernel is no longer 
Hilbert-Scmidt type together with the non-
uniqueness of the L-S equation.      
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 The turning point in Faddeev’s approach is to 
suggest that the scattering operator can be split 
into three parts as  

 

 where               represents the sum of all the 
diagrams contributing to T(E) in which particle 2 
and 3 are the last to interact. Diagramatically, each 
of the three parts are as shown. 

 Splitting the basic L-S equation into 3-equations 
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 Substituting for the T operator in terms of its 
components, we write  

 

 Multiplying by                           from the left, yields 

 

 

 Note the first term, which by iteration can be shown to 
be a two body t-operator  

 

 so is the first part of the second term. One can 
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Faddeev Equations 
 Similarly the other two components          and      

can be transformed and the set of three coupled T-
matrices can be expressed in the matrix form 

 

 

 

 

 

 These coupled equations are the Faddeev Eqns. 
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 These new equations exhibit two strking features: 
( i ) while the two body t-matrices appearing in the 
kernel are indeed disconnected, but since only the 
off-diagonal elements of       are present,  any 
iteration of the kernel will suppress the trouble 
some    -functions. On iterating once the Faddeev 
equations take the form          
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 With 

 

 

 

 

 We see that the kernel         contains only the 
connected elements. As for example the element 

                 can be interpreted through a diagram as: 

 The second feature is that now the two particle T-
matrices    appear as operators in 3-particle space. 
The evaluation of the operator product 
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                 implies the integration over all possible 
intermediate states                         ,    involving the 
independent momenta, 

  where now 

 As a result the two body t- matrices appearing in the 
Faddeev kernel are now off-the-energy shell. 

 The next important work of Faddeev was to show that 
the operator         is compact or even square integrable ( 
with some restrictions on the two body potentials) for 
all real ( physical) values of z. Note that 
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Compactness of the Kernel 
 diverges for                 and                        because the 

t-matrices (showing poles at bound states) as well 
as the free propagator are singular. For example 

 

 

 The limit as z becomes real has been studied  in 
great detail by Faddeev. He shows that for real z the 
fifth power of the kernel is a compact operator in a 
certain Banach space ensuring that the solutions 
are unique. For interactions involving 
superposition of Yukawa potentials, analysis 
becomes considerably simplified. 
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Banach Spaces 
 A vector space V over the real or complex numbers 

with a norm           such that every Cauchy sequence ( 
w.r.t metric d(x,y)=            ) in V has a limit in V. 

 The familiar Eucldean space K, where the norm of 

  x=                           

 is given by 

 is a Banach space. 

 The space of all continuous functions f :       

                      defined on a closed interval [a,b] becomes 
a Banach space if we can define the norm of such a 
function. 
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 Let us now see how Faddeev eqns resolve the problem of non-
uniqueness of the solutions. In order to see this, let us recast these 
eqns in terms of the three body resolvent G. Starting from the 
equation 

 

 

 Splitting the T-matrix into three terms 

 

 

 

 The integral equations for the components           are derived by 
inserting the Faddeev equations to get 
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 Recall that                                       Substituting it  in the above, we 
get 

 

 

 

 

 

 Consider an eigenstate                     of the total  

Hamiltonian H corresponding to an initial state  

Here the subscript ‘i’ refers to the channel index which 
may take on the values i=0,1,2,3 and ‘n’ contains 
additional information on the bound state 
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 For the particular case i=1, we have a situation in which 
particle 1 is free and the pair (2,3) is bound. This 
corresponds to the case when the Hamiltonian                               
,                        where  

   

 

 Thus for the eigenstate 

 

 

 Operating the first of the resolvent equations  

 

  on the initial state  
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 Using the definition 

 We write 
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 Is the solution of the inhomogeneous eqn  unique? To see, 
write the homogeneous eqn corresponding to the first eqn: 

 

 Now  

 

 

 

 This gives  

 

 Multiplying by         from left, we get 
 

 

 

 

 

 Similarly 

 

 

 )3()2(

10

)1( )()( nnn EtEG 

11

01

1

110 )()(   VHEGwithVGEtG

32

11

)1(1)3()2()1()1(

0 )()(

VVwithV

VVHE

n

nnnn





)( )3()2(1

1

)1(

nnn VG 
1

1

G

)3(3)3(

0

)2(2)2(

0 )()( nnnn VHEandVHE 



 Adding the three eqns for the three components,        
,                        of        

 we get the Schrodinger eqn,  

 

 

 which is a solution of the homogeneous part of the 
Faddeev three coupled eqns for        and clearly 
corresponds to the three body bound state.                                                                    

0)( 0  VHE

)3()2()1( ,,  





Lovelace Equations 

 A slightly different version of Faddeev Equations 
leading directly to the transition matrix elements for a 
process  

 Define 
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 Here                     is the interaction between the outgoing 
particles in the channel f. If, for example, f=2, then      is the 
interaction between particle 2 and the bound pair (1,3) ,i.e, 
21+23  . 

 The off-shell transition matrix-elements for a process  i α     
f β  are given by 

f

f VVV 

fV

)()()()(

  iiiiffff EViEGVVEiTf 

)()()(  iiiiff EEUE 



)()()(

)()()()(



 

iiffiff

iiif
f

iff

EEUE

EViEGVVEiTf

and





The physical on-shell T-matrix is clearly obtained by setting                      

and taking the limit          .          To establish the relationship 

between the Faddeev operators       and the Lovelace operators      

and       we use the Faddeev equations and obtain the Lovelace 

equations 
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