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2N beyond ERE: Low-Energy Theorems

Both ERE & π-EFT provide an expansion of NN 
observables in powers of , have the same 
validity range and incorporate the same physics

ERE  ~ π-EFT (in the NN sector)

Two-range potential ,  

is meromorphic in

modified effective range function

Jost function for Jost solution for

Per construction,       reduced to     for 
and is meromorphic in 

Haeringen, Kok ’82



2N beyond ERE: Low-Energy Theorems
Example: proton-proton scattering

where                             ,                ,                            ,

Coulomb phase shift Sommerfeld factor Digamma function

MERE and low-energy theorems

Long-range forces impose correlations between the ER coefficients (low-energy theorems)
Cohen, Hansen ’99; Steele, Furnstahl ‘00

where , depend on       and quantities calculable from

Compute from and use first coefficients in the MERE as input

reproduce first ERE coefficients and make predictions for all the higher ones (LETs)



2N with perturbative pions

It is straightforward to generalize the KSW power counting assu-
ming that π-exchanges can be treated in perturbation theory, i.e.:

EFT with perturbative pions

Chiral EFT for few nucleons:  are pions perturbative?

EFT without pions



“Low-energy theorems” (Cohen & Hansen ’99,’00;  E.E. & Gegelia ‘09)

If pions are properly incorporated, one should be able to go beyond the effective
range expansion, i.e. to predict the shape parameters. 

1S0 at NLO:

LO

Nijmegen PSA

NLO

NNLO

Higher-order KSW calculation (Mehen & Stewart ’00)

NNLO results obtained by Mehen & Stewart show
no signs of convergence in spin-triplet channels

theory 

data 

v2 (fm3) v3 (fm5) v4 (fm7) v2 (fm3) v3 (fm5) v4 (fm7)

-3.3 17.8 -108. 

-0.5 3.8 -17. 

-0.95 4.6 -25. 

0.04 0.7 -4.0 

spin-singlet spin-triplet

Testing 2N with perturbative π‘s: LETs

it seems necessary to treat pions non-perturbatively
at momenta
see, however, Beane, Kaplan, Vuorinen, arXiv:0812.3938 for an alternative scenario



Perturbation theory fails due to enhancement caused by reducible (i.e. infrared divergent 
in the limit                )  diagrams.

Switch to time-ordered theory:

irreduciblereducible, enhanced

Two nucleons: chiral EFT à la Weinberg
Weinberg ‘90,‘91 

Irreducible contributions can be calcu-
lated  using ChPT

Reducible contributions enhanced and 
should be summed up to infinite order

Weinberg‘s approach



,     grow with increasing momenta LS equation must be regularized & renormalized

Two nucleons: chiral EFT à la Weinberg

Renormalization à la Lepage

Choose & tune the strengths of to fit low-energy observables. 

generally, can only be done numerically; requires solving nonlinear equations for          , 
residual     dependence in observables survives,
self-consistency checks via „Lepage plots“

Ordonez et al.’96;  Park et al.’99;  E.E. et al.’00,’04,’05;  Entem, Machleidt ’02,’03

DR difficult to implement numerically due to appearance of power-law divergences
Phillips et al.’00

Cutoff  (employed in most applications)
— needs to be chosen                to avoid large artifacts (i.e. large        -terms)  
— can be employed at the level of         in order to preserve all relevant symmetries

Slavnov ’71;  Djukanovic et al. ’05,’07;  also Donoghue, Holstein, Borasoy ’98,’99

Regularization of the LS equation



Toy model

Two-range (                           ) spin-less separable model:

with the formfactors and  

E.E., J. Gegelia, EPJ A41 (2009) 341

Lippmann-Schwinger equation (S-wave) 

can be solved analytically for interactions of a separable kind.

