Nuclear Forces and Light Nuclei: (Some) Recent Developments

Outline

- 3N scattering at $\mathrm{N}^{2} \mathrm{LO}$
- Chiral EFT for nuclear forces with explicit $\Delta(1232)$
- Pion production in NN collisions
- Probing light nuclei with photons
- Nuclear lattice simulations
- Summary and outlook

Nuclear forces in Δ-less ETT

Three-nucleon force at N2LO

First nonvanishing 3N-force contribution appears at next-to-next-to-leading order

Cannot be fixed in the NN system

D-term figures prominently in various reactions

Hanhart et al.'00,
Baru et al.'09,
Filin et al.'09,

MuSun@PSI

Park et al. '03,
Ando et al. ‘02, ‘03,
Nakamura et al. ‘07

Lensky et el. ‘05, ‘07 Gardestig et al.‘06

Three nucleons up to N2LO

E.E. et al.'02; Kistryn et al.'05; Witala et al.'06; Ley et al.'06; Stephan et al.'07; ...

Differential cross section in elastic Nd scattering

Polarization observables in elastic Nd scatering

Deuteron breakup at N2LO

The so-called Symmetric-ConstantEnergy geometry

Ley et al. '06;

data taken at the
Cologne FN Tandem accelerator

3N force: first corrections (N3 LO)

Three-nucleon force at $\mathrm{N}^{3} \mathrm{LO}$
 Ishikawa, Robilotta '07;

Bernard, E.E., Krebs, Meißner '07, to appear

- parameter-free
- mainly finite shifts of c_{i}, D
- new structures (also from 1/m-terms)
- 3 N scattering in progress...

Partial-wave decomposition

Too many terms (> 100 !) for doing PWD "manually" \Longleftrightarrow let computer do the job... Golak et al.'09

$$
\underbrace{\left\langle p^{\prime} q^{\prime} \alpha^{\prime}\right| V|p q \alpha\rangle}_{\text {matrix, } \sim 10^{5} \times 10^{5}}=\int \underbrace{\int d \hat{p}^{\prime} d \hat{q}^{\prime} d \hat{p} d \hat{q}}_{\begin{array}{c}
\text { can be reduced to to } \\
5 \text { dim. integral }
\end{array}} \sum_{m_{l}, \ldots}(\text { CG coeffs. })\left(Y_{l, m_{l}}(\hat{p}) Y_{l^{\prime}, m_{l}^{\prime}}\left(\hat{p}^{\prime}\right) \ldots\right) \underbrace{\left\langle m_{s_{1}}^{\prime} m_{s_{2}}^{\prime} m_{s_{3}}^{\prime}\right| V\left|m_{s_{1}} m_{s_{2}} m_{s_{3}}\right\rangle}_{\text {depends on } \vec{p}, \vec{q}, \vec{p}^{\prime}, \vec{q}^{\prime}, \text { spin \& isospin }}
$$

\Longrightarrow feasible task for modern supercomputers, work in progress...

Faddeev equations without PWD ?

3N force: first corrections (N^{3} LO)

Elastic Nd scattering at 28 MeV

Ishikawa, Robilotta ‘07

Preliminary results (incomplete) indicate that the two-pion exchange corrections at N3 3 LO are rather small

Nuclear forces from chiral EFT with explicit $\Delta(1232)$

in collaboration with Hermann Krebs (Bochum) Ulf-G. Meißner (Bonn/Jülich)

Inclusion of the Δ : Motivation

Chiral expansion of the NN force up to NNLO (Q ${ }^{3}$): $V=V_{1 \pi}+V_{2 \pi}+V_{\text {cont }}$ where $\quad V_{1 \pi}=V_{1 \pi}^{(0)}+\underbrace{V_{1 \pi}^{(2)}+V_{1 \pi}^{(3)}}_{\text {renormalize LECS }}+\ldots ; \quad V_{2 \pi}=V_{2 \pi}^{(2)}+V_{2 \pi}^{(3)}+\ldots ; \quad V_{\text {cont }}=\underbrace{V_{\text {cont }}^{(0)}+V_{\text {cont }}^{(2)}+\ldots}_{\text {contribute to S } \text { - and } P \text {-waves }}$

