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Two Body & Three Body
Scattering Theory




‘Formulation of Two Body Scattering

Time-dependent
Schrodinger Equation

] a
— W () =HWY(t

Its solution is

Pa

W (t)=e"'""y,

Reference Wave-Packet






e This physical requirement implies a certain
restriction on the range of the potentials;

e Expressed mathematically



This equation defines the Moller operator
i Ht —iHgt

Q% =5 —[|im e'Mla

The Moller operator Q“produces the scattering

state ¥’ (t) which goes over into the free staté
for Pa(t) t — oo

t—>+o0
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Extending the definition for any finite time
~ ei H (t+7) e—i Hy (t+7) :ei Hz Q(i) e—i Hyz
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By differentiation, we get
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O: d? :ele'(H Q(i) _Q(i) Ho)e—IHOT
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Giving us the commutation relation.

HOQ® =% H,

Domain of Moller operators is the Hilbert space of
square integrable free states.



Work by Faddeev has shown that the domain can,
however, be extended to include states of sharp
momentum.

We are thus allowed to use momentum eigen states
‘ r)> instead of wave-packets %5 and

Apply the Moller operators (Q{*on them to get
scattering states |p) consisting of a plane wave plus
an outgoing spherical wave.

The commutation relation given above shows



Applying the Hermitian conjugate operator Q"
to the bound states of H, i.e., |¥,) they give

o p)=(¥,[21p)= (¥, |p)"

Expression on the r.h.s is zero because states

‘\Pn> and ‘ p> are eigenstates of H having
different energies. Since states | P) form a
complete set, QY |¥,)=0
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Time limit in Q" can be replaced by Euler limit:

Q(i) _ —Ilm ~ ethe—iHOt

t—)+oo

:S_lim _Ejdte_gt |Ht —1 Ht

t—>+o0

Note
jdtge“f(t)— f (o) [dxe — f (o)

6‘—)0

By introducmg Euler limit, time dependence
disappears in scattering theory



We can not carry out the integration in the
integral representation for Q) for the simple

reason H, and H do not commute; the two
exponential functions
eth e—lHOt + e|(H—H0)t

Since Moller operators can operate on plane wave
states, we write

0
‘ l—j>(i) _ Iimg_)o_ jdte+gt IHt IEt‘ p>



= lim jdte'<H U B) =lim, +ig(E+ie—H)™ p)
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Here we get the definition of a resolvent or Green’s
function g(z) — (z _ H)_1 (z —E +} g)
And obtain an important relation

p) =lim,_,+izg(2)p)

Which marks a transition from time-dependent to



Introducing the free resolvent

go(z)E (z- Ho)_1

And using the relation

VIR — 00 -0
We get, by multiplying with ¢(Z) g 0 (2)

The operator identities
9(2) = 90(2) +9(2) V 9, (2).
=0,(2)+9,(2)V 9(2)



With this identity and the relation.
p) =lim, ,+ieg(E+ig)|p)
=lim, ,+iglg,(Exie)+g,(Exie) Vg(Exie) ] p)

Now.
1

lim, ,ticg,(Exie)|p)=lim, ,tie Exis H, ')

This gives the well-known L-S equation

B) =|P)+0,(ExiO)V|p)




In configuration space representation

i (2 uE P
F|g, (E+i0)|r") =42
(F190(E£I0)|r) 27 |F-T'

Note that the free resolventg,(E) has a cut along the
positive real E-axis. On which side of the cut we
should stay in order to fulfil the required boundary
condition is decided by the &—limit .The L-S
equation in configuration space

i 2uE|7-T|
() o = ., U €
= (F|p)—|d
F1p = (rlm)-Jor S

V (I—;I)<F! p>>(+)




This shows Schmidt norm can be finite when (i)
the integral over absolute square of the potential
exists —excluding Coulomb and hard core
potentials;

(ii) the imaginary part of/2 ;, 7 is not zero—
excluding thereby the scattering energies’

Reason? Recall: the domain of Moller operators
has been extended!

