Effiective Fleld Theory and Nuclear Forces

Lecture 1: Introduction \& first look into ChPT

Lecture 2: Chiral EFT for two nucleons

- 2N beyond ERE: low-energy theorems
- Low-energy theorems for perturbative pions
- Exactly solvable (separable) toy model
- Toy model with local interactions
- Derivation of nuclear forces in chiral EFT

2N beyond ERE: Low-Energy Theorems

Both ERE \& $\not t$-EFT provide an expansion of NN observables in powers of k / M_{π}, have the same validity range and incorporate the same physics
\Rightarrow ERE $\sim \not x$-EFT (in the NN sector)
Two-range potential $V(r)=V_{L}(r)+V_{S}(r), M_{L}^{-1} \gg M_{H}^{-1}$

- $F_{l}\left(k^{2}\right)$ is meromorphic in $\underline{|k|<M_{L} / 2}$

$$
F_{l}^{M}\left(k^{2}\right) \equiv M_{l}^{L}(k)+\frac{k^{2 l+1}}{\left|f_{l}^{L}(k)\right|^{2}} \cot \left[\delta_{l}(k)-\delta_{l}^{L}(k)\right]
$$

$$
\underbrace{f_{l}^{L}(k)}=\lim _{r \rightarrow 0}(\frac{l!}{(2 l)!}(-2 i k r)^{l} \underbrace{f_{l}^{L}(k, r)})
$$

Jost function for $V_{L}(r)$

$$
M_{l}^{L}(k)=\operatorname{Re}\left[\frac{(-i k / 2)^{l}}{l!} \lim _{r \rightarrow 0}\left(\frac{d^{2 l+1}}{d r^{2 l+1}} \frac{r^{l} f_{l}^{L}(k, r)}{f_{l}^{L}(k)}\right)\right]
$$

Per construction, F_{l}^{M} reduced to F_{l} for $V_{L}=0$ and is meromorphic in $|k|<M_{H} / 2$
\longleftarrow modified effective range function Haeringen, Kok '82

2N beyond ERE: Low-Energy Theorems

Example: proton-proton scattering

$$
F_{C}\left(k^{2}\right)=C_{0}^{2}(\eta) k \cot \left[\delta(k)-\delta^{C}(k)\right]+2 k \eta h(\eta)=-\frac{1}{a^{M}}+\frac{1}{2} r^{M} k^{2}+v_{2}^{M} k^{4}+\ldots
$$

where $\underbrace{\delta^{C} \equiv \arg \Gamma(1+i \eta)}_{\text {Coulomb phase shift }}, \quad \eta=\frac{m}{2 k} \alpha, \underbrace{C_{0}^{2}(\eta)=\frac{2 \pi \eta}{e^{2 \pi \eta}-1}}_{\text {Sommerfeld factor }}, \quad h(\eta)=\operatorname{Re}[\underbrace{\Psi(i \eta)}_{\text {Digamma function } \Psi(z) \equiv \Gamma^{\prime}(z) / \Gamma(z)}]-\ln (\eta)$

MERE and low-energy theorems

Long-range forces impose correlations between the ER coefficients (low-energy theorems) Cohen, Hansen '99; Steele, Furnstahl '00

$$
F_{l} \equiv k^{2 l+1} \cot \delta_{l}=-\frac{1}{a}+\frac{1}{2} r k^{2}+v_{2} k^{4}+\ldots=\frac{A_{l} F_{l}^{L}-k^{4 l+2}}{A_{l}+F_{l}^{L}}
$$

$$
\text { where } F_{l}^{L}=k^{2 l+1} \cot \delta_{l}^{L}, A_{l}=\left(F_{l}^{M}+M_{l}^{L}\right)\left|f_{l}^{L}(k)\right|^{2}
$$

depend on F_{l}^{M} and quantities calculable from V_{L}

Compute $\delta_{l}^{L}(k), f_{l}^{L}(k), M_{l}^{L}(k)$ from V_{L} and use first n coefficients in the MERE as input

$$
F_{l}^{M}\left(k^{2}\right)=-\frac{1}{a^{M}}+\frac{1}{2} r^{M} k^{2}+v_{2}^{M} k^{4}+v_{3}^{M} k^{6}+v_{4}^{M} k^{8}+\ldots
$$

\Rightarrow reproduce first n ERE coefficients and make predictions for all the higher ones (LETs)

2 N with perturbative pions

Chiral EFT for few nucleons: are pions perturbative?