The 2π-exchange potential in coordinate space has the structure:

$$
V(r)=\tilde{V}_{C}+\tilde{W}_{C} \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}+\left[\tilde{V}_{S}+\tilde{W}_{S} \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}\right] \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}+\left[\tilde{V}_{T}+\tilde{W}_{T} \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}\right]\left(3 \vec{\sigma}_{1} \cdot \hat{r} \vec{\sigma}_{2} \cdot \hat{r}-\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right)
$$

Inclusion of the Δ : Motivation

Neutron-proton peripheral phase shifts up to N2LO (Born approximation)

\Rightarrow big corrections at NNLO

Inclusion of the Δ : Motivation

- Similar observation made by the Nijmegen Group Rentmeester et al. '99, ‘03

	\#BC	$\chi_{\min }^{2}$
Nijm78	19	1968.7
OPE	31	2026.2
OPE + TPE(1.o.)	28	1984.7
OPE $+\chi$ TPE	23	1934.5

- Similar convergence pattern for charge-symmetry breaking 2π-exchange E.E., Meißner '05

-••

Order Q^{5} :

- Similar convergence pattern for 3π-exchange and $2 \pi \gamma$-exchange Kaiser '01, ‘06

Inclusion of the Δ : Motivation

Why is the order-Q ${ }^{3}$ (i.e. subleading) 2π-exchange NN potential so strong?

- Loop integrals at order Q^{3} yield accidentally one power of π less than expected in the denominator (chiral expansion is an expansion in $\left.Q^{2} /\left(4 \pi F_{\pi}\right)^{2}\right)$
- Unnaturally large LECs c_{3} and c_{4} - understood in terms of resonance saturation. In particular, Δ-isobar yields an important contribution:

$$
\delta c_{3}=-2 \delta c_{4}=-\frac{4 h_{A}^{2}}{9 \Delta} \quad(\text { Bernard, Kaiser \& Meißner '97) }
$$

\Longrightarrow including Δ as an explicit DOF is expected to yield a more natural size of LECs, better convergence \& applicability at higher energies caveats: calculations more involved; more LECs...

- standard chiral expansion: $Q \sim M_{\pi} \ll \Delta \equiv m_{\Delta}-m_{N}=293 \mathrm{MeV}$
- small-scale expansion: $Q \sim M_{\pi} \sim \Delta$ (Hemmert, Holstein \& Kambor '98)

To be studied: convergence of the EFT expansion, effects beyond resonance saturation of c_{i}, isospin violating effects, ...

Δ-isobar \& the two-nucleon force

Two-nucleon force in EFT with and without Δ

Notice: Δ-contributions to the OPEP and contact interactions only lead to shifts in the corresponding low-energy constants

Δ-isobar \& the two-nucleon force

Determination of the LECs from $\pi \mathrm{N}$ threshold coefficients

$\pi \mathrm{N}$ amplitude up to NLO:

Input:
fit 1: $\quad h_{A}=\frac{3 g_{A}}{2 \sqrt{2}} \sim 1.34 \quad$ (SU(4), large N_{C}

- fit 2: $h_{A}=1.05$ (Fettes \& Meißner '01)

We found:

- improved description of P-wave threshold parameters when Δ is included;
- resulting c_{i} s depend strongly on h_{A} while the thresh. param. do not
- strongly reduced values for $c_{i}{ }^{\text {s }}$;

Determinations of the LECs

LECs	Q^{2}, no Δ	Q^{2}, fit 1	Q^{2}, fit 2
c_{1}	-0.57	-0.57	-0.57
c_{2}	2.84	-0.25	0.83
c_{3}	-3.87	-0.79	-1.87
c_{4}	2.89	1.33	1.87
h_{A}	-	1.34^{\star}	1.05^{\star}
$b_{3}+b_{8}$	-	1.40	2.95

Values of the S- and P-wave threshold param.

