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A Typical Neutron Star

Schematic Diagram for Neutron Star Internal Structure

Mass:M ∼ 1.4M⊙, Radius:R ∼ 10km.



Schematic Diagram for Neutron Star as a Pulsar

Surface Magnetic Field:B ∼ 1012G −→ Radio Pulsars, B ∼ 108G −→

milli-second Pulsars, B ≥ 1014G −→ Magnetars.



Schematic Diagram Pulsar Emitting Synchrotron Radiation
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Inner-Crust Region

Density: ρ ≥ 1011gm cm−3 −→ neutron drip (∼ 4.3 × 1011gm cm−3). Mat-
ter:Nuclei, free neutron gas and electron gas (for overall charge neutrality).
Pressure: Neutron (beyond neutron drip density) and electron gas. Energy: Rest

mass of the nuclei (normal and neutron rich)
Equation of States: (i) Harrison-Wheeler (HW) (107 ≤ ρ ≤ 4 × 1011gm cm−3),

(ii) Baym-Pethick-Sutherland (BPS) (107 ≤ ρ ≤ 4.3 × 1011gm cm−3 ) (just onset
of neutron drip)) and (iii) Baym-Bethe-Pethick (BBP) (neutron drip to nuclear density
∼ 1014 gm cm−3).

HW EOS: Inner Crust (nuclei (normal and also neutron rich), electron gas and neu-
tron gas (above neutron drip)):



How to get EOS?:

• Choose a value of A > 56.

• Get Z from A.

• Test whether neutron drip has been reached (nn > 0)

• If nn > 0, obtain ǫn and Pn- neutron matter energy density and pressure respec-
tively.

• Then obtain xe, the fractional abundance of electrons.

• Finally, obtain ne, the electron density, ǫ′e, the electron kinetic energy density and
Pe, the electron pressure.



We start with the energy density of the system:

ǫ = nNM(A,Z) + ǫ′e(ne) + ǫn(nn)

where M(A,Z) is the energy of a nucleus ⇐= Nuclear Mass Formula. Here we
define:nN −→ nuclei/vol, nn −→ neutrons/vol and ne −→ electrons/vol.

Semi-Empirical Mass Formula: It contains a number of terms. In HW EOS, nuclei are
incompressible.

Various contributions to nuclear mass formula:
(1) Bulk part: Ev = α1A. α1 is an unknown parameter, to be obtained from the

binding energy data.

Bulk energy comes from the saturation property of nuclear matter. Volume increases
with the number of nucleons =⇒ nuclear radius R = r0A

1/3, with r0 = 1.12fm.



Nuclear radius R ∝ A1/3



Nuclear Matter Distribution Inside a Nucleus



Nuclear Binding Energy Curve



Nuclear Binding Energy Curve



β-Stability Curve



(2) Surface Energy:- Reduces the binding energy. In HW, effect of the surroundings
on nuclear surface energy has not been considered. Nuclei are placed in vacuum.
Es = −α2A

2/3. α2 = σπR2 = −σπr20A
2/3, where σ is the nuclear surface energy

density.

(3) Coulomb Energy: Repulsive in nature- reduces the binding energy. To assemble
a uniform sphere of Z protons require energy. It is given by

Ec =
3

5
e2
Z(Z − 1)

R

Expressing R in terms of A, we have

Ec = −α3
Z(Z − 1)

A1/3

So far all the effects are purely classical in nature.

(4) Iso-spin Effect or Symmetry Energy: Except for Coulomb repulsion,N ≈ Z nuclei

are more stable. Symmetry energy is given by: Esym = −α4
(N−Z)2

A . Division by
A: to make Esym independent of A. This energy also reduces the binding energy.
Maximum value is 0.



(5) Pairing Energy: For A-even: (a) N -even Z-even or (b) N -odd Z-odd. Even-even
nuclei are more tightly bound than odd-odd nuclei for same A.

∆ −→ pairing energy = + δ even− even

0 odd A

− δ odd − odd

in MeV. From binding energy data:α1 ≈ 16, α2 ≈ 17, α3 =≈ 0.6, α4 ≈ 25, δ ≈

25/A, all in MeV.

Alternative form of pairing energy:

∆ −→ pairing energy = + 33A−3/4 even − even

0 odd A

− 33A−3/4 odd − odd

in MeV. Then the binding energy:

EB = α1A− α2A
2/3 − α3

Z(Z − 1)

A1/3
− α4

(N − Z)2

A
+ ∆

Semi-empirical mass:

M(A,Z) = ZMH + (A− Z)MM + EB = ZMH + (A− Z)MN +AEB



Nuclear Pairing Energy Curve



Various Contributions in Semi-Empirical Mass Formula



Baryon density:n = nAA + nn, electron density: ne = nNZ, then the fractional
abundances are related by:Ye = YNZ and YNA+ Yn = 1.

Energy density can be re-expressed as:

ǫ = n(1 − Yn)
M(A,Z)

A
+ ǫ′e(ne) + ǫn(nn)

We also have ne = n(1 − Yn)Z/A and nn = nYn.

Let Fermi momentum for the ith. species (i = e and n):pFi, defining xi =

pFi/mi with c = 1, we have:

ni =
gi

(2π)3

∫

d3p =
1

π2

∫ pFi

0
p2dp =

1

3π2λ3
i

x3i

where λi = 1/mi- Compton wave length and in natural units h̄ = c = kB = 1.

Energy density:

ǫi =
gi

(2π)3

∫

d3p(p2 +m2
i )

1/2 =
mi

λ3
i

χ(xi)

and Kinetic Pressure:

Pi =
1

3

gi
(2π)3

∫

d3p
p2

(p2 +m2
i )

1/2
=
mi

λ3
i

φ(xi)



where

χ(xi) =
1

8π2

[

xi(1 + x2i )
1/2(1 + 2x2i ) − ln

{

x+ (1 + x2)1/2
}]

and

φ(xi) =
1

8π2

[

xi
(

1 + x2i

)1/2
(

2x2i
3

− 1

)

+ ln
{

xi + (1 + x2i )
1/2

}

]

For electron the kinetic energy density:

ǫ′e = ǫe − neme

Therefore the semi-empirical nuclear mass may be written in the form:

M(A,Z) = [(A− Z)mn + Z(mp +me) −AEB]

where EB −→ mean binding energy per baryon. Considering all kinds of contribu-
tions:

M(A,Z) = mu

[

b1A+ b2A
2/3 − b3Z + b4A

(

1

2
−
Z

A

)2

+
b5Z

2

A1/3

]

where b1 = 0.991749, b2 = 0.01911, b3 = 0.000840, b4 = 0.10175, b5 =

0.000763 and mu = 1.66057 × 10−24gm (atomic mass unit)- average baryon
mass.