It is straightforward to generalize the $\kappa S w$ power counting assuming that π-exchanges can be treated in perturbation theory, i.e.:

$$
T(k)=T^{(-1)}(k)+T^{(0)}(k)+T^{(1)}(k)+\ldots
$$

- EFT without pions

$$
\begin{aligned}
& T^{(-1)}=>+\grave{\infty}+\ldots \\
& \left.T^{(0)}=\mathcal{V} \text { where: }\right]=\square+\lambda \times+\ldots
\end{aligned}
$$

- EFT with perturbative pions

$$
\begin{aligned}
& T^{(-1)}=>+ふ+\ldots
\end{aligned}
$$

Testing 2 N with perturbative $\pi^{\circ} \mathrm{s}$: Lets

- "Low-energy theorems" (Cohen \& Hansen '99,'00; E.E. \& Gegelia ‘09)

If pions are properly incorporated, one should be able to go beyond the effective range expansion, i.e. to predict the shape parameters.
${ }^{1} \mathrm{~S}_{0}$ at NLO: $\quad k \cot \delta=-a^{-1}+\frac{1}{2} r k^{2}+v_{2} k^{4}+v_{3} k^{6}+v_{4} k^{8}+\ldots$

$\frac{g_{A}^{2} m}{16 \pi F_{\pi}^{2}}\left(-\frac{16}{3 a^{2} M_{\pi}^{4}}+\frac{32}{5 a M_{\pi}^{3}}-\frac{2}{M_{\pi}^{2}}\right)$				$\frac{g_{A}^{2} m}{16 \pi F_{\pi}^{2}}\left(\frac{16}{a^{2} M_{\pi}^{6}}-\frac{128}{7 a M_{\pi}^{5}}+\frac{16}{3 M_{\pi}^{4}}\right)$		
	$v_{2}\left(\mathrm{fm}^{3}\right)$	$v_{3}\left(\mathrm{fm}^{5}\right)$	$v_{4}\left(\mathrm{fm}^{7}\right)$	$v_{2}\left(\mathrm{fm}^{3}\right)$	$v_{3}\left(\mathrm{fm}^{5}\right)$	$v_{4}\left(\mathrm{fm}^{7}\right)$
theory	-3.3	17.8	-108.	-0.95	4.6	-25.
data	-0.5	3.8	-17.	0.04	0.7	-4.0

- Higher-order KSW calculation (Mehen \& Stewart '00)

NNLO results obtained by Mehen \& Stewart show no signs of convergence in spin-triplet channels
\Longrightarrow it seems necessary to treat pions non-perturbatively at momenta $p \sim M_{\pi}$

Two nucleons: chiral E[J à la Weinberg

Perturbation theory fails due to enhancement caused by reducible (i.e. infrared divergent in the limit $m_{N} \rightarrow \infty$) diagrams.

Switch to time-ordered theory: $\quad \mathrm{Amp}=\langle N N| H^{I}|N N\rangle+\sum_{\Psi} \frac{\langle N N| H^{I}|\Psi\rangle\langle\Psi| H^{I}|N N\rangle}{E_{N N}-E_{\Psi}+i \epsilon}+\ldots$

$$
\begin{aligned}
& \frac{1}{E_{N N}-E_{\Psi}}=\frac{m_{N}}{\vec{p}^{2}-\vec{q}^{2}} \sim \frac{m_{N}}{Q^{2}} \gg \frac{1}{Q} \quad \frac{1}{E_{N N}-E_{\Psi}} \sim \frac{1}{M_{\pi}} \sim \frac{1}{Q}
\end{aligned}
$$

Weinberg‘s approach

- Irreducible contributions can be calculated using ChPT
- Reducible contributions enhanced and should be summed up to infinite order

Two nucleons: chiral EFT à la Weinberg

$V_{\text {cont }}, V_{\pi}$ grow with increasing momenta \Longleftrightarrow LS equation must be regularized $\&$ renormalized

$$
T(\vec{p}, \vec{k})=\left[V_{\text {cont }}(\vec{p}, \vec{k})+V_{\pi}(\vec{p}, \vec{k})\right]+\int \frac{d^{3} q}{(2 \pi)^{3}}\left[V_{\text {cont }}(\vec{p}, \vec{q})+V_{\pi}(\vec{p}, \vec{q})\right] \frac{m}{k^{2}-q^{2}+i \epsilon} T(\vec{q}, \vec{k})
$$

Regularization of the LS equation

- DR difficult to implement numerically due to appearance of power-law divergences Phillips et al.'00
- Cutoff (employed in most applications)
— needs to be chosen $\Lambda \gg M_{\pi}$ to avoid large artifacts (i.e. large $1 / \Lambda^{n}$-terms)
$-\Lambda$ can be employed at the level of $\mathcal{L}_{\text {eff }}$ in order to preserve all relevant symmetries Slavnov '71; Djukanovic et al. '05,'07; also Donoghue, Holstein, Borasoy '98,'99

Renormalization à la Lepage

Ordonez et al.'96; Park et al.'99; E.E. et al.'00,'04,'05; Entem, Machleidt '02,'03
Choose $\Lambda \sim M_{\text {hard }}$ \& tune the strengths of $C_{i}(\Lambda)$ to fit low-energy observables.