A finite Schmidt norm is only a sufficient
condition not a necessary one
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In order that L-S equation has a unique solution, it
is sufficient to investigate if Schmidt norm of the
kernel is finite, viz.,

5 ]1/ 2

K], =[rr(x K)]“2 [”drdr'

The square of the Schimdt norm
—2Im (\/2uz)|F—F|
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A necessary condition is that the kernel of the integral
equation must be compact( completely continuous).

Lovelace ( Phys.Rev.135, B1225 (‘64)) shows
that the kernel remains compact in the
Banach space of continuous bounded
functions with continuous bounded
derivatives.



S-matrix: A link between the scattering states and the
measurable data:

Sba = Iimt% <¢b \IJB(L+) (t)> _ "mt_)oo <e—iH0t¢b ‘e—th\P§+)>

—lim, <ethe—iH0t : \P§+)> _ <Q(—)¢b ‘Q(+)¢a>

This enables us to express

S =8| %7)= (407 0

7de)
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The S-matrix in operator form is $=Q7 Q"

With momentum eigen states, its matrix-element

Syp = (710 Q0 ) = ()"
_ lim < aiHst |Ht‘p>(+)
{0
= lim <e_'EtIO 'Et‘q'>(+)
{0
Syp =l Iimgaoige(E E)t< (E-I—IE)‘ >




Recall the Gree(n 3 functlctn jatlsfle %)vd]iz)

equation.

This eqn can be recast as

g(z):go(z)+go(z)v [go(z) g(2)V go( )]
= 0o(2 )+90( )V 9,(2) + 4,V 9(2)V 4, (2)
=0,(2) 9,2V +V 9(2)V ]9, ()
—90() 90( )1(2)9,(2)

The resolvent is thus related to the operator t(z), -
- the t-matrix , which is less singular than g(z).



In momentum representation, the kinematic
singularities of g(z) show up explicitly:

N . O(p' - p) (P't@)|D)
Pl9(2)]p) = 1-p° 12 (Z—p'z/Zﬂ)(Z—pzlzﬂ)

Using this result in S- matrix

o t(E+l¢) ]
Sp —|Imt%|mH0ige'(E_)t 5(p p < ‘ ‘p>
g Ig(E+|g—E)_
ol (E-E)t
=o(p'=p)-Ilim.__ lim P It(E+1¢&)| D
(p p) t—o0 <0 E’—E—i€<p ( )‘p>

Here we use z =E +ig; E = p?/2uin the expression
for the S=matrix . In the second term,



Using the identity

ot
e
-0

w—1&
Syp =8 (P' ~P)-2716(p"* 120~ p* 12 ) (P

lim. . lim =2rm10(w), we get

{—oo

Note the twoo — functions in the S-matrix. One
refers to “no scattering (since p’ = p )” and the
other stands for energy conservation. All
information about scattering is contained in t-

matrix, rGBJed to B _ 2
o = (27)* u*|(P'[t(E +ie)|B)

p)
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Unitarity Relation & Optical Theorem

For a Hermitian potential, unitarity of S-matrix; i.e
S'S=1

ensures conservation law for probability flux. In

operator form,

S=1-2rxit and S"=1+2rxit"
leads to
S*S=1-2rit+2rit" +4rt't =1

)

Writing explicitly
t(E+10) -t (E+10)=-27it(E+10)6(E-H,)t" (E+i0)
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It follows

2

Im(P|t(E +i0)| ) =—=[d p"S(E— p"* / 2u) | B|t(E +i0)| p")

1 2 2 "2 do
= — "“d p"dQ_.o(p/2u— [2 1) ———
ﬂ(zﬂ)4ﬂ2jp p p (p ,Ll p /J)de”
P
:_167z3,u O tot

This is the well-known optical theorem.
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Before studying three-body scattering, let us

recall the relations between the two body t-
matrix and the resolvent 9(Z) =g, + 09,19,

BT 6,V o2

= 0y +gov[go +gotgo]
— go"'go[v +V got]go

leads to the relation t=V +V g oL

Or ,equivalently t=V +1 Jd, \V/

/
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Three Body Scattéring

Consider three particles 1,2,3 having
massesm,, m, and m, interacting through two body
potentials, denoted by

