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A Typical Neutron Star

Schematic Diagram for Neutron Star Internal Structure
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ion lattice, soaked in
Thin atmosphere: superfluid neutrons
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Mass:M ~ 1.4M, Radius:R ~ 10km.



Schematic Diagram for Neutron Star as a Pulsar

Surface Magnetic Field:B ~ 1012G — Radio Pulsars, B ~ 108G —
milli-second Pulsars, B > 104G — Magnetars.



Schematic Diagram Pulsar Emitting Synchrotron Radiation
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Inner-Crust Region

Density: p > 101lgm ecm—3 — neutron drip (~ 4.3 x 1011gm cm—3). Mat-
ter:Nuclei, free neutron gas and electron gas (for overall charge neutrality).
Pressure: Neutron (beyond neutron drip density) and electron gas. Energy:. Rest

mass of the nuclei (normal and neutron rich)
Equation of States: (i) Harrison-Wheeler (HW) (107 < p < 4 x 1011gm ecm—3),

(ii) Baym-Pethick-Sutherland (BPS) (107 < p < 4.3 x 1011gm cm=3) (just onset
of neutron drip)) and (iii) Baym-Bethe-Pethick (BBP) (neutron drip to nuclear density
~ 104 gm cm—3).

HW EOS: Inner Crust (nuclei (normal and also neutron rich), electron gas and neu-
tron gas (above neutron drip)):



How to get EOS?:

e Choose a value of A > 56.

e Get Z from A.

e Test whether neutron drip has been reached (n,, > 0)

e Ifny, > O, obtain ¢, and P,- neutron matter energy density and pressure respec-
tively.

e Then obtain z., the fractional abundance of electrons.

e Finally, obtain n., the electron density, €., the electron kinetic energy density and
P, the electron pressure.



We start with the energy density of the system:

e=nyM(A,Z) + Gle(ne) + en(nn)

where M (A, Z) is the energy of a nucleus <= Nuclear Mass Formula. Here we
define:ny — nuclei/vol, n,, — neutrons/vol and n. — electrons/vol.

Semi-Empirical Mass Formula: It contains a number of terms. In HW EOS, nuclei are
Incompressible.

Various contributions to nuclear mass formula:
(1) Bulk part: £, = aj1A. «q IS an unknown parameter, to be obtained from the

binding energy data.

Bulk energy comes from the saturation property of nuclear matter. Volume increases
with the number of nucleons == nuclear radius R = rgAl/3, with rg = 1.12fm.
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Nuclear Matter Distribution Inside a Nucleus
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Average binding energy per nucleon (MeV)

Nuclear Binding Energy Curve
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(2) Surface Energy:- Reduces the binding energy. In HW, effect of the surroundings
on nuclear surface energy has not been considered. Nuclei are placed in vacuum.
Es = —apA?/3. ap = onR? = —onmrd A?/3, where o is the nuclear surface energy
density.

(3) Coulomb Energy: Repulsive in nature- reduces the binding energy. To assemble
a uniform sphere of Z protons require energy. It is given by

3 -,Z(Z—-1
EC — _62 ( )
5 R
Expressing R in terms of A, we have
Z(Z —1)
Ee= —a3 A1/3

So far all the effects are purely classical in nature.

(4) Iso-spin Effect or Symmetry Energy: Except for Coulomb repulsion, N ~ Z nuclel
2

are more stable. Symmetry energy Is given by: Egym = —om%. Division by

A: to make Es,yn, Independent of A. This energy also reduces the binding energy.

Maximum value is O.



(5) Pairing Energy: For A-even: (a) N-even Z-even or (b) N-odd Z-odd. Even-even
nuclel are more tightly bound than odd-odd nuclei for same A.

A —— pairing energy = + J even — even
O odd A
— ¢ odd — odd

in MeV. From binding energy data:a; ~ 16,ao =~ 17, a3 =~ 0.6,a4 ~ 25,0 =~
25/A, all in MeV.

Alternative form of pairing energy:

A\ —— pairing energy = —+ 33A_3/4 even — even
0O odd A
— 33473/% odd — odd

iIn MeV. Then the binding energy:

Z2(Z-1)  (N—=2)?

_ B 2/3
EFp=a1A—arA a3 PEVE aq 1

+ A

Semi-empirical mass:

M(A,Z) = ZMpy + (A — Z)My; + Eg = ZMpy + (A — Z)My + AEj



Nuclear Pairing Energy Curve
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Various Contributions in Semi-Empirical Mass Formula
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Baryon density:n = n4A + np, electron density: n. = nxZ, then the fractional
abundances are related by:Y. = Yy Z and YA 4+ Y, = 1.

Energy density can be re-expressed as:

M(A, Z) ,
1 + e.(ne) + en(nn)

We also have ne = n(1 — Y,)Z/A and ny, = nYn.

e=n(l—-Yy)

Let Fermi momentum for the ith. species (: = e and n)ipg, defining z; =
pr,/m; with ¢ = 1, we have:
PF; 1
" (27r)3/ v PP 323"

where \; = 1/m,;- Compton wave Iength and in natural units » = ¢ = kg = 1.