- generally, can only be done numerically; requires solving nonlinear equations for $C_{i}(\Lambda)$,
- residual Λ dependence in observables survives,
- self-consistency checks via „Lepage plots"

Joy model

Two-range ($m_{l} \ll m_{s} \sim m$) spin-less separable model:

$$
V\left(p, p^{\prime}\right)=v_{l} F_{l}(p) F_{l}\left(p^{\prime}\right)+v_{s} F_{s}(p) F_{s}\left(p^{\prime}\right)
$$

with the formfactors $F_{l}(p) \equiv \frac{\sqrt{p^{2}+m_{s}^{2}}}{p^{2}+m_{l}^{2}} \quad$ and $\quad F_{s}(p) \equiv \frac{1}{\sqrt{p^{2}+m_{s}^{2}}}$

Lippmann-Schwinger equation (S-wave)

$$
T\left(p^{\prime}, p ; k\right)=V\left(p^{\prime}, p\right)+4 \pi \int \frac{l^{2} d l}{(2 \pi)^{3}} V\left(p^{\prime}, l\right) \frac{m}{k^{2}-l^{2}+i \epsilon} T(l, p ; k)
$$

can be solved analytically for interactions of a separable kind.

I require a "natural" scattering length $a=\alpha_{s, l} / m_{s, l}$ with $\left|\alpha_{s, l}\right| \sim 1$

$$
\Longleftrightarrow \quad v_{l}=-\frac{8 \pi m_{l}^{3} \alpha_{l}}{m\left(\alpha_{l} m_{s}^{2}+m_{l}^{2} \alpha_{l}-2 m_{s}^{2}\right)} \quad \text { and } \quad v_{s}=-\frac{4 \pi m_{s} \alpha_{s}}{m\left(\alpha_{s}-1\right)}
$$

(strong long-range and weak short-range interactions at momenta $k \sim m_{l}$)

Toy model

"Chiral" expansion of the coefficients in the ERE (S-wave):

$$
\begin{aligned}
a, r & =\frac{1}{m_{l}}\left[\gamma_{a, r}^{(0)}+\gamma_{a, r}^{(1)} \frac{m_{l}}{m_{s}}+\gamma_{a, r}^{(2)} \frac{m_{l}^{2}}{m_{s}^{2}}+\ldots\right] \\
v_{i} & =\frac{1}{m_{l}^{2 i-1}}\left[\gamma_{v_{i}}^{(0)}+\gamma_{v_{i}}^{(1)} \frac{m_{l}}{m_{s}}+\gamma_{v_{i}}^{(2)} \frac{m_{l}^{2}}{m_{s}^{2}}+\ldots\right]
\end{aligned}
$$

depend on the details of the interaction

Explicit calculation for the considered model yields:

- Scattering length: $\gamma_{a}^{(0)}=\alpha_{l}, \quad \gamma_{a}^{(1)}=\left(\alpha_{l}-1\right)^{2} \alpha_{s}, \quad \gamma_{a}^{(2)}=\left(\alpha_{l}-1\right)^{2} \alpha_{l} \alpha_{s}^{2}$,
- Effective range: $\quad \gamma_{r}^{(0)}=\frac{3 \alpha_{l}-4}{\alpha_{l}}, \quad \gamma_{r}^{(1)}=\frac{2\left(\alpha_{l}-1\right)\left(3 \alpha_{l}-4\right) \alpha_{s}}{\alpha_{l}^{2}}$,

$$
\gamma_{r}^{(2)}=\frac{\left(\alpha_{l}-1\right)\left(3 \alpha_{l}-4\right)\left(5 \alpha_{l}-3\right) \alpha_{s}^{2}+\left(2-\alpha_{l}\right) \alpha_{l}^{2}}{\alpha_{l}^{3}},
$$

Low-energy theorems à la KSW

Effective theory: $V_{\mathrm{eff}}\left(p, p^{\prime}\right)=v_{l} F_{l}(p) F_{l}\left(p^{\prime}\right)+\left[C_{0}+C_{2}\left(p^{2}+{p^{\prime}}^{2}\right)+\ldots\right]$
KSW-like approach: use subtractive renormalization $(\leadsto$ power counting at the level of diagrams) and keep track of the soft scales $Q=\left\{k, m_{l}, \mu\right\}$

Example of subtractive renormalization

$$
I^{\mathrm{reg}} \equiv \int_{0}^{\Lambda} \frac{l^{2} d l}{k^{2}-l^{2}+i \epsilon}=-\Lambda-i \frac{\pi}{2} k+\mathcal{O}\left(\Lambda^{-1}\right) \quad I^{\mathrm{subtr}} \equiv \lim _{\Lambda \rightarrow \infty}\left[I^{\mathrm{reg}}+\int_{\mu}^{\Lambda} d l\right]=-\mu-i \frac{\pi}{2} k
$$

Low-momentum expansion for the amplitude up to NNLO

Low-energy theorems à la KSW

Effective range function up to NNLO

$$
k \cot \delta=-\frac{4 \pi}{m} \Re[\underbrace{\frac{1}{T^{(-1)}}}_{\sim Q}-\underbrace{\frac{T^{(0)}}{\left[T^{(-1)}\right]^{2}}}_{\sim Q^{2}}+\underbrace{\frac{\left[T^{(0)}\right]^{2}}{\left[T^{(-1)}\right]^{3}}-\frac{T^{(1)}}{\left[T^{(-1)}\right]^{2}}}_{\sim Q^{3}}]
$$