Assuming A and Z are continuous variables, we have:

∂ǫ

∂Z
=

∂

∂Z

[

nNM(A,Z) + ǫ′e + ǫn
]

= 0

=⇒
∂M

∂Z
= −(µe −me)

=⇒

b3 + b4

(

1 −
2Z

A

)

− 2b5
Z

A1/3
=
[

(1 + x2e)
1/2 − 1

] me

mu

−→ continuous limit of the β-stability condition. M(Z − 1, A) is in equilibrium with
M(Z,A), the free electron being at the top of the Fermi level. Here,

µn =
∂ǫn

∂ne
and µe −me =

∂ǫ′e
∂ne

Again

∂ǫ

∂A
=

∂

∂A

[

nNM(A,Z) + ǫ′e + ǫn
]

= 0

gives

A
∂M

∂A
−M = Z(µe −me)



Hence

Z
∂M

∂Z
+A

∂M

∂A
−M = 0

=⇒

Z =

(

b2
2b5

)1/2

A1/2 = 3.54A1/2

Finally,

∂M

∂A
= µn

=⇒

b1 +
2b2A

−1/3

3
+ b4

(

1

4
−
Z2

A2

)

−
b5Z

2

3A4/3
= (1 + x2n)

1/2mn

mu

Hence Z increases with A (Z ∼ A1/2), but Z/A decreases with A



How to get EOS?:

• Choose a value of A > 56.

• Get Z from A.

• Test whether neutron drip has been reached (nn > 0)

• If nn > 0, obtain ǫn and Pn- neutron matter energy density and pressure respec-
tively.

• Then obtain xe, the fractional abundance of electrons.

• Finally, obtain ne, the electron density, ǫ′e, the electron kinetic energy density and
Pe, the electron pressure.



Then mass density or the energy density:

ρ = ǫ = ne
M(A,Z)

Z
+ ǫ′e + ǫn

Kinetic pressure:P = Pe + Pn and the baryon density:

n = ne
A

Z
+ nn

hence the equation of state P ≡ P(ρ).

Neutron drip:ρ ∼ 3.18 × 1011gm cm−3 at (Z,A) = (122, 39.1) −→ Yttrium and
in this density µe ∼ 23.6MeV.

At ρ ∼ 4.54 × 1012gm cm−3, (A,Z) = (187,48.7). At this density Pn/P ∼ 0.6.

Above this density −→ free n− p− e mixture in β-equilibrium.

np = ne

µn = µp + µe

n = np + nn
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BPS EOS: Inner Crust (nuclei (normal and also neutron rich), electrons in Wigner-
Seitz cells, free electron gas (at high density) and neutron gas (above neutron drip)):

Energy Density of the System:

ǫ = nNM(A,Z) + ǫ′e(ne) + ǫn(nn) + ǫL

ǫL −→ Lattice energy.

Nuclei are at regular lattice points. Around each nuclei a charge neutral cell, known
as Wigner-Seitz (WS) cell is considered. Lattice energy:

ǫL = ne
Ec

Z
= ne

Eei +Eee

Z
= −

9

10

(

4π

3

)1/3
Z2/3e2n

4/3
e = an

4/3
e ≈ −1.45079n

4/3
e

for Fe-nucleus. For BCC type lattice: ǫL ≈ −1.44423. The arrangement is almost
BCC type.

Lattice contribution of pressure:

PL = −
d(Ec/Z)

d(1/ne)
= n2

e
d

dne

(

Ec

Z

)

=
1

3
ǫL



Modified form of the Basic Equations:

∂M

∂Z
= −(µe −me) − 2aZ2/3n

1/3
e

∂M

∂A
= µn −

4

3
aZ5/3n

1/3
e

and

Z
∂M

∂Z
+A

∂M

∂A
−M = −

2

3
aZ5/3n

1/3
e

Results: A increases with n −→. Z also increases with n.

In the mass formula, the extra effect, which is quite important, the local increase in
binding energy for nuclei near closed shell- known as shell effect has been taken into
account:
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BBP EOS: Inner Crust (nuclei (normal and also neutron rich), electrons in Wigner-
Seitz cells, free electron gas (at high density) and neutron gas (above neutron drip)):

Basic Assumptions:

1. Nuclei are compressible liquid drops.
2. Pressure equilibrium: Internal pressure = external pressure.
3. Chemical equilibrium inside and out side matter.
4. Effect of external matter on surface energy: surface energy vanishes when the
external density of neutron matter just reaches the internal nuclear density −→ the
nuclei just dissolve to uniform neutron matter (with a small fraction of protons and
electrons).

Total energy density:
ǫ = ǫ(A,Z, nN , nn, VN) = nN(WN +WL) + ǫn(nn)(1 − VNnN) + ǫe(ne)

where nN : nuclei/volume, nn: free neutrons/volume, VN : volume of a nucleus (de-
creases as the outside pressure by n or e increases); VN is such that VNnN is the
fraction of unit volume occupied by the nuclei, WN : energy of a nucleus, including



the rest mass, WL: lattice energy, ǫn: energy of free neutron/volume and ǫe: energy
of electrons/volume.

Consider an unit volume: 1 − VNnN : the fraction occupied by neutron gas. Electron
density ne = ZnN . Baryon density n = nNA+ nn. Let V : volume containing Nn
free neutrons and nnV nuclei. Hence

nn =
Nn

Vn
=

Nn

V (1 − VNnN)

Equilibrium: Minimization of energy for a fixed n:
Energy/nucleon inside the nuclei must be minimum =⇒

∂

∂A

(

WN +WL

A

)

Z,nNA,nNVN ,nn
= 0

Chemical potentials:µe- electrons, µ(N)
n - neutrons inside the nuclei, µ(G)

n - neutrons
in the neutron matter and µ(N)

p - protons inside the nuclei.