Energy density:
€ = 3 /d3p(p +m2)1/2 = gx(wz')
(2 ) A;
and Kinetic Pressure:
'T30n3) TR my2 T N3



where

() = 8—; 2i(1 +22)Y2(1 +202) — In {2 + (1 +22)1/2)]

and

S) = [w (1422)"7 (2;32'2 - 1) +in{a; + (1 + w?)l/z}]

For electron the kinetic energy density:

/
€ — €e — NeMe

Therefore the semi-empirical nuclear mass may be written in the form:
M(A, Z) = [(A — Z)mn + Z(mp + me) — AEp)

where £z — mean binding energy per baryon. Considering all kinds of contribu-
tions:

M(A.Z) = bi A boA2/3 _baz L baA (2 Z\* | bsZ”
(4.2) = mu A+ 0207 032 00 (5 = )+ T

where b; = 0.991749,b, = 0.01911,b3 = 0.000840,b; = 0.10175,bs =

0.000763 and m, = 1.66057 x 10~2%gm (atomic mass unit)- average baryon
mass.



Assuming A and Z are continuous variables, we have:

de 0O
== 37 [nNM(A Z) + €, +en} =0
—
OM
8—2__('u6_m€)
—
27 Z
b3—|—b4<1—7>—2b5 73 [(1+x2)1/2—1}m

—— continuous limit of the 3-stability condition. M (Z — 1, A) is in equilibrium with
M(Z, A), the free electron being at the top of the Fermi level. Here,

L aEn and B . 8623
Hin = (972,6 He 877/6
Again
Oe 0
A=z nNM(A,Z) 4 €, +en| =0
gives
oM
A— — M = Z(Me me)

0A



Hence
oM oM

Z-— +A——M=0
07z A
—
bo \ 1/2
7 =(=22] 4l/2=35441/2
2bs
Finally,
OM
Y
—
2b,A—1/3 1 Z2 b Z2 5u1/oMn
b by = — 2= | — = (1 [27n

Hence Z increases with A (Z ~ Al/2) but Z/A decreases with A



How to get EOS?:

e Choose a value of A > 56.

e Get Z from A.

e Test whether neutron drip has been reached (n,, > 0)

e Ifn, > O, obtain ¢, and P,- neutron matter energy density and pressure respec-
tively.

e Then obtain z., the fractional abundance of electrons.

e Finally, obtain n., the electron density, €., the electron kinetic energy density and
P, the electron pressure.



Then mass density or the energy density:

M(;l’ 2 +e +en

Kinetic pressure: P = P, + P, and the baryon density:

P = € = ne

A
n=nez+nn

hence the equation of state P = P(p).

Neutron drip:p ~ 3.18 x 101lgmem—3 at (Z, A) = (122,39.1) — Yttrium and
In this density pe ~ 23.6MeV.

At p ~ 4.54 x 102gm ecm—3, (A, Z) = (187,48.7). At this density P,,/P ~ 0.6.

Above this density — free n — p — e mixture in G-equilibrium.

3
kS

|l

3
Q)

pp + pe
n = np-+nn

=
3
|



References:

e B.K. Harrison, M. Wakano and J.A. Wheeler, "Matter at High Density; End Point
of Thermonuclear Evolution”, Brussels, Belgium, (1958) pp. 124.

e B.K. Harrison, K.S. Thorne, M. Wakano and J.A. Wheeler, Gravitation theory and
gravitational collapse, University of Chicago Press, Chicago, (1965).

e S.L. Shapiro and S.A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars,
John Wiley and Sons, New York, (1983) pp. 42 and 188.

e Y.S. Leung, Physics of Dense Matter, World Scientific, Singapore, (1984) pp. 35.

e Nandini Nag, Sutapa Ghosh and Somenath Chakrabarty, Euro. J. Phys. A45,
(2010) 99.

e Theoretical Nuclear and Sub-Nuclear Physics, J.D. Walecka, Oxford University
Press (1995).



BPS EOS: Inner Crust (nuclei (normal and also neutron rich), electrons in Wigner-
Seitz cells, free electron gas (at high density) and neutron gas (above neutron drip)):

Energy Density of the System:

e=nyM(A,Z)+ E{e(ne) + en(nn) + €,

e;, — Lattice energy.

Nuclei are at regular lattice points. Around each nuclei a charge neutral cell, known
as Wigner-Seitz (WS) cell is considered. Lattice energy:

E E.,,+ E O /47\1/3
=y = et = (?ﬁ) 22/3212/3 = a3 ~ —1.45079n¢/3

Z Z 10
for Fe-nucleus. For BCC type lattice: ¢; ~ —1.44423. The arrangement is almost
BCC type.

Lattice contribution of pressure:

. d(Ec/Z)_ 2 d Ec _1
L= "3 /ne) ~ "Cdne (Z)

_geL



Modified form of the Basic Equations:

M
(?9—2 = —(pte — me) — 2a22/3p}/3
OM A 753,13
0A
and
8_M_|_A8_M_M_ 2 .25/3n 1/3
o0z 0A 3

Results: A increases with n —. Z also increases with n.