- LO: (leading long-range) $k \cot \delta=\underbrace{-\frac{m_{l}}{\alpha_{l}}+\frac{\left(3 \alpha_{l}-4\right)}{2 m_{l} \alpha_{l}} k^{2}+\frac{\left(\alpha_{l}-2\right)}{2 m_{l}^{3} \alpha_{l}} k^{4}}$.
$\gamma_{a, r}^{(0)}$ and $\gamma_{v_{i}}^{(0)}$ correctly reproduced for $\forall i$
- NLO: use $\gamma_{a}^{(1)}$ as input to fix $C_{0}^{(0)}$ and predict $\gamma_{r}^{(1)}$ and $\gamma_{v_{i}}^{(1)}$ for $\forall i$

For example, the predicted effective range: $r=\frac{1}{m_{l}}\left[\frac{3 \alpha_{l}-4}{\alpha_{l}}+\frac{2\left(\alpha_{l}-1\right)\left(3 \alpha_{l}-4\right) \alpha_{s}}{\alpha_{l}^{2} m_{s}} m_{l}\right]$.

- NNLO: use $\gamma_{a}^{(2)}$ as input to fix $C_{0}^{(1)}$ and predict $\gamma_{r}^{(2)}$ and $\gamma_{v_{i}}^{(2)}$ for $\forall i$
$r=\frac{1}{m_{l}}\left[\frac{3 \alpha_{l}-4}{\alpha_{l}}+\frac{2\left(\alpha_{l}-1\right)\left(3 \alpha_{l}-4\right) \alpha_{s}}{\alpha_{l}^{2} m_{s}} m_{l}+\frac{\left(\alpha_{l}-1\right)\left(3 \alpha_{l}-4\right)\left(5 \alpha_{l}-3\right) \alpha_{s}^{2}+\left(2-\alpha_{l}\right) \alpha_{l}^{2}}{\alpha_{l}^{3} m_{s}^{2}} m_{l}^{2}+\mathcal{O}\left(Q^{4}\right)\right]$

Low-energy theorems à la Weinberg

It is difficult to apply the above renormalization scheme to OPEP (non-separable) \Longleftrightarrow cutoff regularization and the Weinberg-Lepage scheme:

Expansion for the amplitude in Weinberg's approach

$$
\begin{aligned}
& \mathrm{V} \equiv \square=\square \square \\
& \mathrm{T} \equiv \square=\square \square
\end{aligned}
$$

- LO: same as before (only long-range force), $\Longrightarrow \gamma_{a, r}^{(0)}$ and $\gamma_{v_{i}}^{(0)}$ correctly reproduced for $\forall i$
- NLO: $V_{\text {eff }}\left(p, p^{\prime}\right)=V_{\text {long }}\left(p, p^{\prime}\right)+C_{0}$

Solve the LS equation for a given value of Λ and adjust the LEC $C_{0}(\Lambda)$ to reproduce the scattering length

Low-energy theorems à la Weinberg

$$
\begin{aligned}
& a=\frac{\pi m_{s}\left\{C_{0} m\left[2 \alpha_{l}\left(m_{s}\left(\Lambda-s m_{l}\right)+2 m_{l}^{2} \ln \left(m_{s} / 2 \Lambda\right)\right)+\pi m_{l} m_{s}\right]+4 \pi^{2} \alpha_{l} m_{s}\right\}}{m_{l}\left[2 \pi m_{s}^{2}\left(C_{0} m \Lambda+2 \pi^{2}\right)-C_{0} m m_{l} \alpha_{l}\left[s m_{s}-2 m_{l} \ln \left(m_{s} / 2 \Lambda\right)\right]^{2}\right]} \\
& \stackrel{(!)}{=} \frac{m_{l}\left(2 \alpha_{l}-1\right) \alpha_{s}-\alpha_{l} m_{s}}{m_{l}\left(m_{l} \alpha_{l} \alpha_{s}-m_{s}\right)} \longmapsto\left(2 \sqrt{m_{s}^{2}-m_{l}^{2}} / m_{s}\right) \operatorname{arccot}\left(m_{l} / \sqrt{m_{s}^{2}-m_{l}^{2}}\right)
\end{aligned}
$$

scatt. length in the underlying model

Prediction for the effective range:

$$
\begin{aligned}
r= & \frac{1}{m_{l}}[\underbrace{\frac{3 \alpha_{l}-4}{\alpha_{l}}}_{\gamma_{r}^{(0)}}+\underbrace{\frac{2\left(\alpha_{l}-1\right)\left(3 \alpha_{l}-4\right) \alpha_{s}}{\alpha_{l}^{2}}}_{\gamma_{r}^{(1)}} \frac{m_{l}}{m_{s}}+ \\
& +\underbrace{\frac{4\left(\alpha_{l}-2\right) \alpha_{s}}{\pi \alpha_{l}}\left(\ln \frac{m_{s}}{2 \Lambda}+1\right)+\frac{\left(\alpha_{l}-1\right)\left(3 \alpha_{l}-4\right)\left(5 \alpha_{l}-3\right) \alpha_{s}^{2}+\left(2-\alpha_{l}\right) \alpha_{l}^{2}}{\alpha_{l}^{3}}}) \frac{m_{l}^{2}}{m_{s}^{2}}+\mathcal{O}\left(m_{l}^{3}\right)]
\end{aligned}
$$

The first nontrivial LET for $\gamma_{r}^{(1)}$ correctly reproduced provided one chooses $\Lambda \sim m_{s}$. Same conclusions for the shape parameters v_{i}.