	Q^{2}, no Δ	Q^{2} fits 1, 2	EM98
a_{0+}^{+}	0.41	0.41	0.41 ± 0.09
b_{0+}^{+}	-4.46	-4.46	-4.46
a_{0+}^{-}	7.74	7.74	7.73 ± 0.06
b_{0+}^{-}	3.34	3.34	1.56
a_{1-}^{-}	-0.05	-1.32	-1.19 ± 0.08
a_{1-}^{+}	-2.81	-5.30	-5.46 ± 0.10
a_{1+}^{-}	-6.22	-8.45	-8.22 ± 0.07
a_{1+}^{+}	9.68	12.92	13.13 ± 0.13

all values in units $10^{-2} M_{\pi}^{-n}$

Δ-isobar \& the two-nucleon force

Krebs, E.E., Meißner EPJA 32 (2007) 127

Chiral 2π-exchange up to NNLO with and without explicit Δ

\Longrightarrow much better convergence when Δ is included explicitly!

Δ-isobar \& the two-nucleon force

${ }^{3} \mathrm{~F}_{3}$ partial waves up to NNLO with and without Δ

(calculated in the first Born approximation)

Δ-isobar \& the three-nucleon force

Δ-full theory: additional graphs

- Δ contributions at $\mathrm{N}^{3} \mathrm{LO}$ are large!
- Long-range part is parameter free
- Much richer spin/isospin structure compared to the Illinois model
- Complete analysis still to be done Krebs, E.E., in progress
isoscalar central potential

Electromagnetic currents

in collaboration with Stefan Kölling (Jülich/Bonn)
Hermann Krebs (Bochum)
Dagmara Rozpedzik, Jacek Golak (Cracow)
Ulf-G. Meißner (Bonn/Jülich)

Probing few nucleons with photons

- Leading 1-loop expressions for exchange currents in the threshold kinematics known since long time (Park, Min, Rho) Application to $n p \rightarrow d \gamma$ at threshold:

$$
\sigma_{1 N}=306.6 \mathrm{mb} \quad \longrightarrow \quad \sigma_{1 N+2 N}=334 \pm 3 \mathrm{mb} \text { to be compared with } \sigma_{\exp }=334.2 \pm 0.5 \mathrm{mb}
$$

- Leading 2π-exchange charge and current densities worked out (parameter-free)
Pastore, Schiavilla, ... ; Kölling, Krebs, E.E., Meißner
- 1π-exchange and short-range contributions to one loop in progress
(Kölling et al., in preparation)

Leading 2π-exchange contributions to 2 N current

Deuteron photodisintegration

Rozpedzik et al. '10
Cross section and photon analyzing power at $\mathrm{E}_{\gamma}=30 \mathrm{MeV}$

Deuteron tensor analyzing powers

large sensitivity to MEC; short-range \& 1π-exchange terms still to be taken into account

Pion production in NN collisions

in collaboration with Vadim Baru, Arseny Filin, Christoph Hanhart, Johan Haidenbauer (Jülich)
Vadim Lensky (Manchester)
Alexander Kudryavtsev (Moscow)
Ulf-G. Meißner (Bonn/Jülich)

Pion production in NN collisions

Considerably more challenging due to the appearance of a new „soft" scale $|\vec{p}| \gtrsim \sqrt{M_{\pi} m_{N}} \sim 350 \mathrm{MeV}$
\Rightarrow slower convergence of the chiral expansion
 (expansion parameter $\sqrt{M_{\pi} m_{N}} / \Lambda_{\chi}$ vs M_{π} / Λ_{χ} in the few-N sector)

Current state-of-the-art

- Hybrid approach (EFT description of the 2N system for $|\vec{p}| \sim \sqrt{M_{\pi} m_{N}}$ not yet available)
- $\Delta(1232)$ isobar plays an important role \Rightarrow must be included as an explicit DOF
- s-wave pion production worked out up to NLO

Cohen et al.'96; Dmitrasinovic et al.'99; da Rocha et al.'00; Hanhart et al.'01,'02