In the mass formula, the extra effect, which is quite important, the local increase in
binding energy for nuclei near closed shell- known as shell effect has been taken into
account:
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BBP EOS: Inner Crust (nuclei (normal and also neutron rich), electrons in Wigner-
Seitz cells, free electron gas (at high density) and neutron gas (above neutron drip)):

Basic Assumptions:

1. Nuclei are compressible liquid drops.

2. Pressure equilibrium: Internal pressure = external pressure.

3. Chemical equilibrium inside and out side matter.

4. Effect of external matter on surface energy: surface energy vanishes when the
external density of neutron matter just reaches the internal nuclear density — the
nuclei just dissolve to uniform neutron matter (with a small fraction of protons and
electrons).

Total energy density:
e =e(A, Z,nn,nn, V) = nny(Wn + Wp) + en(nn) (1 — Vyny) + ee(ne)

where n . nuclei/volume, ny: free neutrons/volume, V. volume of a nucleus (de-
creases as the outside pressure by n or e increases); VIS such that Vyn is the
fraction of unit volume occupied by the nuclei, Wjr: energy of a nucleus, including



the rest mass, Wy . lattice energy, ¢,: energy of free neutron/volume and ¢.: energy
of electrons/volume.

Consider an unit volume: 1 — Vyn . the fraction occupied by neutron gas. Electron
density ne = Znjy. Baryon density n = ny A + nyn. Let V. volume containing N,
free neutrons and n,V nuclei. Hence

_ Nn Nn
o Vn N V(l — VN”N)
Equilibrium: Minimization of energy for a fixed n:

Energy/nucleon inside the nuclei must be minimum —-

0 (WN + WL)
aA A Z,TLNA,TLNVN,TLTL

nn

=0

Chemical potentials: .- electrons, M%N)- neutrons inside the nuclei, M%G)- neutrons
In the neutron matter and u]()N)- protons inside the nucleil.

Stable to $-decay:

He — S5 — _—(WN _I_ WL)A,nN,VN,nn



Again

N 0
N?g ) a—Aa/VN + WL)A—Z,nn,VN,nn

o 0,
— 8—Z(WN —+ WL)A,nN,VN,nn + 8—A(WN + WL)Z,nN,VN,ne
since (92 =1)

Hence we have MZ(QN) = e + M%N)

Writing
0 0 onn O

|Z,n V ,n:—|Z,n NS + |Z,n Vi, A
DAL VNI T g AIERN VN TG g, N VN A

we have M%N) = MSGX It must cost no energy to transfer a neutron from the gas to
the nucleus and vice-versa.

Minimizing € w.r.t. V) for fixed Z, A,ny and N, /V = nn,(1 — Vyny), we have

quN) — nnm(f;) — €n, l.€., quN) = P7§G) —— Pressure equilibrium.

To obtain EOS, one has to know the functional forms for:WWr, Wy , €, and ee.



Form of Wy:

Wy = A[(1 —z)mp + axmp + W(k,z)] + We + W

where x = Z/A- determines n — p asymmetry of the system, W (k, x)- bulk energy
of the nuclear matter / nucleon, £ is the Fermi momentum, W, is the Coulomb energy
and Wy is the surface energy per nucleon. Baryon density:
2k3 A
n = ——= (bulk matter) and = A (inside the nuclei)

372 n

Bulk energy density inside the nucleus:eyy = ny (W (k,z) + (1 — z)mqy + xmyp].
Keeping consistency, same outside the nuclei:e;, = nn[W (kp, 0) + my].

Evaluation of W (k, xz):

1. Parameters can be obtained by fitting nuclear data. This is equivalent with the
semi-empirical mass formula.

2. Nuclear potential approach- fitted from scattering data.

3. Many-body theory for various k& and = ranges.



Evaluation of Ws:

Must vanish explicitly when the density of neutron gas and the density of the nucleus
becomes exactly equal. The surface energy used by BBP is constructed to vanish
explicitly at the matter density mentioned above.

In BBP EOS, the total surface energy is given by

o(Wo — Wi)l/z (n; — n0)3/2 k8A2/3

1/2 3/2 2
ol 32k

where o ~ 20MeV, wg = 16.5MeV, kg = 1.43fm=3, Wy = W (ng)- bulk energy
outside the nucleus and W; = W (n;), bulk energy inside the nucleus.

WS —

Evaluation of W,:
_ 37%¢2

W. =
¢ 57“N

-the energy of a uniformly charged sphere of radius 5 (Vy = 47rr]3v/3- the volume
of a nucleus).

Evaluation of W
BBP result:




where r. IS given by 47rfr§nN/3 = 1. In W.+4 W}, the Coulomb energy for electron
gas is included. ¢ is known.

In BBP-model, for p ~ 1.5 x 1012gm cm—3, P, /P ~ 0.20 — 20%, whereas, for
p~1.5x102gmem~—3, P,/P ~ 0.80 — 80%

In BBP EQOS, the adiabatic index I" drops sharply (= 4/3) near neutron drip density
and rises above 4 /3 beyond p = 7 x 1012gm cm—3.

There is no stars for which p. is in this region (I" > 4/3 from GR). Neutron star
surface density can be within or less than these values- it is the average [ that
matters.
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EOS with Yukawa Potential
A oversimplified model calculation.

Potential:

exp(—ur)
s(r) =V (r) = +¢°
uw ~ mg ~ 1.4fm, m; = 140MeV, exchange quanta (m-mesons) mass. as =
92/47r ~ 10, strong coupling constant (electromagnetic coupling or fine structure
constant o, = e2/41 ~ 1/137)

Inside nuclei 1/ < R == number of particle is sufficiently large.