Y& =V,., V& =V,,, \VA =V,

We write its Hamiltonian 3 _

H=H,+> V'
=1

In three particle space, two body sub-systems have
an important role. Recognizing this, we introduce
channel Hamiltonians:

H' = p’ /24 +q7 [2M, +V'



Note that because of translational invariance of
two body potentials, three body C.M motion
becomes a momentum eigenstate and can be
factored out resulting in two independent
momenta, p'and §'

Asymptotic states with two particles in a bound
state, as for example, in elastic scattering are eigen
statesof H'

For the full Hamiltonian

H=H'+V' where V'=V -V’
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Generalizing the definition of Moller operators and
boundary conditions to three particle scattering, we
write time-development of a 3-particle wavepacket

While reference wavepackets develop according to

\I;rln(+) (t) _ e—i H t\{’,rln(+)

¢
i(+) 4\ ~—iHt i
¢m ’ (t) =€ ¢m
P,
The wavepacket ¢O describes the free motion of
particle i (i=1,2,3) relative to the other two particles

which are in their mth bound state. For i=0, we can
have a wavepacket  with three free particles.



The boundary condition is formulated by
requiring | | -
e—lHt\Prln(Jr) _e—IH't¢I

lim =0

t—>—o0

This leads to the representation

ethe—iHit¢i _ Qi(i)¢ i
m

m

P& =5 [im

>+

And to the definition of Moller operators
i) ~ I iHt .—iH't .
O =s-lim__ e"e (1=0123)

Note that here a separate Moller operator is
needed for every channel i--- signalling the
complications in 3- body problem. Indeed, one is
required to prove that Moller operators exist and

- [ e | -
- el — REE—— NI ——




That they can be applied to states of sharp energy.
The study of these mathematical details has been
carried out by Faddeev.

The domain of Moller operators defined above is
the space of channel states: |
b )

“P,L(i)>:£2‘(i)

Transition from time limit to Euler limit is also
possible in 3-particle scattering:

W) =lim__+isG(EFie) g )

G(z) is the full resolvent satisfying
G(z) =G'(2) +G'(2)V 'G(2)

=G'(2)+G(2)V 'G'(2)
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Difficultv with the L-S Fauation

In terms of the channel resolvents (1 ).
The L-S equation for the scattering state

WD) =g )+ G (EIOV W, @)

Note that ¢r,n> _ ¢r,n>

Using this result, we get the L-S equation

i) [ 41) 4G (E £i )V )

Solution to the L-S equation is not uniquely determined.

+ieG'(Etie)

s—0 —

lim




Because the homogeneous equation

¥)=G'(E+i0)V '|¥)
has solutions for energies in the scattering region.
Consider, for instance, another channel state

‘¢n’> j#i.
lim, ,+i6G'(E+ig)|g)) =0
Because the state ‘ P > J]#1 is not an eigenstate ofH '
Therefore, we get ‘\Pnj(i)> —G'(E+iQ)V' ‘ P (i)>
This equation tells us that the homogeneous eqn which

belongs to the inhomogeneous L-S egn. has non trivial
solutions of the scattering states

For such a state

in channels | #I



Here the 90— function belonging to the total C.M motion
is omitted . However, the ¢ — functions associated with
the two body potentials signify that the third particle
remains free when the other two are interacting —the
kernel gOV of the integral equation thus becomes
disconnected . As a result the matrix-element of the
kernel of L-S equation is not an £2 operator.
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In momentum representation, the matrix element of
the kernel

e

- 5(El’+IZ£+IZ§—I21+E2+IZ3)
<k1 2 K3 X

K

lzllzz |23>: 3
E+ie—) (k2/2m)
i=1

Sk - K)(pLV B+ 8K, K)oV 2| B,) + 8(K, —K)(pa Ve By)]

In the C.M of the 3-particle system, one can get rid of
the total momentum conserving § — function.But the

-

integrand still contains terms like 5([21’ -k,) ’

As aresult, its Tr (KK™) is infinite and the kernel K is
no longer £ =



The Faddeev Equations

* In order to remove these difficulties, Faddeev’s
starting point is to study the L-S equation for the
three body T-matrix:

T :iv‘+iv‘GOT
=1 =1

* This equation also suffers from the same
disadvantage as the L-S equation for the three
particle states \Pr:ni Viz. the kernel is no longer
Hilbert-Scmidt type together with the non-
uniqueness of the L-S equation.
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The turning point in Faddeev’s approach is to
suggest that the scattering operator can be split
into three parts as

TE)=TYE)+TE)+T ®(E),

where T (E) represents the sumof alt the
diagrams contributing to T(E) in which particle 2
and 3 are the last to interact. Diagramatically, each
of the three parts are as shown.

Splitting the basic L-S equation into 3-equations

T /() JrV(i)GOT (1=12,3)



Substituting for the T operator in terms of its
components, we write

TO _VOGT® =v® 1y OG, (T @) LT ® )
Multiplying by (1 —V VG, )‘1fr0m the left, yields

TO=[-vOG, |V +{1-v ¥, 'V U6, [T @ +T®)

Note the first term, which by iteration can be shown to
be a two body t-operator

t,=[1-V®G,)v®
so is the first part of the second term. One can
TW =t +thO?T ) +T(3)3



» Similarly the other two components T 2and T ©)
can be transformed and the set of three coupled T-
matrices can be expressed in the matrix form

(T @) (T @)
T ) (0t t ) (T
T =[t, [+, 0 t, |G| TY

L) L6 0) (19

* These coupled equations are the Faddeev Eqgns.



These new equations exhibit two strking features:
(i) while the two body t-matrices appearing in the
kernel are indeed disconnected, but since only the
off-diagonal elements of K;,are present, any
iteration of the kernel will suppress the trouble
some /- -functions. On iterating once the Faddeev
equations take the form

(T O t,) /tl ) (TO)

T@ (=t |+[K]t, [+]K?]T@

T (3) T (3)
J7) &) ) (T




t,G,t, +1, G, t, t, G, t, t, G, t,
K2|=|  t,G6,t,  t,G,t, +t,G,t, t, Gy t,
. 1,G,t, t,G, t, t,Got, +t, Gy t,

We see that the kernel [K 2] contains only the
connected elements. As for example the element

2 . .
K, can be interpreted through a diagram as:

The second feature is that now the two particle T-
matrices appear as operators in 3-particle space.
The evaluation of the operator product
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L G Ol-ll;lphes the integration over all possible
intermediate states ‘ |3|”> , 1g i",> involving the

~IVr ="

independent momenta, P, 0
where now P 120 #2720 12M, = p!* 24,

|
As a result the two body t- matrices appearing in the

Faddeev kernel are now off-the-energy shell.

The next important work of Faddeev was to show that
the operatorK ° is compact or even square integrable (
with some restrictions on the two body potentials) for
all real ( physical) values of z. Note that

ti(z)GO(z)tj(z) for 1]



Compactness of the Kernel

diverges for Imz—0and Rez>ES because the
t-matrices (showing poles at bound states) as well
as the free propagator are singular. For example
= = =21 = 5(q —q-’)ﬁ(ﬁ-— ﬁ’)
§.1G (7 LG = i i i i
<p|,q| O()pl q> Z—in/ZMi—piZ/ZIui

The limit as z becomes real has been studied in
great detail by Faddeev. He shows that for real z the
fifth power of the kernel is a compact operator in a
certain Banach space ensuring that the solutions
are unique. For interactions involving
superposition of Yukawa potentials, analysis
becomes considerably simplified.



Banach Spaces =

A vector space V over the real or complex numbers
withanorm | \g such that every Cauchy sequence (
w.r.t metric d(x,y)=| x-y|) in V has a limit in V.