Misconception: Infinite cutoff limit

It is possible to take the limit $\Lambda \rightarrow \infty$ for T-matrix while keeping the scattering length correctly reproduced. Notice that the infinite cutoff limit does not commute with the "chiral expansion", i.e. with the Taylor expansion of r in powers of m_{l} :

$$
\lim _{\Lambda \rightarrow \infty} T_{m_{l}}\left[m_{l} r\left(m_{l}, m_{s}, \Lambda\right)\right] \neq T_{m_{l}}\left[\lim _{\Lambda \rightarrow \infty} m_{l} r\left(m_{l}, m_{s}, \Lambda\right)\right]
$$

\Longrightarrow finite cutoff-removed result for the effective range:

$$
\begin{aligned}
r_{\infty} & =\frac{m_{l}^{3} \alpha_{s}+m_{l}^{2}\left(\alpha_{l}-2\right) m_{s}+m_{l}\left(2 \alpha_{l}-3\right) m_{s}^{2} \alpha_{s}+\left(4-3 \alpha_{l}\right) m_{s}^{3}}{m_{l} m_{s}^{2}\left(m_{l}\left(2 \alpha_{l}-1\right) \alpha_{s}-\alpha_{l} m_{s}\right)} \\
& =\frac{1}{m_{l}}[\underbrace{\frac{3 \alpha_{l}-4}{\alpha_{l}}}_{\gamma_{r}^{(0)}}+\underbrace{\left.\frac{4\left(\alpha_{l}-1\right)^{2} \alpha_{s}}{\alpha_{l}^{2}} \frac{m_{l}}{m_{s}}+\frac{\alpha_{l}^{3}\left(8 \alpha_{s}^{2}-1\right)+\alpha_{l}^{2}\left(2-20 \alpha_{s}^{2}\right)+16 \alpha_{l} \alpha_{s}^{2}-4 \alpha_{s}^{2}}{\alpha_{l}^{3}} \frac{m_{l}^{2}}{m_{s}^{2}}+\mathcal{O}\left(m_{l}^{3}\right)\right]}_{\neq \gamma_{r}^{(1)}}
\end{aligned}
$$

\Longrightarrow the first non-trivial LET is broken after taking the limit $\Lambda \rightarrow \infty$
Similarly, the LETs for the shape parameters are also broken in the infinite- Λ limit.

Toy model with a local potential

$$
V(\vec{q})=\underbrace{\frac{\alpha_{l}}{\vec{q}^{2}+M_{l}^{2}}}_{M_{l}=200 \mathrm{MeV}}+\underbrace{\frac{\alpha_{h}}{\vec{q}^{2}+M_{h}^{2}}}_{M_{h}=750 \mathrm{MeV}} \rightarrow \quad V(\vec{r})=\underbrace{\frac{\alpha_{l}}{4 \pi r} e^{-M_{l} r}}_{\text {long-range }}+\underbrace{\frac{\alpha_{h}}{4 \pi r} e^{-M_{h} r}}_{\text {short-range }}
$$

$\left.\begin{array}{l}\alpha_{l}=-1.50 \\ \alpha_{h}=10.81\end{array}\right\} \Longrightarrow$ S-wave bound state with: $E_{B}=2.2229 \mathrm{MeV}$

Effective theory

At low energy, $q \sim M_{l} \ll M_{h}$, the precise structure of $V_{\text {short-range }}$ is irrelevant
\Rightarrow mimic $V_{\text {short-range }}$ by a generic set of point-like interactions

$$
V \rightarrow V_{\text {eff }}=V_{\text {long-range }}+\left[C_{0}+C_{2}\left(\vec{p}^{2}+{\vec{p}^{\prime 2}}^{2}\right)+C_{4} \vec{p}^{2}{\vec{p}^{\prime}}^{2}+\ldots\right] \exp \left(-\frac{\vec{p}^{2}+\vec{p}^{\prime 2}}{\Lambda^{2}}\right)
$$

Toy model with a local potential

Error at order $\nu: \Delta \delta(k) \sim(k / \bar{\Lambda})^{2 \nu}, \quad \bar{\Lambda} \sim 400 \mathrm{MeV} \quad$ agrees with $\bar{\Lambda} \sim M_{h} / 2$
Results for the bound state: $E_{B}=\underbrace{2.1594}_{\text {LO }}+\underbrace{0.0638}_{\text {NLO }}-\underbrace{0.0003}_{\text {NNLO }}=2.2229 \mathrm{MeV}$

Lessons learned:

- Incorporate the correct long-range force.
- Add local correction terms to $V_{\text {eff }}$. Respect symmetries.
- Introduce an ultraviolet cutoff Λ of the order of the natural hard scale.
- Fix unknown constants from some date and make predictions.
\Rightarrow At low energy model independent and systematically improvable approach!