Interaction energy in a volume V.

By =13 vy = £la2g? [ (SR 3, 3,
i) "2

To evaluate, assume r» is the origin, take spherical polar coordinate:=— r1, = r.

Since nuclear interaction range is small enough, we can integrate from O to oo without

any appreciable error. Hence

Eyvy =+—n -



Then the energy density

€ = €kin T €V
Kinetic part:

€Lin = N M + mim(37r2)2/3n5/3 (NR)

Crude approximation for bulk energy:
€

W=——m

mn
Hence,

_p 9 (Ze)?
G—Z<M(A,Z)—Zme— 0 n >—|—e€

As a first approximation, one can replace M (A, Z) by the atomic masses of the
nuclel.

Pressure:

If we write

P, = Kn' (Polytropic form)



=5/3 (NR) and = 4/3 (ER). = for p < p,,,,.; — huclear force is attractive
—— P Is less (softer). For very high density (repulsive core) P is greater (EOS is
hardened).



Hartree Analysis: (Non-Relativistic)

Zeroth order guantum mechanical generalization- gives classical result: Start with
the Hamiltonian:

Z _—VQ + Z V(r;) + Z V(r; — 7“])

1<g=1

Many body system: (rq, 7o, ...,rN) = uq(r1)us(ro)...un(ry) and N is large
enough. No need to anti-symmetrize and there is no spin. Background potential term
Is omitted. Then

< H> = <w|H|¢>

- Z /d3ru*(’r) (——V2> u; (1)

+ Z d3r;d3rViglui (r)) % u; (r;)]?
i<j=1

here

_ iggeXp(_NTij)
7"7;]'
Normalization conditions: < ¥ |y >= 1 and < u;|u; >= 1.

Vij



variational principle:
ﬁ2

—%Vzui + Viu; = gju;
where
ol 3 2
Vilr)) = ) /d i Viji(rii)|ui(r;)|
j#Ei=1

Now to solve N-number of coupled Schrodinger equation self-consistently is not so
easy- has to be done numerically with some initial guess basis functions.

Alternatively, assume u;’s for free particles- plane waves:

1
u(r) = 1/2

and then make perturbative (time independent) calculation.

exp(ik.7)

Further, although we have not anti-symmetrize the N-body wave functions, still as-
sume that they satisfy Fermi statistics. The system is degenerate Fermi gas and
occupies energy levels up to the Fermi level. Then the sum over particle numbers
——> Integral over momentum within the limit O to k. We have replaced:

1 > 4
V; (2%)3/61 g




Then we have from

P2
exp(—urio)
< H>= / d3r1d3r,
Z 2m 2V2 Z 1 712
or
2 ol 2
<H>=Y 2+ .
—~ 2m i Vi
we have
< H> o n 27777,292
€= + nm = €y 2
where
3
Epin = —~m(3m2)2/3p5/3

10
So the Hartree result exactly coincides with the classical one.



Hartree-Fock Analysis: (Non-Relativistic)

N-fermion system. N-body wf’s are represented by the Slatter determinant of a
N x N matrix:

[(u1(1) wi(2) . . . . ug(N) )
) ’UQ(].) u2(2) e e uQ(N)
¢:(N!)1/2det . . Lo .
L un(D) un(@) . .. un(N)

Spin wf:x (o) and x;(o)x;(¢") = (o, ). Single particle wf: u;(j) = u;(r;)x;(o).

Orthonormality condition:
01
Variational condition:

<Y |H|yYp>=0

gives Hartree-Fock equation, which is far more complicated than Hartree equation.
We shall not solve Hartree-Fock equation:



Alternative approach:
Consider an operator
h° 5
= E ;= E ——V Sa
; Ji p 2m (say)

Then

N
<YIFY >= 3 <ulfily >

1=1
Evaluation with plane wave approximation gives exactly Hartree result. Consider
another operator:

N N
G= > giy= ) Vior V(r—rj
i<j=1 i<j=1

Here g;,; Is symmetric two fermion operator. Then
< PGl >= ) [<ijlglij > — <ijlg|ji >]
i<j
The first term is just that obtained in Hartree analysis.



Exchange Term:
1 o
I = —§Z<zg|g|jz>
t,J
1
= =Y Y [ dPridroul(r)u)(r2)Vioui(ro)u, (1)

1,7 91,02
X x; (01)x;(02)xi(02)x;(01)

Now
> x;i(0)xj(o) = 6(ms;, ms))

where ms; = +1/2 — z-component of spin. Then

1
I = =23 0(msms;) [ dPridrou; (r)uf(r2) Vigus(ra)us(r1)
1,]

1
= 5 X 2/d3r1d3?“2V12 | p(r1,72) |2



With plane wave states:

1 P .
p(ri,ro) = VZGXD[UC-(H —72)]
k

1 o -
— (27r)3d3k explik.(7, — 75)]
1 1
— 2—71'2rT(SIn kprio — kprio COS kFT12)
12

—

With Yukawa two-body potential and defining R = (71 + ) /2 and 7o = 7 =
1 — 7o, We have

== g g () (4 )8

where o = p/kp =

interparticle separation
interaction range
Perturbation calculation is valid for oo > 1.