Stable to β-decay:

µe =
1

Z

∂ǫ

∂Z
= −

∂

∂Z
(WN +WL)A,nN ,VN ,nn



Again

µ
(N)
n =

∂

∂A
(WN +WL)A−Z,nn,VN ,nn

=
∂

∂Z
(WN +WL)A,nN ,VN ,nn +

∂

∂A
(WN +WL)Z,nN ,VN ,ne

since (∂A∂Z = 1)

Hence we have µ(N)
p = µe + µ

(N)
n

Writing

∂

∂A
|Z,nN ,VN ,n =

∂

∂A
|Z,nN ,VN ,nn +

∂nn

∂A

∂

∂nn
|Z,nN ,VN ,A,

we have µ(N)
n = µ

(G)
n : It must cost no energy to transfer a neutron from the gas to

the nucleus and vice-versa.

Minimizing ǫ w.r.t. VN for fixed Z,A, nN and Nn/V = nn(1 − VNnN), we have
P

(N)
n = nnµ

(G)
n − ǫn, i.e., P (N)

n = P
(G)
n −→ Pressure equilibrium.

To obtain EOS, one has to know the functional forms for:WN ,WL, ǫn and ǫe.



Form of WN :

WN = A[(1 − x)mn + xmp +W (k, x)] +Wc +Ws

where x = Z/A- determines n− p asymmetry of the system, W (k, x)- bulk energy
of the nuclear matter / nucleon, k is the Fermi momentum,Wc is the Coulomb energy
and Ws is the surface energy per nucleon. Baryon density:

n =
2k3

3π2
(bulk matter) and =

A

Vn
(inside the nuclei)

Bulk energy density inside the nucleus:ǫN = nN [W (k, x) + (1 − x)mn + xmp].
Keeping consistency, same outside the nuclei:ǫn = nn[W (kn,0) +mn].

Evaluation of W (k, x):
1. Parameters can be obtained by fitting nuclear data. This is equivalent with the
semi-empirical mass formula.
2. Nuclear potential approach- fitted from scattering data.
3. Many-body theory for various k and x ranges.



Evaluation of Ws:
Must vanish explicitly when the density of neutron gas and the density of the nucleus
becomes exactly equal. The surface energy used by BBP is constructed to vanish
explicitly at the matter density mentioned above.

In BBP EOS, the total surface energy is given by

Ws =
σ(W0 −Wi)

1/2

w
1/2
0

(ni − n0)
3/2

n
3/2
s

k20
k2
A2/3

where σ ∼ 20MeV, w0 = 16.5MeV, k0 = 1.43fm−3, W0 = W (n0)- bulk energy
outside the nucleus and Wi = W (ni), bulk energy inside the nucleus.

Evaluation of Wc:

Wc =
3

5

Z2e2

rN

-the energy of a uniformly charged sphere of radius rN (VN = 4πr3N/3- the volume
of a nucleus).

Evaluation of WL:
BBP result:

Wc+L =
3

5

Z2e2

rN

(

1 −
rN
rc

)2 (

1 −
rN
2rc

)



where rc is given by 4πr3cnN/3 = 1. In Wc+WL, the Coulomb energy for electron
gas is included. ǫe is known.

In BBP-model, for ρ ∼ 1.5 × 1012gm cm−3, Pn/P ∼ 0.20 −→ 20%, whereas, for
ρ ∼ 1.5 × 1012gm cm−3, Pn/P ∼ 0.80 −→ 80%

In BBP EOS, the adiabatic index Γ drops sharply (≈ 4/3) near neutron drip density
and rises above 4/3 beyond ρ = 7 × 1012gm cm−3.

There is no stars for which ρc is in this region (Γ > 4/3 from GR). Neutron star
surface density can be within or less than these values- it is the average Γ that
matters.
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EOS with Yukawa Potential

A oversimplified model calculation.

Potential:

φ(r) = V (r) = ±g2
exp(−µr)

r

µ ∼ mπ ∼ 1.4fm, mπ = 140MeV, exchange quanta (π-mesons) mass. αs =

g2/4π ∼ 10, strong coupling constant (electromagnetic coupling or fine structure
constant αc = e2/4π ∼ 1/137)

Inside nuclei 1/µ ≪ R =⇒ number of particle is sufficiently large.

Interaction energy in a volume V :

EV =
1

2

∑

i 6=j

Vij = ±
1

2
n2g2

∫ ∫

exp(−µr12)

r12
d3r1d

3r2

To evaluate, assume r2 is the origin, take spherical polar coordinate:=⇒ r12 = r.
Since nuclear interaction range is small enough, we can integrate from 0 to ∞ without
any appreciable error. Hence

EV = ±
1

2
n2g2

4π

µ2



Then the energy density

ǫ = ǫkin + ǫV

Kinetic part:

ǫkin = n m+
3

10m
(3π2)2/3n5/3 (NR) =

(9π)2/3i

4
n4/3 (ER)

Crude approximation for bulk energy:

W =
ǫ

n
−m

Hence,

ǫ =
ρ

A

(

M(A,Z) − Zme −
9

10

(Ze)2

R

)

+ ǫe

As a first approximation, one can replace M(A,Z) by the atomic masses of the
nuclei.

Pressure:

P = n2 d

dn

(

ǫ

n

)

= Pkin ±
2πn2g2

µ2

If we write

Pkin = KnΓ (Polytropic form)



Γ = 5/3 (NR) and = 4/3 (ER). =⇒ for ρ ≤ ρnucl −→ nuclear force is attractive
−→ P is less (softer). For very high density (repulsive core) P is greater (EOS is
hardened).