Further reading

Breakdown of NN EFT with perturbative pions

- Cohen, Hansen, Phys. Rev. C59 (99) 13; Phys. Rev. C59 (99) 3047; arXiv:nucl-th/9908049
- Fleming, Mehen, Stewart, Nucl. Phys. A677 (00) 313

How to renormalize the Schrödinger equation

- Lepage, "How to renormalize the Schrödinger equation", arXiv:nucl-th/9706029
- Lepage, "Tutorial: renormalizing the Schrödinger equation", talk at the INT Program 00-2 "Effective Field Theories and Effective Interactions", see:
http://www.int.washington.edu/talks/WorkShops/int_00_2/People/Lepage_TUT/ht/01.html
- E.E., Gegelia, Eur. Phys. J. A41 (09) 341

Nuclear chiral Efl à la Weinberg

Weinberg‘s approach

- Irreducible contributions can be calculated using ChPT
- Reducible contributions enhanced and should be summed up to infinite order

Structure of chiral nuclear forces

$V_{\text {eff }}=\sum_{\nu}[\underbrace{V_{\text {patanerrized }}^{(\nu)}}_{\text {short-range }}+\underbrace{V_{\text {long-range }}^{(\nu)}}_{\text {x-symm, constrained }}]$
— how to derive nuclear forces from $\mathcal{L}_{\text {eff }}$?

Derivation of nuclear forces

Nuclear forces are defined as irreducible (i.e. non-iterative) contributions to the amplitude and can be derived using various methods.

S-matrix-based method

Robilotta, da Rocha '97; Kaiser et al. '97,'01,...; Higa et al. '03,'04; ...
Idea: the potential is derived through (perturbative) matching to the scattering amplitude.

calculate in $\mathrm{ChPT} \rightarrow \sqrt{-\sqrt{4}}=\sqrt{y}+\sqrt{y}+\ldots \leftarrow$ define V by matching to A
For example: $\mathcal{A}^{(2)}=\widehat{7} \rightarrow V^{(2)}=\sqrt{2}=\sqrt{2}$

Derivation of nuclear forces

Old-fashioned time-ordered perturbation theory

Weinberg '90,'91; Ordonez et al. '92,'94; van Kolck '94
Consider mesons interacting with non-relativistic nucleons:

$$
H=H_{0}+H_{I}, \quad H_{I}=\ldots \quad \vdots+\frac{\vdots}{\vdots}+\ldots
$$

Schrödinger equation:

nucleonic states $|N\rangle,|N N\rangle, \ldots$

$$
\left.\left(\begin{array}{cc}
\eta H \eta & \eta H \lambda \\
\lambda H \eta & \lambda H \lambda
\end{array}\right)\binom{|\phi\rangle}{|\psi\rangle}=E\binom{|\phi\rangle}{|\psi\rangle} \quad \longleftarrow \quad \begin{array}{l}
\text { can not solve } \\
\text { (infinite-dimens }
\end{array}\right)=\left(\begin{array}{l}
\text { sates with mesons }|N \pi\rangle,|N \pi \pi\rangle, \ldots
\end{array}\right.
$$

Effective Schrödinger equation for $|\phi\rangle$:

$$
\begin{aligned}
|\psi\rangle=\frac{1}{E-\lambda H \lambda} H|\phi\rangle & \Longleftrightarrow\left(H_{0}+V_{\mathrm{eff}}^{\mathrm{t}-\mathrm{o}}(E)\right)|\phi\rangle=E|\phi\rangle \\
\text { where } \quad V_{\mathrm{eff}}^{\mathrm{t}-\mathrm{o}}(E) & =\eta H_{I} \eta+\eta H_{I} \lambda \frac{1}{E-\lambda H \lambda} \lambda H_{I} \eta \\
& =\eta H_{I} \eta+\eta H_{I} \frac{\lambda}{E-H_{0}} H_{I} \eta+\eta H_{I} \frac{\lambda}{E-H_{0}} H_{I} \frac{\lambda}{E-H_{0}} H_{I} \eta+\ldots
\end{aligned}
$$

- $V_{\text {eff }}^{\mathrm{t}-\mathrm{o}}$ depends on E
- $|\phi\rangle$ not orthonormal: $\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\left\langle\Psi_{i} \mid \Psi_{j}\right\rangle-\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\delta_{i j}-\left\langle\phi_{i}\right| H_{I}\left(\frac{1}{E-\lambda H \lambda}\right)^{2} H_{I}\left|\phi_{j}\right\rangle$

Derivation of nuclear forces

Method of unitary transformation

Taketani, Mashida, Ohnuma'52, Okubo '54, E.E., Glöckle, Meißner '98,'00, '05
Find a unitary operator U such that: $\quad \tilde{H} \equiv U^{\dagger}\left(\begin{array}{cc}\eta H \eta & \eta H \lambda \\ \lambda H \eta & \lambda H \lambda\end{array}\right) U=\left(\begin{array}{cc}\eta \tilde{H} \eta & 0 \\ 0 & \lambda \tilde{H} \lambda\end{array}\right)$

- no dependence on energy (per construction),
- unitary transformation preserves the norm of $|\phi\rangle$

How to compute U ?