Proper separation of irred. contributions crucial! Lensky et al. '01
Near threshold: $\sigma=\alpha \eta+\mathcal{O}\left(\eta^{3}\right)$ with $\eta \equiv k_{\pi} / M_{\pi}$

p-wave π-production and the D-term

Hanhart, van Kolck, Miller '00; Baru, EE, Haidenbauer, Hanhart, Kudryavtsev, Lensky, Meißner '09

- Loops start to contribute at $\mathrm{N}^{3} \mathrm{LO}$
- Up to N^{2} LO, D is the only unknown LEC
- Simultaneous description of $p n \rightarrow p p \pi^{+}, p p \rightarrow p n \pi^{+}$and $p p \rightarrow d \pi^{+} \quad \Longrightarrow$ nontrivial consistency check of chiral EFT
- In the future: implications for the 3NF and for weak reactions with light nuclei

$$
\begin{aligned}
\left|\vec{p}^{\prime}\right| \sim M_{\pi} & \ddots{ }^{1} \mathrm{~S}_{0} \text { for } \mathrm{pp} \rightarrow \mathrm{pn} \pi^{+}, \mathrm{pp} \rightarrow \mathrm{~d} \pi^{+} ;{ }^{3} \mathrm{~S}_{1} \text { for } \mathrm{pn} \rightarrow \mathrm{p} \pi \pi^{-} \\
|\vec{p}| \sim \sqrt{M_{\pi} m_{N}} & \Rightarrow
\end{aligned}
$$

- Reaction $p p \rightarrow d \pi^{+}$

Near threshold:

$$
\frac{d \sigma}{d \Omega} \simeq A_{0}+A_{2} P_{2}\left(\cos \theta_{\pi}\right)
$$

Natural units for D :
$D=\frac{d \leftarrow \text { dimensionless coefficient } \sim 1}{F_{\pi}^{2} m_{N}}$

p-wave π-production and the D-term

- Reaction $p n \rightarrow p p \pi^{-}$
- The final pp relative momentum is restricted to be: $|\vec{p}|<38 \mathrm{MeV} \Longrightarrow p p$ p-waves suppressed
- Data only available at $\eta=0.66 \Longrightarrow$ expect only qualitative description...

New data at lower energies will be taken at COSY.

- Reaction $\mathrm{pp} \rightarrow \mathrm{pn} \pi^{+}$
- The relevant amplitude (${ }^{1} \mathrm{~S}_{0} \rightarrow{ }^{3} \mathrm{~S}_{1} \mathrm{p}$) is suppressed compared to the dominant ${ }^{1} D_{2} \rightarrow{ }^{3} S_{1} p$ amplitude \Longrightarrow minor sensitivity to the D-term...

Overall best results are achieved for $\mathrm{d} \sim 3$

Isospin breaking \& few-N systems

- IB 2NF, 3NF worked out up to high orders, long-range contributions largely driven by $M_{\pi^{ \pm}}-M_{\pi^{0}},\left(m_{p}-m_{n}\right)^{\text {str }}$ and $\left(m_{p}-m_{n}\right)^{\text {em }}$
 van Kolck et al. '93,'96; Friar et al. '99,'03,'04; Niskanen '02; Kaiser '06; E.E. et al. '04,'05,'07; ...
- Charge-symmetry-breaking nuclear forces and BE differences in ${ }^{3} \mathrm{He}-{ }^{3} \mathrm{H}$

Coulomb	Breit	K.E.	Two-Body	Three-body	Theory	Experiment
648	28	14	$65(22)$	5	$760(22)$	764