Hartree Analysis: (Non-Relativistic)

Zeroth order quantum mechanical generalization- gives classical result: Start with
the Hamiltonian:

H =
N
∑

i=1

−
h̄2

2m
∇2
i +

N
∑

i=1

V (ri) +
N
∑

i<j=1

V (ri − rj)

Many body system: ψ(r1, r2, ..., rN) = u1(r1)u2(r2)...uN(rN) and N is large
enough. No need to anti-symmetrize and there is no spin. Background potential term
is omitted. Then

< H > = < ψ|H|ψ >

=
N
∑

i=1

∫

d3ru∗i (r)

(

−
h̄2

2m
∇2

)

ui(r)

+
N
∑

i<j=1

d3rid
3rjVij|ui(ri)|

2|uj(rj)|
2

here

Vij = ±g2
exp(−µrij)

rij

Normalization conditions: < ψ|ψ >= 1 and < ui|ui >= 1.



variational principle:

−
h̄2

2m
∇2ui + Viui = εiui

where

Vi(ri) =
N
∑

j 6=i=1

∫

d3rjVij(rij)|uj(rj)|
2

Now to solve N -number of coupled Schrödinger equation self-consistently is not so
easy- has to be done numerically with some initial guess basis functions.

Alternatively, assume ui’s for free particles- plane waves:

u(r) =
1

V 1/2
exp(i~k.~r)

and then make perturbative (time independent) calculation.

Further, although we have not anti-symmetrize the N -body wave functions, still as-
sume that they satisfy Fermi statistics. The system is degenerate Fermi gas and
occupies energy levels up to the Fermi level. Then the sum over particle numbers
=⇒ integral over momentum within the limit 0 to kF . We have replaced:

1

V

∑

i

−→
2

(2π)3

∫

d3k



Then we have from

< H >=
∑

i

p2

2m
±

1

2V 2

∑

i,j

∫

d3r1d
3r2

exp(−µr12)

r12

or

< H >=
∑

i

p2

2m
±
∑

i,j

2πg2

V µ2

we have

ǫ =
< H >

V
+ nm = ǫkin ±

2πn2g2

µ2

where

ǫkin =
3

10
m(3π2)2/3n5/3

So the Hartree result exactly coincides with the classical one.



Hartree-Fock Analysis: (Non-Relativistic)

N -fermion system. N -body wf’s are represented by the Slatter determinant of a
N ×N matrix:

ψ =
1

(N !)1/2
det





















u1(1) u1(2) . . . . u1(N)
u2(1) u2(2) . . . . u2(N)
. . . . . . .
. . . . . . .
. . . . . . .

uN(1) uN(2) . . . . uN(N)





















Spin wf:χ(σ) and χi(σ)χi(σ′) = δ(σ, σ′). Single particle wf: ui(j) = ui(rj)χi(σ).

Orthonormality condition:
∑

σ1

∫

d3riu
∗
i (1)uj(1) = δij

Variational condition:

δ < ψ | H | ψ >= 0

gives Hartree-Fock equation, which is far more complicated than Hartree equation.
We shall not solve Hartree-Fock equation:



Alternative approach:
Consider an operator

F =
∑

i

fi =
∑

i

−
h̄2

2m
∇2 (say)

Then

< ψ|F |ψ >=
N
∑

i=1

< ui|fi|ψ >

Evaluation with plane wave approximation gives exactly Hartree result. Consider
another operator:

G =
N
∑

i<j=1

gij =
N
∑

i<j=1

Vij or V (ri − rj)

Here gij is symmetric two fermion operator. Then

< ψ|G|ψ >=
∑

i<j

[< ij|g|ij > − < ij|g|ji >]

The first term is just that obtained in Hartree analysis.



Exchange Term:

I = −
1

2

∑

i,j

< ij|g|ji >

= −
1

2

∑

i,j

∑

σ1,σ2

∫

d3r1d
3r2u

∗
i (r1)u

∗
j(r2)V12ui(r2)uj(r1)

× χ∗i (σ1)χ
∗
j(σ2)χi(σ2)χj(σ1)

Now
∑

σ
χ∗i (σ)χj(σ) = δ(msi,msj)

where ms = ±1/2 −→ z-component of spin. Then

I = −
1

2

∑

i,j

δ(msi,msj)

∫

d3r1d
3r2u

∗
i (r1)u

∗
j(r2)V12ui(r2)uj(r1)

= −
1

2
× 2

∫

d3r1d
3r2V12 | ρ(r1, r2) |2



With plane wave states:

ρ(r1, r2) =
1

V

∑

k

exp[i~k.(~r1 − ~r2)]

=
1

(2π)3
d3k exp[i~k.(~r1 − ~r2)]

=
1

2π2

1

r312

(sin kF r12 − kF r12 cos kF r12)

With Yukawa two-body potential and defining ~R = (~r1 + ~r2)/2 and ~r12 = ~r =

~r1 − ~r2, we have

I = I(α) =
1

4
−
α2

24
−
α

3
tan−1

(

2

α

)

+

(

α2

8
+
α4

06

)

ln

(

1 +
4

α2

)

where α = µ/kF =⇒

α ∼
interparticle separation

interaction range

Perturbation calculation is valid for α≫ 1.

For α→ 0, I(α) → 1/4. Whereas for α→ ∞,

I(α) →
1

9α2
,



which gives

I = ∓
g2πn2

µ2
V

This is opposite in sign and 1/2 of the direct contribution.

EOS in HF Model:

ǫ = ρ = n m+
3

10m
(3π2)2/3n5/3 ±

πn2g2

µ2

P = Kn5/3 ±
πn2g2

µ2

For α≪ 1 =⇒ Yukawa potential −→ Coulomb potential.



Relativistic Mean Field Theory: σ-ω Model of Nuclear Matter
Scalar field:σ couples with baryon scalar density ρs = gσψψ.

Vector field ωµ (µ = 0,1,2,3) couples with baryon four-current jµ = gωψγµψ.
gi with i = σ and ω are the coupling constants.

Then we have the Lagrangian density

L = ψ[iγµ(∂
µ + igωω

µ) − (n− gσσ)]ψ

+
1

2
(∂µσ∂

µσ −m2
σσ

2) −
1

4
ωµνωµν +

1

2
m2
ωωµω

µ

where ωµν = ∂µων − ∂νωµ-vector field tensor.