It is convenient to parameterize U in terms of the operator $A=\lambda A \eta$ (Okubo '54):

$$
U=\left(\begin{array}{cc}
\eta\left(1+A^{\dagger} A\right)^{-1 / 2} & -A^{\dagger}\left(1+A A^{\dagger}\right)^{-1 / 2} \\
A\left(1+A^{\dagger} A\right)^{-1 / 2} & \lambda\left(1+A A^{\dagger}\right)^{-1 / 2}
\end{array}\right)
$$

Require that $\eta \tilde{H} \lambda=\lambda \tilde{H} \eta=0 \quad \lambda \quad \lambda(H-[A, H]-A H A) \eta=0$
The major problem is to solve the nonlinear decoupling equation.
Notice: similar methods widely used in particle \& nuclear physics (Lee-Suzuki) and to deal with few- and many-body problems.

Derivation of nuclear forces

Example: expansion in powers of the coupling constant

$$
H_{I}=\square \propto g \quad \Longleftrightarrow \text { ansatz: } A=A^{(1)}+A^{(2)}+A^{(3)}+\ldots
$$

Recursive solution of the decoupling equation $\lambda(H-[A, H]-A H A) \eta=0$

$$
\left.\begin{array}{lll}
g^{1}: & \lambda\left(H_{I}-\left[A^{(1)}, H_{0}\right]\right) \eta=0 & \Longleftrightarrow \\
g^{2}: & \lambda\left(H_{I} A^{(1)}-\left[A^{(2)}, H_{0}\right]\right) \eta=0 & \Longleftrightarrow \\
E_{\eta}-E_{\lambda}
\end{array}\right] \quad A^{(2)}=-\lambda \frac{H_{I} A^{(1)}}{E_{\eta}-E_{\lambda}} \eta
$$

In the static approximation, i.e. in the limit $m \rightarrow \infty$, one has: $E_{\eta}-E_{\lambda} \sim E_{\pi}$. One obtains:
$V_{\text {eff }}=-\eta H_{I} \frac{\lambda}{E_{\pi}} H_{I} \eta$
$-\eta H_{I} \frac{\lambda}{E_{\pi}} H_{I} \frac{\lambda}{E_{\pi}} H_{I} \frac{\lambda}{E_{\pi}} H_{I} \eta+\frac{1}{2} \eta H_{I} \frac{\lambda}{E_{\pi}} H_{I} \eta H_{I} \frac{\lambda}{E_{\pi}^{2}} H_{I} \eta+\frac{1}{2} \eta H_{I} \frac{\lambda}{E_{\pi}^{2}} H_{I} \eta H_{I} \frac{\lambda}{E_{\pi}} H_{I} \eta+\ldots$

Derivation of nuclear forces

Consider self-energy insertions at 2 non-interacting nucleons:
Expect no contributions to the 2N Hamilton operator!

- old-fashioned perturbation theory

$$
\begin{aligned}
V_{\mathrm{eff}}^{\mathrm{t}-\mathrm{o}} & =-\eta H_{I} \frac{\lambda}{E_{\pi}} H_{I} \frac{\lambda}{E_{\pi}} H_{I} \frac{\lambda}{E_{\pi}} H_{I} \eta \\
& =\mathcal{M}\left(-\frac{2}{\omega_{1} \omega_{2}\left(\omega_{1}+\omega_{2}\right)}-\frac{1}{\omega_{1}^{2}\left(\omega_{1}+\omega_{2}\right)}-\frac{1}{\omega_{2}^{2}\left(\omega_{1}+\omega_{2}\right)}\right) \\
& =\mathcal{M}\left(-\frac{1}{\omega_{1}^{2} \omega_{2}}-\frac{1}{\omega_{1} \omega_{2}^{2}}\right)
\end{aligned}
$$

common isospin, spin \& momentum structure (depends on the form of H_{I})
What is wrong ??

- method of unitary transformation Additional contributions (wave-function renormalization)

$V_{\mathrm{eff}}=V_{\mathrm{eff}}^{\mathrm{t}-\mathrm{o}}+\frac{1}{2} \eta H_{I} \frac{\lambda}{E_{\pi}} H_{I} \eta H_{I} \frac{\lambda}{E_{\pi}^{2}} H_{I} \eta+\frac{1}{2} \eta H_{I} \frac{\lambda}{E_{\pi}^{2}} H_{I} \eta H_{I} \frac{\lambda}{E_{\pi}} H_{I} \eta=V_{\mathrm{eff}}^{\mathrm{t}-\mathrm{o}}+\mathcal{M}\left(\frac{1}{\omega_{1}^{2} \omega_{2}}+\frac{1}{\omega_{1} \omega_{2}^{2}}\right)=0$

Derivation of nuclear forces

Application to chiral Lagrangians (E.E. et al., '98)

chiral expansion

Power counting

Count powers of Q using dimensional analysis Alternatively: count powers of Λ !