[0

Fora — 0, I(a) — 1/4. Whereas for o — oo,

1
1 —5
(@) = 55



which gives

This is opposite in sign and 1 /2 of the direct contribution.

EOS in HF Model:

3
e=p=nm-+—(37
p + 10m(

mn2g2
112
For o < 1 == Yukawa potential — Coulomb potential.

P = Kn5/3+

2.2

2)2/3n5/3 4 29
5



Relativistic Mean Field Theory: o-w Model of Nuclear Matter
Scalar field:o couples with baryon scalar density ps = g1).

Vector field w” (u = 0, 1, 2, 3) couples with baryon four-current j* = g1pyHap.
g; with © = ¢ and w are the coupling constants.

Then we have the Lagrangian density

L = Pligu(ot + igww“) — (n — goo)|¥
1 1 5

1
E@MUaMU —mgo®) — ZMWWW + S Swpwh

where w,, = duwy — dyw,-vector field tensor.

EL-equation:
oL oL
— —0 =0
0 " O(Ous)
where qb'a wH, 1, 1) == we have with 9,w" = 0 (comes automatically since

[D + mg]a — gaaw
[0+ mc%]wu — gw%w



and finally
[Yu(i0" — guw") — (m — goo)]¢p(z) = 0O

Set of equations are coupled, non-linear and hence extremely difficult to solve nu-
merically. == Introduced an approximation, called mean field approximation: Matter
IS assumed to be static and uniform in ground state and mean fields or the mean
values of the scalar and vector fields are considered:

o(x) —< o(x) > ocand w(x) —< w(z) >= w (wWe are using same symbols
for the mean fields). —

mga = go < P >
mawo = guw < PT1p >
mowy, = gw < Yyt >
With mean fields, Dirac eqgn. is is given by:
[Yu(i0" — guw") — (m — goo)]yp(z) = 0O

Now o and w are treated as background field.

With ¢ (x) ~ ¥ (k)exp(—ik.x), we have

[(Vu (K" — guwt) — (m — goo)]¥(k) =0



Define:K#* = kH — g,w* and effective baryon mass m*™ = m — g,o. Then the
energy eigen value (k) = ko = Ko + guwg, With Ko = [(k — gw@)? + m*?]1/2,

Spatial Component of w-Field = 0

Let ™ is any operator. Define single-particle expectation value: < ||y >kos7

Subscripts: k-momentum, s-spin and 7-isospin. Expectation value in the ground
state of many nucleon system:

_ 1
<Py >=) (20)3

where p-Fermi energy = chemical potential (at 7" = 0).

[ @k < BTl >0 O — (k)

From Dirac equation:

ko (k) = v0(7-k + guyuw! + m*)y = Hpy)
where Hp, is the Dirac Hamiltonian. Consider any variable &, such that

0 OH 0
- f1 g — ot | 222D fon f
6)£<¢| DY >k s =<t o ’¢>k,8,7+ oa¢<¢¢>
The last term on rhs is zero.
4
—< iy >= BkO (1 — (k
p=<9'Y> (2w)3/ (n —e(k))



Hence by ¢ — k' and taking E(k) as the single-particle eigen value, we have

o o
8—kE(k) =<V >p s r

Then
<TI0 > = s [k [5EEM0)] 0 - k)
= 7T)3/dk@ Ak dk* [aa.E(k)] O(u—e(k))
= W)3/dk9dkk/dE(k7 K*)

The last integral explicitly becomes zero since at any point on the Fermi surface
the energy value is the Fermi energy—g.wq (rotational invariance). Therefore, <
|y >, the baryon three-current in the medium vanishes identically.

Hence

Wl = gu; it =0
mw

Only wg # 0. Further, the single-particle energy F (k) = (k2 + m*?)1/2,



Baryon density (vector density):

<ullys= 2 [ Pro - () = 24
p— p— — £ _— =
P (27)3 H 372
Scalar density:
Now

_ __OE(k) m*

< ¢|¢ >k,8,7'_ om, — (kﬁQ + ’ITL*Q)]'/Q
Then
2 kF 2 m*
= = — k<dk
ps =< PP > 72 Jo (k2—|—m*2)1/2
Energy density:
e=— < L >+ < yokoy >

Pressure:

1
P=<L> —|—§ < Yk >
where : = 1,2, 3 Hence
L 5

1 2 kF 2
e = Sm2o? + —m2ud + ﬁ/o (k2 4+ m*2) /2524



and

1
P = —§m§<72 + —miwy + ==

then the EOS: P = P(e¢)

Role of o and w fields are opposite in nature: o-decreases the energy of the system,
where IS wq increases the energy. At a particular density, ¢ and wg will be such
that energy will be minimum —— saturation energy at saturation density. Saturation
energy gives saturation binding energy. Binding energy/nucleon:

Note: goo has a lower limit (m™ > 0). gwwo grows with p.

In o — w model, there are only two parameters (g, /ms and g.,/my), the saturation
density and the binding energy per nucleon can be fitted exactly.



Unfortunately, in this model, (i) the effective mass at saturation density is m*™ ~ 0.5m
(the semi-empirical value is 0.74m — 0.82m') and (ii) the compressibility KX =~
550MeV, about two times larger than it shall be. Further, the EOS is too hard be-
cause of repulsive w-meson part.
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Asymmetry parameter:
2
kg
6(k%+m*2)1/2

Asym —

For kp ~ 1.4fm~1, m* = 0.75m ~ 3.5686fm~ !, we have asym = 14.8MeV,
where as the semi-empirical value is 32.5MeV.