EL-equation:

∂L

∂φ
− ∂µ

∂L

∂(∂µφ)
= 0

where φ:σ, ωµ, ψ, ψ =⇒ we have with ∂µωµ = 0 (comes automatically since
∂µjµ = 0)

[2 +m2
σ]σ = gσψψ

[2 +m2
ω]ωµ = gωψγµψ



and finally

[γµ(i∂
µ − gωω

µ) − (m− gσσ)]ψ(x) = 0

Set of equations are coupled, non-linear and hence extremely difficult to solve nu-
merically. =⇒ Introduced an approximation, called mean field approximation: Matter
is assumed to be static and uniform in ground state and mean fields or the mean
values of the scalar and vector fields are considered:
σ(x) −→< σ(x) >= σ and ω(x) −→< ω(x) >= ω (we are using same symbols
for the mean fields). =⇒

m2
σσ = gσ < ψψ >

m2
ωω0 = gω < ψ†ψ >

m2
ωωk = gω < ψγkψ >

With mean fields, Dirac eqn. is is given by:

[γµ(i∂
µ − gωω

µ) − (m− gσσ)]ψ(x) = 0

Now σ and ω are treated as background field.

With ψ(x) ∼ ψ(k)exp(−ik.x), we have

[γµ(k
µ − gωω

µ) − (m− gσσ)]ψ(k) = 0



Define:Kµ = kµ − gωωµ and effective baryon mass m∗ = m − gσσ. Then the
energy eigen value ε(k) = k0 = K0 + gωω0, with K0 = [(~k − gω~ω)2 +m∗2]1/2.

Spatial Component of ω-Field = 0

Let Γ is any operator. Define single-particle expectation value: < ψ|Γ|ψ >k,s,τ .

Subscripts: k-momentum, s-spin and τ -isospin. Expectation value in the ground
state of many nucleon system:

< ψ|Γ|ψ >=
∑

s,τ

1

(2π)3

∫

d3k < ψ|Γ|ψ >k,s,τ Θ(µ− ε(k))

where µ-Fermi energy ≡ chemical potential (at T = 0).

From Dirac equation:

k0ψ(k) = γ0(~γ.~k+ gωγµω
µ +m∗)ψ = HDψ

where HD is the Dirac Hamiltonian. Consider any variable ξ, such that

∂

∂ξ
< ψ†|HD|ψ >k,s,τ=< ψ†

∣

∣

∣

∣

∣

∂HD
∂ξ

∣

∣

∣

∣

∣

ψ >k,s,τ +k0
∂

∂ψ
< ψ†ψ >

The last term on rhs is zero.

ρ =< ψ†ψ >=
4

(2π)3

∫

d3kΘ(µ− ε(k))



Hence by ξ −→ ki and taking E(k) as the single-particle eigen value, we have

∂

∂ki
E(k) =< ψ|γi|ψ >k,s,τ

Then

< ψ|γi|ψ > =
4

(2π)3

∫

d3k

[

∂

∂ki
E(k)

]

Θ(µ− ε(k))

=
4

(2π)3

∫

dkidkjdkk
[

∂

∂ki
E(k)

]

Θ(µ− ε(k))

=
4

(2π)3

∫

dkjdkk
∫

dE(kj, kk)

The last integral explicitly becomes zero since at any point on the Fermi surface
the energy value is the Fermi energy−gωω0 (rotational invariance). Therefore, <

ψ|γi|ψ >, the baryon three-current in the medium vanishes identically.

Hence

ωi =
gω

m2
ω
ji = 0

Only ω0 6= 0. Further, the single-particle energy E(k) = (k2 +m∗2)1/2.



Baryon density (vector density):

ρ =< ψ†|ψ >=
4

(2π)3

∫

d3kΘ(µ− ε(k)) =
2k3F
3π2

Scalar density:

Now

< ψ|ψ >k,s,τ=
∂E(k)

∂m
=

m∗

(k2 +m∗2)1/2

Then

ρs =< ψ|ψ >=
2

π2

∫ kF

0
k2dk

m∗

(k2 +m∗2)1/2

Energy density:

ǫ = − < L > + < ψγ0k0ψ >

Pressure:

P =< L > +
1

3
< ψγikiψ >

where i = 1,2,3 Hence

ǫ =
1

2
m2
σσ

2 +
1

2
m2
ωω

2
0 +

2

π2

∫ kF

0
(k2 +m∗2)1/2k2dk



and

P = −
1

2
m2
σσ

2 +
1

2
m2
ωω

2
0 +

1

3

2

π2

∫ kF

0

k2

(k2 +m∗2)1/2
k2dk

then the EOS:P ≡ P(ǫ)

Role of σ and ω fields are opposite in nature: σ-decreases the energy of the system,
where is ω0 increases the energy. At a particular density, σ and ω0 will be such
that energy will be minimum −→ saturation energy at saturation density. Saturation
energy gives saturation binding energy. Binding energy/nucleon:

B

A
=

(

ǫ

nB

)

0

−m

Note: gσσ has a lower limit (m∗ ≥ 0). gωω0 grows with ρ.

In σ − ω model, there are only two parameters (gσ/mσ and gω/mω), the saturation
density and the binding energy per nucleon can be fitted exactly.



Unfortunately, in this model, (i) the effective mass at saturation density is m∗ ∼ 0.5m

(the semi-empirical value is 0.74m − 0.82m†) and (ii) the compressibility K ≈

550MeV, about two times larger than it shall be. Further, the EOS is too hard be-
cause of repulsive ω-meson part.

†References:

• N.K. Glendenning, Phys. Rev. C37, 2733 (1988).

• C. Mahaux and R. Sartor, Nucl. Phys. A475, 247 (1987).

• M. Jaminon and C. Mahaux, Phys. Rev. C40, 354 (1989).

• C.H. Johnson, D.J. Horen and C. Mahaux, Phys. Rev. C36, 2252 (1987).

• Theoretical Nuclear and Sub-Nuclear Physics, J.D. Walecka, Oxford University
Press (1995).



• M.H. Johnson and E. Teller, Phys. Rev. 98, 783 (1955).

• J.D. Walecka, Ann. Phys. 83, 491 (1974).

• B.D. Serot, Phys. Lett. B86, 146 (1979).



Asymmetry parameter:

asym =
k2F

6(k2F +m∗2)1/2

For kF ≈ 1.4fm−1, m∗ = 0.75m ≈ 3.5686fm−1, we have asym = 14.8MeV,
where as the semi-empirical value is 32.5MeV.

The model is therefore not successful at high density (symmetric or asymmetric)
inside NS.