I require a “natural” scattering length                        with                 

(strong long-range and weak short-range interactions at momenta )

and



Toy model

“Chiral” expansion of the coefficients in the ERE (S-wave):                 

depend on the details of the interaction

E.E., J. Gegelia, EPJ A41 (2009) 341

Scattering length:

Effective range:

Explicit calculation for the considered model yields:



Low-energy theorems à la KSW
Effective theory:

KSW-like approach: use subtractive renormalization (       power counting at the level of 
diagrams) and keep track of the soft scales 

Example of subtractive renormalization

Low-momentum expansion for the amplitude up to NNLO



Low-energy theorems à la KSW
Effective range function up to NNLO

and         correctly reproduced for i

LO: (leading long-range)

NNLO: use        as input to fix         and predict and         for ∀i

NLO: use        as input to fix         and predict and         for ∀i

For example, the predicted effective range:



Low-energy theorems à la Weinberg
It is difficult to apply the above renormalization scheme to OPEP (non-separable)           cutoff 
regularization and the Weinberg-Lepage scheme:

LO:  same as before (only long-range force),                 and        correctly reproduced for ∀i

NLO:

Solve the LS equation for a given value of      and adjust the LEC              to reproduce the 
scattering length

Expansion for the amplitude in Weinberg’s approach



Low-energy theorems à la Weinberg

scatt. length in the underlying model

Prediction for the effective range:

The first nontrivial LET  for        correctly reproduced provided one chooses                . Same 
conclusions for the shape parameters     .



Misconception: Infinite cutoff limit
It is possible to take the limit                 for    -matrix while keeping the scattering length 
correctly reproduced. Notice that the infinite cutoff limit does not commute with the “chiral
expansion”, i.e. with the Taylor expansion  of     in powers of      : 

finite cutoff-removed result for the effective range:

the first non-trivial LET is broken after taking the limit 
Similarly, the LETs for the shape parameters are also broken in the infinite- limit.

Taylor expansion



long-range short-range

S-wave bound state with: 

Toy model with a local potential

At low energy,                      ,  the precise structure of                    is  irrelevant
mimic                    by a generic set of point-like interactions

Effective theory



Results for the bound state:
LO NLO NNLO

Error at order   : agrees with

Λ = 500 MeV

At low energy model independent and systematically improvable approach!

Incorporate the correct long-range force.
Add local correction terms to .  Respect symmetries.
Introduce an ultraviolet cutoff     of the order of the natural hard scale.
Fix unknown constants from some date and make predictions.

Lessons learned:

Toy model with a local potential



Further reading

How to renormalize the Schrödinger equation 
Lepage, “How to renormalize the Schrödinger equation”, arXiv:nucl-th/9706029

Lepage, “Tutorial: renormalizing the Schrödinger equation”, talk at the INT Program 00-2 “Effective Field 

Theories and Effective Interactions”, see:  

http://www.int.washington.edu/talks/WorkShops/int_00_2/People/Lepage_TUT/ht/01.html

E.E., Gegelia, Eur. Phys. J. A41 (09) 341 

Breakdown of NN EFT with perturbative pions
Cohen, Hansen, Phys. Rev. C59 (99) 13;  Phys. Rev. C59 (99) 3047;  arXiv:nucl-th/9908049

Fleming, Mehen, Stewart, Nucl. Phys. A677 (00) 313 



Irreducible contributions can be calcu-
lated  using ChPT

Reducible contributions enhanced and 
should be summed up to infinite order

Weinberg‘s approach

Nuclear chiral EFT à la Weinberg
Weinberg ‘90,‘91 

in
te

rn
uc

le
on

po
te

nt
ia

l  
[M

eV
]

separation between the nucleons [fm]

chiral expansion of 
multi-pion exchange

zero-range operators

χ-symm. constrainedparametrized

Structure of chiral nuclear forces

— how to derive nuclear forces from        ?