The model is therefore not successful at high density (symmetric or asymmetric)
Inside NS.

The plus point of the model: It has provided the opportunity of introducing in a simple
manner the technigues that can be improved for dense neutron star matter.



EOS with Scalar Self-interaction:
Non-linear part:

U(0) = 2bm(g50) + 7(900)"

here b and c are two parameters to be determined from saturation data. m = 938,
free average nucleon mass.

L=Lp+ L+ Lpr+U(o)

Hence using EL-equation and considering mean values for the fields:

2 k _
Jo 2 F 5 m — goO > 3
goo = (—) —/ k<dk — bm(goo)* — c(go0)
Mo LQ 0 (62 + (m — 7)1/
2
Jw
JwWQ =— <—> P
w
2

mw = 0

and finally the Dirac equation as mentioned before. Here, with scalar self coupling,
only the scalar field equation is modified explicitly.



Energy density:

1 1
€ = gbm(gga)?’ _C(900)4

+— bm(mga)z—l— 5™ wg
FE o | 42N1/2,2
-+;;§]€ (k2 + m*2) 1/ 2124k

Pressure:

1 1
P = —gbm(900)3——6(900)4

1
—Ebm(mga)z—l— —m wg

21 k2

723 Jo (kz + m*2)1/2
Two additional parameters b and c allow us to find compressibility X and m™ at the
saturation density.

k2dk




Isospin Force:
To distinguish n and p- interaction with p-meson exchange is introduced. Interaction

part of this Lagrangian:
Lint = —gpﬁu-fy

where the vector (in isospin space) meson current:
1
_?/ — — —
1 :§¢7V7¢+Puxﬁvu+29p(ﬁyxﬁﬂ) X Pu
Then in the EL-equation, the extra termis

aﬁint _ gp 4 —
oo 2 VP T

Dirac eqn. becomes:

1
[’m (k“ — guwh — 59p73p‘§> - m*] Y(k) =0

Other new equations:

As usual



2

1l /g 2 _ g 21
gppg — 3 <—p> < ¢707'3¢ >= <—p> 5(/019 — pn)

Here +1/2 are the isospin eigen values for p and n. In this case also three vector
part p’§ does not contribute because of same reason. Further, p1 and po,, which can
be expressed in terms of p* and p— do not contribute for obvious reason.

Energy density:

Energy eigen value:

where

e (k) = BE(k) 4 guw® + gpl303

E(k) = (k* +m**)!/?

Since I3|p >= —I—%|p > and I3|n >= —%|n >, we have energy density

€

+

1 1 1 1 1
—bm )3 + Zc(ao0)* + Zmyo? + —myuw2 + —m,p2
3 (9050) -|—4(ga) -|-2 o +2 w o+2 pPO3

1 ko5 2 ¥2, \y1/2 1 9
5 [ K2dk | (82 4 m*2 (@) M2 + guwo + 59008
1

1 kn *
ﬁ/o k2dk [(kQ +m*2 ()12 + guwo — Egppgl



Pressure:

1 1 1 1 1
P = —gbm(ggo‘)g’ — Zc(gga)4 — Emao'z + Emwwg + Emppgg
11 fk k2
+ =5 [ Kk
3712 Jo (k2 + m*2)1/2
11 [kn k2
+ =5 K2d




Symmetry Energy:
The part of the energy contributes in the symmetry energy:

1 1 [kp 1
s = Smpnd, 5 [ K2k | (62 + m* 2 (@) + guwo + 5003
2 < JO 2
1 [kn 1
+ o [ K2k (6 4+ m*2(0) 2 + guwo — 9068
74 JO 2
Define
t:Pn;pp andp:pn_l_pp
—
3 3
P 1/3 _ kg _ Ky
= —(1+4¢ =2 (141t =—=
pn 2( _I_ ) 37_‘_2( _I_ ) 37_(_2
3 k3
_ P 1/3 _ kg _"p
= —(1-—-1t = 2 (1—-1t) =%
Pp 2( ) 37_‘_2( ) 37_(_2
Then the symmetry energy per nucleon
2
E € 1 11 rkp 1
o= r=t= () g YRRk (62 4 m 2 (0)) Y2 o+ guwo + 2906
A p 8 \mpy p 1< JO 2

11 (ko 5 2 ¥2, \y1/2 1 o]
o | 2k | (2 4 m*2 ()2 + guwo — S90S



The symmetry coefficient is defined as:

1 [32(63//0)]
t=0

m T o | a2

and is given by
2
6(]<5% + m*2)1/2
To obtain this result- while differentiating wrt ¢, we use

9 9 Ok,
—F(k;) = —F(k;) =2
57 1 (ki) ok (ki)

where : = n or p and F' is a function of either ky, or k.

~ 32.5MeV

Asym



Algebraic Determination of Coupling Constants:
We consider o-w field model with self coupling.

Four unknown parameters:gs/meg, gw/mw, b and c.

Known quantities at saturation: p, B/A, K and m*.