The plus point of the model: It has provided the opportunity of introducing in a simple
manner the techniques that can be improved for dense neutron star matter.



EOS with Scalar Self-interaction:
Non-linear part:

U(σ) =
1

3
bm(gσσ)

3 +
1

4
(gσσ)

4

here b and c are two parameters to be determined from saturation data. m = 938,
free average nucleon mass.

L = LD + LI + LF + U(σ)

Hence using EL-equation and considering mean values for the fields:

gσσ =

(

gσ

mσ

)2
[

2

π2

∫ kF

0
k2dk

m− gσσ

[k2 + (m− gσσ)2]1/2
− bm(gσσ)

2 − c(gσσ)
3

]

gωω0 =

(

gω

mω

)2
ρ

m2
ωωk = 0

and finally the Dirac equation as mentioned before. Here, with scalar self coupling,
only the scalar field equation is modified explicitly.



Energy density:

ǫ =
1

3
bm(gσσ)

3 +
1

4
c(gσσ)

4

+
1

2
bm(mσσ)

2 +
1

2
m2
ωω

2
0

+
2

π2

∫ kF

0
(k2 +m∗2)1/2k2dk

Pressure:

P = −
1

3
bm(gσσ)

3 −
1

4
c(gσσ)

4

−
1

2
bm(mσσ)

2 +
1

2
m2
ωω

2
0

+
2

π2

1

3

∫ kF

0

k2

(k2 +m∗2)1/2
k2dk

Two additional parameters b and c allow us to find compressibility K and m∗ at the
saturation density.



Isospin Force:
To distinguish n and p- interaction with ρ-meson exchange is introduced. Interaction

part of this Lagrangian:

Lint = −gρ~ρν.~I
ν

where the vector (in isospin space) meson current:

~Iν =
1

2
ψγν~τψ+ ~ρµ × ~ρνµ + 2gρ(~ρ

ν × ~ρµ) × ~ρµ

Then in the EL-equation, the extra term is

∂Lint
∂ψ

=
gρ

2
γν~ρ

ν.~τψ

Dirac eqn. becomes:
[

γµ

(

kµ − gωω
µ −

1

2
gρτ3ρ

µ
3

)

−m∗
]

ψ(k) = 0

Other new equations:

As usual

gρρ
k
3 =

1

2

(

gρ

mρ

)2

< ψγkτ3ψ >= 0



gρρ
0
3 =

1

2

(

gρ

mρ

)2

< ψγ0τ3ψ >=

(

gρ

mρ

)2
1

2
(ρp − ρn)

Here ±1/2 are the isospin eigen values for p and n. In this case also three vector
part ρk3 does not contribute because of same reason. Further, ρ1 and ρ2, which can
be expressed in terms of ρ+ and ρ− do not contribute for obvious reason.

Energy density:
Energy eigen value:

εI3(k) = E(k) + gωω
0 + gρI3ρ

0
3

where

E(k) = (k2 +m∗2)1/2

Since I3|p >= +1
2|p > and I3|n >= −1

2|n >, we have energy density

ǫ =
1

3
bm(gσσ)

3 +
1

4
c(gσσ)

4 +
1

2
mσσ

2 +
1

2
mωω

2
0 +

1

2
mρρ

2
03

+
1

π2

∫ kp

0
k2dk

[

(k2 +m∗2(σ))1/2 + gωω0 +
1

2
gρρ

0
3

]

+
1

π2

∫ kn

0
k2dk

[

(k2 +m∗2(σ))1/2 + gωω0 −
1

2
gρρ

0
3

]



Pressure:

P = −
1

3
bm(gσσ)

3 −
1

4
c(gσσ)

4 −
1

2
mσσ

2 +
1

2
mωω

2
0 +

1

2
mρρ

2
03

+
1

3

1

π2

∫ kp

0
k2dk

k2

(k2 +m∗2)1/2

+
1

3

1

π2

∫ kn

0
k2dk

k2

(k2 +m∗2)1/2



Symmetry Energy:
The part of the energy contributes in the symmetry energy:

ǫs =
1

2
mρρ

2
03

+
1

π2

∫ kp

0
k2dk

[

(k2 +m∗2(σ))1/2 + gωω0 +
1

2
gρρ

0
3

]

+
1

π2

∫ kn

0
k2dk

[

(k2 +m∗2(σ))1/2 + gωω0 −
1

2
gρρ

0
3

]

Define

t =
ρn − ρp

ρ
and ρ = ρn + ρp

=⇒

ρn =
ρ

2
(1 + t)1/3 =

k3F
3π2

(1 + t) =
k3n
3π2

ρp =
ρ

2
(1 − t)1/3 =

k3F
3π2

(1 − t) =
k3p

3π2

Then the symmetry energy per nucleon

εs =
Es

A
=
ǫ

ρ
=

1

8

(

gρ

mρ

)2

ρt2 +
1

ρ

1

π2

∫ kp

0
k2dk

[

(k2 +m∗2(σ))1/2 + gωω0 +
1

2
gρρ

0
3

]

+
1

ρ

1

π2

∫ kn

0
k2dk

[

(k2 +m∗2(σ))1/2 + gωω0 −
1

2
gρρ

0
3

]



The symmetry coefficient is defined as:

asym =
1

2

[

∂2(ǫs/ρ)

∂t2

]

t=0

and is given by

asym =
k2F

6(k2F +m∗2)1/2
≈ 32.5MeV

To obtain this result- while differentiating wrt t, we use

∂

∂t
F(ki) =

∂

∂ki
F(ki)

∂ki
∂t

where i = n or p and F is a function of either kp or kn.



Algebraic Determination of Coupling Constants:
We consider σ-ω field model with self coupling.

Four unknown parameters:gσ/mσ, gω/mω, b and c.

Known quantities at saturation: ρ, B/A, K and m∗.

Now

dǫ

dρ
=

dσ

dρ

∂ǫ

∂σ

=
dσ

dρ

(

m2
σσ+

dU

dσ
− gσ

2

π2

∫ kF

0

m− gσσ

[k2 + (m− gσσ)2]1/2
k2dk

)

+ gωω0 + (k2F +m∗2)1/2

The long expression within the parenthesis vanishes identically by virtue of the scalar
field equation.

gσσ =

(

gσ

mσ

)2
[

2

π2

∫ kF

0
k2dk

m− gσσ

[k2 + (m− gσσ)2]1/2
− bm(gσσ)

2 − c(gσσ)
3

]

gωω0 =

(

gω

mω

)2
ρ

m2
ωωk = 0



Hence
dǫ

dρ
= gωω0 + (k2F +m∗2)1/2 = µ (chemical potential)

where all quantities, ω0, kF , m∗.. etc are evaluated at saturation density.