The only source of Λ are the coupling constants

$$
\nu=-2+\sum_{i} V_{i} \kappa_{i}
$$

$\mathcal{L}_{i}=c_{i}\left(N^{\dagger}(\ldots) N\right)^{\frac{n_{i}}{2}} \pi^{p_{i}}\left(\partial_{\mu}, M_{\pi}\right)^{d_{i}} \quad \Rightarrow \quad\left[c_{i}\right]=(\text { mass })^{-\kappa_{i}} \quad$ with $\quad \kappa_{i}=d_{i}+\frac{3}{2} n_{i}+p_{i}-4$

Remember:

$$
\begin{aligned}
& \kappa_{i}<0-\text { relevant (superrenorm.) } \\
& \kappa_{i}=0 \text { - marginal (renorm.) } \\
& \kappa_{i}>0 \text { - irrelevant (nonrenorm.) }
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& N^{\dagger} \boldsymbol{\tau} \vec{\sigma} N \cdot \vec{\nabla} \boldsymbol{\pi} \longrightarrow \kappa_{i}=1 \\
& \left(N^{\dagger} N\right)\left(N^{\dagger} N\right) \longrightarrow \kappa_{i}=2
\end{aligned}
$$

- expansion in coupling constant $\left(H_{i} \sim g^{n_{i}}\right) \longleftrightarrow$ chiral expansion $\left(H_{i} \sim(Q / \Lambda)^{\kappa_{i}}\right)$
- perturbation theory works since all $\kappa_{i}>0$ (as a consequence of χ-symmetry)

Derivation of nuclear forces

Example: chiral 2π-exchange potential proportional to $\mathrm{g}_{\mathrm{A}}{ }^{4}$:

$$
\begin{aligned}
V_{2 \pi}^{(2)}(q) & =-\eta H_{I} \frac{\lambda}{E_{\pi}} H_{I} \frac{\lambda}{E_{\pi}} H_{I} \frac{\lambda}{E_{\pi}} H_{I} \eta+\frac{1}{2} \eta H_{I} \frac{\lambda}{E_{\pi}} H_{I} \eta H_{I} \frac{\lambda}{E_{\pi}^{2}} H_{I} \eta+\frac{1}{2} \eta H_{I} \frac{\lambda}{E_{\pi}^{2}} H_{I} \eta H_{I} \frac{\lambda}{E_{\pi}} H_{I} \eta \\
& =-\frac{g_{A}^{4}}{2\left(2 F_{\pi}\right)^{4}} \int \frac{d^{3} l}{(2 \pi)^{3}} \frac{\omega_{+}^{2}+\omega_{+} \omega_{-}+\omega_{-}^{2}}{\omega_{+}^{3} \omega_{-}^{3}\left(\omega_{+}+\omega_{-}\right)}\left\{\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}\left(\vec{l}^{2}-\vec{q}^{2}\right)^{2}+6\left(\vec{\sigma}_{2} \cdot[\vec{q} \times \vec{l}]\right)\left(\overrightarrow{\sigma_{1}} \cdot[\vec{q} \times \vec{l}]\right)\right\} \\
& =-\frac{g_{A}^{4}}{384 \pi^{2} F_{\pi}^{4}}\left[\boldsymbol{\tau}_{1} \cdot \sqrt{(\vec{q} \pm \vec{l})+4 M_{\pi}^{2}}\right.
\end{aligned}
$$

where the loop function is given by (in DR):

$$
L(q)=\frac{1}{q} \sqrt{4 M_{\pi}^{2}+q^{2}} \ln \frac{\sqrt{4 M_{\pi}^{2}+q^{2}}+q}{2 M_{\pi}}
$$

The integral has logarithmic and quadratic divergences can be absorbed into short-range terms:

$$
\begin{aligned}
V_{\mathrm{cont}} & =\left(\alpha_{1}+\alpha_{2} q^{2}\right) \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}+\alpha_{3}\left(\vec{\sigma}_{1} \cdot \vec{q}\right)\left(\vec{\sigma}_{2} \cdot \vec{q}\right) \\
& +\alpha_{4}\left(\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right) q^{2}
\end{aligned}
$$

Further reading

Nuclear potentials from field theory

- Tamm, J. Phys. (USSR) 9 (45) 449; Dancoff, Phys. Rev. 78 (50) 382
- Okubo, Prog. Theor. Phys. (Japan) 12 (54) 603
- Fukuda, Sawada, Taketani, Prog. Theor. Phys. (Japan) 12 (54) 156
- Friar, Ann. Phys. 104 (77) 380
- Phillips, Reports on Progress in Physics XXII (59) 562 [review article]

Derivation of the nuclear force from chiral EFT (selected papers)

- Weinberg, Nucl. Phys. B363 (91) 3
- Ordonez, Ray, van Kolck, Phys. Rev. C53 (96) 2086
- Kaiser, Brockmann, Weise, Nucl. Phys. A625 (97) 758
- EE, Glöckle, Meißner, Nucl. Phys. A714 (03) 535
- EE, Prog. Part. Nucl. Phy.s. 57 (06) 654 [review article]; arXiv:1001.3229 [nucl-th] [lecture notes]
- EE, Hammer, Meißner, Rev. Mod. Phys. 81 (09) 1773 [review article]

Nuclear forces from chiral ET