Now
de  do Oe
do  dpdo
d aU 2 [kr —
= —J< ga—l———ga_z/ 2 S 212k2dk>
dp do w2Jo  [k2 4+ (m — goo)2]1/

+ gowo + (kf +m* )12

The long expression within the parenthesis vanishes identically by virtue of the scalar
field equation.

2 k _
go 2 / F 2 m go O 2 3
= ( — . k<dk — b —

77 (mg) LQ 0 [k2 + (m — goo)2]1/2 m(go0) C(gaa)]

Jw

JuwwWo — <—> P
w
2



Hence

d
d—e = guwo + (k% +m*?)1/? = ;i (chemical potential)
0

where all quantities, wq, kr, m*.. etc are evaluated at saturation density.
Now
Jw 2
oo = (22)%)
m
and since ¢/p is minimum at saturation Red
d<e>_0_1<de e>
dp \p p\dp p

Hence at saturation

Further



Therefore

d
K = 9p—'u
dp
where
du ( Juw )2 1 ( dk g da)
= () + kp—t- —m*g
dp  \me E(kp) " dp % dp
Hence
26ky . 3k%
- (e
6]{127 m* E (9_0)2
2 \ E(kp) Mo
o 2 2
go d?U kp
1+ <ma) d(goo )2 2 0 E3(k)dk]

goo = m — m’™ is known from empirical data (~ 0.74m — 0.82m). So the unknown

quantities in the above equation are g, /m., b and c. Two additional equations: Scalar

field equation and the energy equation with the same unknowns. Energy equation is
given by

B

e=plm+3

Hence all the parameters can be obtained. If we consider isospin force into account,



the fifth unknown parameter is given by

9p > 8 kz%
e — _ |la _
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Outer Crust Matter:
Outer crust:Mainly dense crystal of fully ionized metallic iron. Iron nuclei are ar-

ranged in regular lattice surrounded by electron gas. It is assumed that each nucleus
surrounded by electron gas form a charge-neutral cell. The cells are arranged in a
regular manner. These are called Wigner-Seitz (WS) cells. The statistical treatment
to obtain EOS for outer crust matter is the Thomas-Fermi (TF) method- the semi-
classical approach for many electron system.

It is assumed that the electron gas within WS cells are fully degenerate and chemical
potential or the Fermi energy is constant throughout the cell otherwise, the electrons
will accumulate at minimum Fermi energy / chemical potential region.

So in the NR picture

2
p
EF:,LLGZQF

— egp(r) = constant
me

where ¢(r) is the electrostatic potential, satisfies the Poisson’s equation.:

V2¢ = 4an(r) — 47rZe(53(r —Tn)

Second term on the rhs — nuclear contribution. We want ¢(r) in electron gas,
outside the nuclei — the nuclear contribution is neglected.



With 7 = 1, we have

1er) = 22D = L e+ ea(r)2

Then in spherical polar coordinate with spherical symmetry, the Poisson’s equation:

1 d2
(e () = —[Qme(ue + ep(r))]>/?

—— TF equation. To solve it numerlcally, we use the boundary conditions:

On the nuclear surface:

Limr—>7ﬂn7"¢(7"> = Ze
the constant electrostatic potential by the nuclear charge. At the WS cell boundary

d
a9 =0 for r =r;
dr
where r; — radius of the WS cell. Overall charge neutrality inside WS-cell —

electric field vanishes at the surface.

For a convenient form: Define r = px, * — dimensionless and ¢ —— unknown
constant and




The TF equation reduces to

d2y  3/2
dz2 ~ 12
with
o7 1/3 . :
U= (1282) apg, With ag = - Bohr radius
Boundary conditions: ¢ (x = x,,) = 1, where x,, = r,/u and
%zi for ©r = x5, with $3:E
dx x 7
We can write
p% () Y ()

= pe + ed(z) = Ze?
2me Ux

Hence the cell averaged electron pressure

11 pr(zs) p2
—=3 2 p2dp
T 3 0 me

_ 1 <2m€Z€2>5/2 <¢(x8)>5/2

1572me U

P(zs) =

Ls



By some rearrangement

72,2 . 5/2
P(iUs) — 107:;4 (w(x )>

Whereas, the energy density, coming from the nucleon parts at rest:

3
ag

- Amp3x3 - 373

€
o) aﬁg

Hence we get the EOS.

To obtain zs (or rs), one has to solve TF equation with guess values for ' (z = ).
For ¢/(x,) > —1.5889, solution diverges.

For ¢/ (z,) ~ —1.5889 — surface condition is achieved asymptotically.
Asymptotic solution —=- zero pressure case —— free atom has infinite radius —-
Defect of TF-model, which is the semi-classical version of Hartree calculation.



Thomas-Fermi-Dirac Approximation (TFD):
Hartree term:

o2

ed(r) =V (r) + z / Gl TGO
Here, ¢ in the |hs is the electrostatlc potential.

Hartree-Fock term:
2

6i(r")d>r’

Z €
Uea(r)i(r) = 3 635,09 [ 60—
j=1

With plane wave states:

¢i(r) = Vi/Q exp(ip.r) with A =1
and
1
¢;(r) = vi/2 exp(ip'r)
Now

LS~ S(os07) — JECIOED
- 0'70' _



Hence
2 1

, exp[—i(p — p').x
Qexp(zp-r)/d%’@(pp—p’)d?’w | (Z vl

€
Ueatilr) = y37717

where x = »/ — r.

x-integral give:
47

I, =
p—1p |2

Then
1

p—1p |2

2
€
Uer(r) = 5 [ ©(pr 1) &

p’-integral:
Letd — /p,p) == | p— p' |?= p% + p'? — 2pp’ X, where X = cos(6).