Now

gωω0 =

(

gω

mω

)2
ρ

and since ǫ/ρ is minimum at saturation Red

d

dρ

(

ǫ

ρ

)

= 0 =
1

ρ

(

dǫ

dρ
−
ǫ

ρ

)

Hence at saturation

m+
B

A
≡
ǫ

ρ
=

(

gω

mω

)2
ρ+ (k2F +m∗2)1/2

Further

d2

dρ2

(

ǫ

ρ

)

=
1

ρ

d2ǫ

dρ2
=

1

ρ

dµ

dρ



Therefore

K = 9ρ
dµ

dρ

where

dµ

dρ
=

(

gω

mω

)2
+

1

E(kF )

(

kF
dkF
dρ

−m∗gσ
dσ

dρ

)

Hence

K =

(

gω

mω

)2 6k3F
π2

+
3k2F
E(kF )

−

6k2F
π2

(

m∗

E(kF )

)2 (
gσ
mσ

)2

1 +
(

gσ
mσ

)2
[

d2U
d(gσσ)2

+ 2
π2

∫ kF
0

k4

E3(k)
dk

]

gσσ = m−m∗ is known from empirical data (∼ 0.74m−0.82m). So the unknown
quantities in the above equation are gσ/mσ, b and c. Two additional equations: Scalar
field equation and the energy equation with the same unknowns. Energy equation is
given by

ǫ = ρ

[

m+
B

A

]

Hence all the parameters can be obtained. If we consider isospin force into account,



the fifth unknown parameter is given by
(

gρ

mρ

)2

=
8

ρ

[

asym −
k2F

6(k2F +m∗2)1/2

]
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Outer Crust Matter:
Outer crust:Mainly dense crystal of fully ionized metallic iron. Iron nuclei are ar-

ranged in regular lattice surrounded by electron gas. It is assumed that each nucleus
surrounded by electron gas form a charge-neutral cell. The cells are arranged in a
regular manner. These are called Wigner-Seitz (WS) cells. The statistical treatment
to obtain EOS for outer crust matter is the Thomas-Fermi (TF) method- the semi-
classical approach for many electron system.

It is assumed that the electron gas within WS cells are fully degenerate and chemical
potential or the Fermi energy is constant throughout the cell otherwise, the electrons
will accumulate at minimum Fermi energy / chemical potential region.

So in the NR picture

EF = µe =
p2F
2me

− eφ(r) = constant

where φ(r) is the electrostatic potential, satisfies the Poisson’s equation.:

∇2φ = 4πn(r) − 4πZeδ3(r − rn)

Second term on the rhs −→ nuclear contribution. We want φ(r) in electron gas,
outside the nuclei −→ the nuclear contribution is neglected.



With h̄ = 1, we have

ne(r) =
p3F (r)

3π2
=

1

3π2
[2me(µe + eφ(r))]3/2

Then in spherical polar coordinate with spherical symmetry, the Poisson’s equation:

1

r

d2

dr2
(rφ(r)) =

4e

3π
[2me(µe + eφ(r))]3/2

−→ TF equation. To solve it numerically, we use the boundary conditions:
On the nuclear surface:

Limr→rnrφ(r) = Ze

the constant electrostatic potential by the nuclear charge. At the WS cell boundary

dφ

dr
= 0 for r = rs

where rs −→ radius of the WS cell. Overall charge neutrality inside WS-cell =⇒

electric field vanishes at the surface.

For a convenient form: Define r = µx, x −→ dimensionless and µ −→ unknown
constant and

µe + eφ(r) = Ze2
ψ(r)

r



The TF equation reduces to

d2ψ

dx2
=
ψ3/2

x1/2

with

µ =

(

9π2

128Z

)1/3

a0, with a0 =
1

me2
Bohr radius

Boundary conditions: ψ(x = xn) = 1, where xn = rn/µ and

dψ

dx
=
ψ

x
for x = xs, with xs =

rs

µ

We can write

p2F (x)

2me
= µe + eφ(x) = Ze2

ψ(x)

µx

Hence the cell averaged electron pressure

P(xs) =
1

π2

1

3

∫ pF (xs)

0

p2

me
p2dp

=
1

15π2me

(

2meZe2

µ

)5/2(
ψ(xs)

xs

)5/2



By some rearrangement

P(xs) =
Z2e2

10πµ4

(

ψ(xs)

xs

)5/2

Whereas, the energy density, coming from the nucleon parts at rest:

ǫ0 =
3AmB

4πµ3x3s
=

32

3π3

(

mp

a30

)

AZ

x3s

Hence we get the EOS.

To obtain xs (or rs), one has to solve TF equation with guess values for ψ′(x = xn).
For ψ′(xn) > −1.5889, solution diverges.
For ψ′(xn) ≈ −1.5889 −→ surface condition is achieved asymptotically.
Asymptotic solution =⇒ zero pressure case =⇒ free atom has infinite radius =⇒

Defect of TF-model, which is the semi-classical version of Hartree calculation.



Thomas-Fermi-Dirac Approximation (TFD):
Hartree term:

eφ(r) = V (r) +
Z
∑

j=1

∫

φ∗j(r
′)

e2

|r − r′|
φj(r

′)d3r′

Here, φ in the lhs is the electrostatic potential.

Hartree-Fock term:

Uex(r)φi(r) =
Z
∑

j=1

φj(r)δ(σj, σi)
∫

φ∗j(r
′)

e2

|r − r′|
φi(r

′)d3r′

With plane wave states:

φi(r) =
1

V 1/2
exp(ip.r) with h̄ = 1

and

φj(r) =
1

V 1/2
exp(ip′r)

Now

1

V

Z
∑

j=1

δ(σi, σj) →
1

(2π)3

∫

d3p′Θ(pF − p′)



Hence

Uexφi(r) =
e2

(2π)3
1

V 1/2
exp(ip.r)

∫

d3p′Θ(pF − p′)d3x
exp[−i(p− p′).x]

x

where x = r′ − r.

x-integral give:

Ix =
4π

| p− p′ |2

Then

Uex(r) =
e2

2π2

∫

Θ(pF − p′)
1

| p− p′ |2
d3p′

p′-integral:

Let θ −→ 6 p, p′ =⇒ | p− p′ |2= p2 + p′2 − 2pp′X, where X = cos(θ).