Derivation of nuclear forces

Nuclear forces are defined as irreducible (i.e. non-iterative) contributions to the amplitude 
and can be derived using various methods. 

calculate in ChPT

For example:

S-matrix-based method
Robilotta, da Rocha ’97;  Kaiser et al. ’97,’01,…;  Higa et al. ’03,’04; …

Idea: the potential is derived through (perturbative) matching to the scattering amplitude. 

calculated using
standard methods

matching to allows to define

define     by matching to



Consider mesons  interacting 
with non-relativistic nucleons: 

Old-fashioned time-ordered perturbation theory

Schrödinger equation:

projectors states with mesons

nucleonic states

can not solve
(infinite-dimensional eq.)

Weinberg ’90,’91;  Ordonez et al. ’92,’94;  van Kolck ‘94

Derivation of nuclear forces

Effective Schrödinger equation for :

where

depends on
not orthonormal:



Method of unitary transformation

Find a unitary operator      such that:

no dependence on energy (per construction),
unitary transformation preserves the norm of 

Taketani, Mashida, Ohnuma’52, Okubo ’54,  E.E., Glöckle, Meißner ’98,’00,‘05

Derivation of nuclear forces

How to compute     ?
It is convenient to parameterize      in terms of the operator                 (Okubo ’54):

Require that

similar methods widely used in particle & nuclear physics (Lee-Suzuki) and to
deal with few- and many-body problems.    

Notice:

The major problem is to solve the nonlinear decoupling equation.



Example:  expansion in powers of the coupling constant

In the static approximation, i.e. in the limit              ,  one has:                       . One obtains:

same  as in old-fashioned
perturbation theory

wave-function renormalization
(missing in old-fashioned perturbation theory)

Recursive solution of the decoupling equation

ansatz: 

Derivation of nuclear forces



Consider self-energy insertions at 2 non-interacting nucleons:
Expect no contributions to the 2N Hamilton operator!

Derivation of nuclear forces

old-fashioned perturbation theory

What is wrong ??

where

1 2 1 2 1 2 1 2

common isospin, spin & momentum structure (depends on the form of HI )

method of unitary transformation
Additional contributions 
(wave-function renormalization)

1 2 1 21 2 1 2



Application to chiral Lagrangians (E.E. et al., ’98)

expansion in chiral expansion

Power counting
Count powers of Q using dimensional analysis

Derivation of nuclear forces

– relevant (superrenorm.)
– marginal (renorm.)
– irrelevant (nonrenorm.)

Remember: Examples:

expansion in coupling constant (            )              chiral expansion (                     )
perturbation theory works since all             (as a consequence of χ–symmetry)

with

The only source of Λ are 
the   coupling  constants

Alternatively:  count powers of Λ!  



Example: chiral 2π-exchange potential proportional to gA
4 :

Derivation of nuclear forces

model independent,
constraint by χ-symmetry

The integral has logarithmic and quadratic diver-
gences can be absorbed into short-range terms:

where the loop function is given by (in DR):  



Further reading

Derivation of the nuclear force from chiral EFT (selected papers)
Weinberg,  Nucl. Phys. B363 (91) 3

Ordonez, Ray, van Kolck, Phys. Rev. C53 (96) 2086

Kaiser, Brockmann, Weise, Nucl. Phys. A625 (97) 758

EE, Glöckle, Meißner, Nucl. Phys. A714 (03) 535

EE, Prog. Part. Nucl. Phy.s. 57 (06) 654 [review article];  arXiv:1001.3229 [nucl-th]  [lecture notes]

EE, Hammer, Meißner, Rev. Mod. Phys. 81 (09) 1773 [review article]

Nuclear potentials from field theory 
Tamm, J. Phys. (USSR) 9 (45) 449;  Dancoff, Phys. Rev. 78 (50) 382

Okubo, Prog. Theor. Phys.  (Japan) 12 (54) 603

Fukuda, Sawada, Taketani, Prog. Theor. Phys. (Japan) 12 (54) 156

Friar, Ann. Phys. 104 (77) 380

Phillips, Reports on Progress in Physics XXII (59) 562  [review article]



Nuclear forces from chiral EFT
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