6 or X-integral gives:

p+p

p—1p

™ [PF
Iy(p,p') = —/ p'dp’ In
p Jo




Integration over p’ —

2
e | (P — P +
U — (r% ) | |PF Pl 4oy,
2m p PF— P
Hence energy per particle
2 (p?
py—p?), |pr+p
e(p) = 5— —eop(r) — E In + 2pp
Mme 27 p Pr — P
where pp = pp(r).
Hence the Fermi energy / chemical potential
2 2
p e
pe = e(pp) = 21— ed(r) — —pp(r)
me s
Hence
1/2

7

m662 2m662 2
pF(T) — - + {( > + 2m6<ﬂe + eqb(?“))]

—— TFD equation:

1 d2 m662 mee2 2 1/
(mb(?“)) - + { ( ) + 2me(pe + eqﬁ(?“))}




Define:

6 1/3
2meet + (pe + ep(r)) = ZeQw(r) and o = (Z—g)
—— TFD equation:
d?w wl/2 ?
$§:$a+ﬁﬁ]
where » = px and p 1s given in TF formalism.
Boundary conditions:
d
(a) w(x =x,) =1 and &% for T = Tg
dx x

—— Pressure:

P = f(g)Pfree

where

Ls

1 w(xs)
ﬂ@—3F+<

M

3/5



472 1 3\2/3 [ zp 5/2
Pf’ree — ( )
5me 87T Amp

_ag [ 3z \Y* o701
§= 22/3

Now Prpp << Pprp == TFD model gives soft EOS compared to TF.

and

AmapgTs

Again f(£) — 1 as density increases. With the increase in density rs or x5 de-
creases. For & = 1,

or2\ /3 0.701ag
rs = | ——
’ 128 Z1/3

Pe=1 = 3Amp47rr82 ~ 10AZ gmcm—3

For Fe®°, p.;—1 ~ 10%gm cm~3 == above p,;—1, the electron gas may be as-
sumed to be a free degenerate gas. Below this density TFD correction has to be
done. On the other hand, at very low density, the electron cell effect has to be taken
into account. == TF or TFD calculations are therefore not valid for laboratory metal-
lic iron.



Relativistic version

Almost the same algebraic procedure is followed for the relativistic version of TFD
equation. Here the single particle energy:e = (p2 4+ m?2)%/2, with ¢ = 1.

Here
e = [(37r2ne)2/3 -+ mg]l/2 — eV (r) — me = constant
where
_ [2meue + VNP L | (V) +pd)]??
Ne = 1+
37T2 Qme
With the same substitution == TFD equation
2 3/2 3/2
Py _ P4 29
dr2  p1/2 Zer @
where
3 1/2 (37.(.)2/3
"=, der = (4—62> and p = me227/371/3
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Oppenheimer-Volkoff (OV) Equation for Neutron Stars:

We use Gravitational or Geometrical units:
G=c=k=1.

Hence the OV or the GR hydrostatic equilibrium equation along with the subsidiary
mass equation:

dP 41 Pr2 2m\ 1
o= ) 1+ (-2
dr r2 0 m r
dm 4 2

— = 477

dr £

OV equation is obtained from GR Einstein’s equation with Schwarzschild metric,
valid for a static, non-rotating system in vacuum.



How to solve the equations (numerically)?:

1. EOS P(p) is known from the core to the crust.

2. Pick a value of central density p.. The Pressure is known.

3. At the centre m = 0 (take an extremely small number for numerical calculation.)
4. Integrate the above equations out ward from » = 0.

5. Each time a new value for p and also a new value for m () will be obtained, hence
get P(p).

6. At »r = R, the radius of the star, P = 0.

7. Atr =, m(R) = M, the mass of the star.

8. Hence we get M (R) and density profile for a given p.

9. Change the value of p. and repeat (1-8).

10. We get M (p¢).

11. The value of p. be such that dM /dp. > 0, otherwise the system becomes
general relativistically unstable.



At the core of NS chemical equilibrium among the constituents: —

n — p+e +Ve, pt+e — n+rve == un = Up+e. Neutrinos are non-degenerate,
leave the immediately after their formation.

Charge neutrality: np = ne.

Self-consistent solution of these equations along with the equations discussed in
o — w — p-meson model will give EOS for the core material.



More complicated cases:

(1) If e > my, p-mesons or muons will be created.

() if up—p > mp, B-is some baryon resonances- they have to be considered.
(1) Presence of m-mesons and kaons are also important.

(iv) Super-fluidity of neutron matter.

(v) Superconductivity of proton matter.

(vi) Phase transition to any exotic matter.

(vii) Effect of magnetic field: EOS becomes softer.

(viii) Effect of magnetic field on various physical properties of dense neutron star mat-
ter.

(ix) Effect of magnetic field on phase transition to quark matter (!).

(x) Effect of magnetic field on neutron matter super-fluidity.