θ or X-integral gives:

Iθ(p, p
′) =

π

p

∫ pF

0
p′dp′ ln

∣

∣

∣

∣

∣

p+ p′

p− p′

∣

∣

∣

∣

∣



Integration over p′ −→

Uex =
e2

2π

[

(p2F − p2)

p
ln

∣

∣

∣

∣

∣

pF + p

pF − p

∣

∣

∣

∣

∣

+ 2pF

]

Hence energy per particle

ε(p) =
p2

2me
− eφ(r) −

e2

2π

[

(p2F − p2)

p
ln

∣

∣

∣

∣

∣

pF + p

pF − p

∣

∣

∣

∣

∣

+ 2pF

]

where pF ≡ pF (r).

Hence the Fermi energy / chemical potential

µe = ε(pF ) =
p2F
2me

− eφ(r) −
e2

π
pF (r)

Hence

pF (r) =
mee2

π
+





(

2mee2

π

)2

+ 2me(µe + eφ(r))





1/2

=⇒ TFD equation:

1

r

d2

dr2
(rφ(r)) =

4e

3π







mee2

π
+







(

mee2

π

)2

+ 2me(µe + eφ(r))







1/2






3



Define:

2mee
4 + (µe + eφ(r)) = Ze2

ω(r)

r
and α =

(

6π

Z2

)1/3

=⇒ TFD equation:

d2ω

dx2
= x

[

α+
ω1/2

x1/2

]3

where r = µx and µ is given in TF formalism.

Boundary conditions:

(a) ω(x = xn) = 1 and
dω

dx
=
ω

x
for x = xs

=⇒ Pressure:

P = f(ξ)Pfree

where

f(ξ) =
1

3



α+

(

ω(xs)

xs

)1/2




3








1 −
5
4

α+
(

ω(xs)
xs

)1/2









3/5



Pfree =
4π2

5me

(

3

8π

)2/3
(

Zρ

Amp

)5/2

and

ξ =
a0

Z2/3

(

3Z

4πa0xs

)1/3

≈
0.701

xs

Now PTFD << PTF =⇒ TFD model gives soft EOS compared to TF.

Again f(ξ) → 1 as density increases. With the increase in density rs or xs de-
creases. For ξ = 1,

rs =

(

9π2

128

)1/3
0.701a0

Z1/3

=⇒

ρξ=1 = 3Amp4πr
2
s ≈ 10AZ gm cm−3

For Fe56, ρxi=1 ≈ 104gm cm−3 =⇒ above ρxi=1, the electron gas may be as-
sumed to be a free degenerate gas. Below this density TFD correction has to be
done. On the other hand, at very low density, the electron cell effect has to be taken
into account. =⇒ TF or TFD calculations are therefore not valid for laboratory metal-
lic iron.



Relativistic version

Almost the same algebraic procedure is followed for the relativistic version of TFD
equation. Here the single particle energy:ε = (p2 +m2

e)
1/2, with c = 1.

Here

µe = [(3π2ne)
2/3 +m2

e ]
1/2 − eV (r) −me = constant

where

ne =

[

2me(µe + eV (r))

3π2

]3/2 [

1 +
(eV (r) + µe)

2me

]3/2

With the same substitution =⇒ TFD equation

d2φ

dx2
=
φ3/2

x1/2

[

1 +
Z

Zcr

φ

x

]3/2

where

r = µx, Zcr =

(

3π

4e2

)1/2
and µ =

(3π)2/3

me227/3Z1/3
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Oppenheimer-Volkoff (OV) Equation for Neutron Stars:

We use Gravitational or Geometrical units:
G = c = k = 1.

Hence the OV or the GR hydrostatic equilibrium equation along with the subsidiary
mass equation:

dP

dr
= −

ρm

r2

(

1 +
P

ρ

)(

1 +
4πPr2

m

)

(

1 −
2m

r

)−1

dm

dr
= 4πr2ρ

OV equation is obtained from GR Einstein’s equation with Schwarzschild metric,
valid for a static, non-rotating system in vacuum.



How to solve the equations (numerically)?:

1. EOS P(ρ) is known from the core to the crust.
2. Pick a value of central density ρc. The Pressure is known.
3. At the centre m = 0 (take an extremely small number for numerical calculation.)
4. Integrate the above equations out ward from r = 0.
5. Each time a new value for ρ and also a new value for m(r) will be obtained, hence
get P(ρ).
6. At r = R, the radius of the star, P = 0.
7. At r =, m(R) = M , the mass of the star.
8. Hence we get M(R) and density profile for a given ρc
9. Change the value of ρc and repeat (1-8).
10. We get M(ρc).
11. The value of ρc be such that dM/dρc > 0, otherwise the system becomes
general relativistically unstable.



At the core of NS chemical equilibrium among the constituents: =⇒

n→ p+e−+νe, p+e− → n+νe =⇒ µn = µp+µe. Neutrinos are non-degenerate,
leave the immediately after their formation.

Charge neutrality: np = ne.

Self-consistent solution of these equations along with the equations discussed in
σ − ω − ρ-meson model will give EOS for the core material.



More complicated cases:

(i) If µe > mµ, µ-mesons or muons will be created.
(ii) if µn−p > mB, B-is some baryon resonances- they have to be considered.
(iii) Presence of π-mesons and kaons are also important.
(iv) Super-fluidity of neutron matter.
(v) Superconductivity of proton matter.
(vi) Phase transition to any exotic matter.
(vii) Effect of magnetic field: EOS becomes softer.
(viii) Effect of magnetic field on various physical properties of dense neutron star mat-
ter.
(ix) Effect of magnetic field on phase transition to quark matter (!).
(x) Effect of magnetic field on neutron matter super-fluidity.