Friar et al. PRC 71 (2005) 024003

- $d d \rightarrow \alpha \pi^{0}$ measured at IUCF: $\sigma=12.7 \pm 2.2 / 15.1 \pm 3.1 \mathrm{pb} @ 228.5 / 231.8 \mathrm{MeV}$ Stephenson et al. '03
Theoretical analysis challenging; first estimations yield the right order of magnitude.
Gardestig et al. '04; Nogga et al.'06
- CSB forward-backward asymetry in $n p \rightarrow d \pi^{0} @ 279.5 \mathrm{MeV}$ at TRIUMF
$A_{\mathrm{fb}}=\frac{\int[d \sigma / d \Omega(\theta)-d \sigma / d \Omega(\pi-\theta)] d[\cos \theta]}{\int[d \sigma / d \Omega(\theta)+d \sigma / d \Omega(\pi-\theta)] d[\cos \theta]}=[17.2 \pm 8(\mathrm{stat}) \pm 5.5(\mathrm{sys})] \times 10^{-4}$

$n p \rightarrow d x^{0} \&$ the $n p$ mass dififference

Niskanen '99; van Kolck et al. '00; Bolton, Miller '09; Filin, Baru, E.E., Haidenbauer, Hanhart, Kudryavtsev, Meißner '09

The goal: use A_{fb} measured at TRIUMF to extract the strong/em contributions to the neutron-to-proton mass shift.

$$
\left\{\begin{aligned}
& \delta m_{N}^{\mathrm{str}} \equiv\left(m_{n}-m_{p}\right)^{\mathrm{str}}=2.05 \pm 0.3 \mathrm{MeV} \\
& \delta m_{N}^{\mathrm{em}} \equiv\left(m_{n}-m_{p}\right)^{\mathrm{em}}=-0.76 \pm 0.3 \mathrm{MeV} \\
& \text { Gasser, Leutwyler '82 } \\
& \text { (based on the Cottingham sum rule) }
\end{aligned}\right.
$$

$$
\frac{d \sigma}{d \Omega}=A_{0}+\underbrace{A_{1} P_{1}\left(\cos \theta_{\pi}\right)}+A_{2} P_{2}\left(\cos \theta_{\pi}\right)+\ldots \quad \Longleftrightarrow A_{f b} \simeq \frac{A_{1}}{2 A_{0}}
$$

gives rise to $A_{f b}$ nonzero only for $\mathrm{pn} \rightarrow \mathrm{d} \pi^{0}$
due to interference of IB and IC amplitudes

- A_{0} can be determined from the pionic deuterium lifetime measurement @ PSI:

$$
\sigma\left(n p \rightarrow d \pi^{0}\right)=\frac{1}{2} \sigma\left(n n \rightarrow d \pi^{-}\right)=\frac{1}{2} \times 252_{-11}^{+5} \eta[\mu \mathrm{~b}] \quad \Longrightarrow A_{0}=10.0_{-0.4}^{+0.2} \eta[\mu \mathrm{~b}]
$$

- A_{1} at LO in chiral EFT: $\quad A_{1}=\frac{1}{128 \pi^{2}} \frac{\eta M_{\pi}}{p\left(M_{\pi}+m_{d}\right)^{2}} \Re\left[\left(M_{1 \mathrm{~S}_{0} \rightarrow{ }^{3} \mathrm{~S}_{1}, \mathrm{p}}+\frac{2}{3} M_{\mathrm{D}_{2} \rightarrow{ }^{3} \mathrm{~S}_{1}, \mathrm{p}}\right) M_{1 \mathrm{P}_{1} \rightarrow{ }^{3} \mathrm{~S}_{1}, \mathrm{~s}}^{*}\right]$ IC amplitudes calculated at NLO Baru et al.'09

$\propto \delta m_{N}^{\text {str }}$

Our result: $\quad A_{\mathrm{fb}}^{\mathrm{LO}}=(11.5 \pm 3.5) \times 10^{-4} \delta m_{N}^{\text {str }} / \mathrm{MeV}$

$$
\delta m_{N}^{\text {str }}=1.5 \pm 0.8 \text { (exp.) } \pm 0.5 \text { (th.) } \mathrm{MeV}
$$

Lattice: $\delta m_{N}^{\text {str }}=2.26 \pm 0.57 \pm 0.42 \pm 0.10 \mathrm{MeV}$ Beane et al.'07