The familiar Eucldean space K, where the norm of

n 1/2
sgivenby x| = fx.|” |

is a Banach space.
The space of all continuous functions f :

[a, b] — K defined on a closed interval [a,b] becomes
a Banach space if we can define the norm of such a
function.
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Let us now see how Faddeev eqns resolve the problem of non-
uniqueness of the solutions. In order to see this, let us recast these
eqns in terms of the three body resolvent G. Starting from the

O (D=6.(2)+ G (D)T()G. (1)

Splitting the T-matrix into three terms

G(2) =G, +G¥ +G® + GV
with G@ =G, T VG, G"

The integral equations for the components are derived by
inserting the Faddeev equations to get

3
GV =G,t;G, +G, > (t),, G, T G,

=1
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Recall that G .-G, =G, t.&ypstituting it in the above, we
get
) A
(G W /Gl_Go (0 ) tl\/G(l)\
G¥|=|G,-G, |-G,[t, o t,[G"Y
(3) _ (3)
G Gs-G ) (1t 1 0/\G )

Consider an eigenstate \I—’ \P of the total
Hamiltonian H correspondlng toan 1n1t1a1 state ¢ ¢ i

Here the subscript ‘i’ refers to the channel index which
may take on the values i=0,1,2,3 and 'n’ contains
additional information on the bound state
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For the particular case i=1, we have a situation in which
particle 1 is free and the pair (2,3) is bound. This
corresponds to the case when the Hamiltonian

., H=H® yywhere _
+V v( L4V, and HO =H, 4V,

H (1)¢1,n: El,n¢1,n ’ (Z) Zl

_H®
Thus for the eigenstate

\Ij \P(l) \11(2) \11(3)
Operating the first of the resolvent equations

GYW=G -G, +G,t (G +GWY)

on the initial state ¢1 n




Using the definition  |[Im_ . 1£G (I)¢1 n LI11(n)

5—)0
We write
\Plf]l):IimHoig{Gl(E+ig)—GO(E+ig)+iGo(E+ig)tjG(j)}¢1,n>
Now | -
6y(E+ie)=-— o lim, g 166(E+ie)d,,) =],
E,, +ie—H, -V,
But :
im ,_,i£G, (E+ig)|g;,)=0 for j=1
Ths P =, + Gt (1) + D)

P =Gty (P + %)
P, =Gt () + )



[s the solution of the inhomogeneous eqn unique? To see,
write the homogeneous eqn corresponding to the first eqn:

¥ =G, (E) (E) ¥ + ¥
Now

G,t,(E)=G, V! with G,=(E-H,-V?)"

This gives G ¢ =G V' (¥? +¢)
Multiplying by from left, we get
(E-H )P =vO¥P+y9)+v iy ®
=V, with V'=V,,
(E-H,)¥\?=V*¢® and (E-H,)¥,” =V°¥"
Similarly



Adding the three eqns for the three components,
’ \Ij(l) \P(Z) \{J(?’) of ‘W

we get the Schrodinger eqn,
(E—H, -V)¥ =0

which is a solution of the homogeneous part of the
Faddeev three coupled eqns for Y and clearly
corresponds to the three body bound state.



Lovelace Equations

A slightly different version of Faddeev Equations
leading directly to the transition matrix elements for a
process | — | IB

Define U, =V + V.GV

and U fi =Vf +Vf G\/i
V.=V -V ; V, =V -V =V, +V,,
H, =V -V V,=V-V' i f=0123
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Here V. =V -V 'is the interaction between the outgoing
particles in the channel f. If, for example, f=2, then\/ E the
interaction between particle 2 and the bound pair (1,3) ,i.e,
21+23 .

The off-shell transition matrix-elements for a process i o
f B are given by

<fﬂ‘T ) ia> = <(D f,B(Ef,B)|Vf +V,G(E, + ig)vi‘q)ia(Eia»

Ufi(Eia) (Dia(Eia)>

:<(Dfﬂ (Eﬂ)
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and
(f BTOlia)=(D,4(E ;)N +V G(E,,+ieW|@,,(E,))

= <(Df,8(Efi)‘U fﬂ(Efﬂ)‘(D‘“(E‘“»

The physical on-shell T-matrix is clearly obtained by setting
and taking the limit E =E, =E To establish the relationship
between the Faddeev operators T® and the Lovelace operators
andU ;; we use the Faddeev equations and obtain the Lovelace
equations - -
U, =V; _I_ZukaOtk

K=1
L f ZthOUki

k= f