Nuclear lattice simulations

in collaboration with Dean Lee (North Carolina) Kermann Krebs (Bochum) Ulf-G. Meißner (Bonn/Jülich)

Nuclear Latitice Simulations

- Pions and nucleons as point-like particles on the lattice (typical lattice size $\sim 20 \mathrm{fm}$)
- Use Monte Carlo to evaluate path integral

$$
Z_{A}(t)=\left\langle\Psi_{A}^{0}\right| \exp (-t H)\left|\Psi_{A}^{0}\right\rangle \quad E_{A}^{0}=\lim _{t \rightarrow \infty}\left[-\frac{d}{d t} \ln Z_{A}(t)\right]
$$

\Rightarrow systematic ab initio approach to few- \& many-nucleon systems

Two-particle scattering: spherical wall method

Place a wall at sufficiently large R. Phase shifts \& mixing angles can be extracted by measuring energy shifts from free-particle values.

Phase shifts for a toy model potential

Inclusion of the $3 \mathbb{N}$ force

The unknown LECs D and E fixed from the ${ }^{3} \mathrm{H}$ binding energy and $n d$ doublet S-wave.

Neutron-deuteron spin-3/2 channel

- fast convergence
- results consistent with the data
${ }^{4} \mathrm{He}$ BE vs. Euclidean time

- about 5\% overbinding

${ }^{3} \mathrm{H}^{3} \mathrm{He}$ binding energy difference (NNLO)

Infinite-volume extrapolations via: $\quad E(L)=E(\infty)-\frac{C}{L} e^{-L / L_{0}}+\mathcal{O}\left(e^{-\sqrt{2} L / L_{0}}\right)$

Lattice simulations of light nuclei

Simulations for ${ }^{6} \mathrm{Li}, \mathrm{L}=9.9 \mathrm{fm}$

LO	$-32.6(9) \mathrm{MeV}$
NLO	$-34.6(9) \mathrm{MeV}$
$\mathrm{NLO}+\mathrm{IB}+\mathrm{EM}$	$-32.4(9) \mathrm{MeV}$
$\mathrm{NNLO}+\mathrm{IB}+\mathrm{EM}$	$-34.5(9) \mathrm{MeV}$
$\mathrm{NNLO}+\mathrm{IB}+\mathrm{EM}+4 N_{\text {contact }}$	$-32.9(9) \mathrm{MeV}$
Physical (infinite volume)	-32.0 MeV

Simulations for ${ }^{12} \mathrm{C}, \mathrm{L}=13.8 \mathrm{fm}$

LO	$-109(2) \mathrm{MeV}$
NLO	$-115(2) \mathrm{MeV}$
$\mathrm{NLO}+\mathrm{IB}+\mathrm{EM}$	$-108(2) \mathrm{MeV}$
$\mathrm{NNLO}+\mathrm{IB}+\mathrm{EM}$	$-106(2) \mathrm{MeV}$
NNLO + IB + EM + 4N contact	$-99(2) \mathrm{MeV}$
Physical (infinite volume)	-92.2 MeV

Summary

- Nd scattering at $\mathrm{N}^{2} \mathrm{LO}$
- Promising results at $\mathrm{N}^{2} \mathrm{LO} ; \mathrm{N}^{3} \mathrm{LO}$ in progress...
- Chiral EFT for nuclear forces with explicit $\Delta(1232)$
- Improved convergence of the chiral expansion for nuclear forces verfied
- Expect large contributions for 3NF at N3LO (work in progress)
- Pion production in NN collisions
- Important consistency check from studying different channels
- $\delta m_{N}^{\text {str }}=1.5 \pm 0.8$ (exp.) ± 0.5 (th.) MeV extracted from A_{fb} in $n p \rightarrow d \pi^{0}$ consistent with the value obtained using the Cottingham sum rule and Lattice QCD
- Probing light nuclei with photons
- NN exchange current worked out to leading one loop, applications in progress...
- Nuclear lattice simulations
- formulated continuum EFT on space-time lattice
- promising results for NN scattering and light nuclei up to $\mathrm{N}^{2} \mathrm{LO}$

