Hadron-Hadron Interactions from Lattice QCD

Takumi Doi

(Univ. of Tsukuba)
for HAL QCD Collaboration

S. Aoki, K. Sasaki (Univ. of Tsukuba)
T. Hatsuda, N. Ishii (Univ. of Tokyo)
Y. Ikeda (RIKEN)
T. Inoue (Nihon Univ.)
K. Murano (KEK)
H. Nemura (Tohoku Univ.)
eting @ TIFR

Hadron-Hadron Interactions from Lattice QCD

Takumi Doi
 (Univ. of Tsukuba) for HAL QCD Collaboration

- Motivation
- Formulation for NN potential in Lattice QCD
- Extension to YN, YY potentials
- Recent progress on Three Nucleon Force (TNF)
- Summary and Outlook

Motivation

Understand the various phenomena from fundamental theory

- Nuclei
- Neutron star
- SuperNova

Nuclear Force is the key concept which bridges (effective) DOF in different hierarchy

Phenomenological NN potential

(~ 40 parameters to fit 5000 phase shift data)

Nuclear Force from Experiments

- Potential is constructed so as to reproduce the NN phase shift (or, S-matrix)

Various applications: few/ many-body

 system of nuclei, EOS of Nuclear matter..
Nuclear Force from QCD

- First principle calculation of QCD

Y. Nambu, "Quarks : Frontiers in Elementary Particle Physics", World Scientific (1985)

"Even now, it is impossible to completely describe nuclear forces beginning with a fundamental equation. But since we know that nucleons themselves are not elementary, this is like asking if one can exactly deduce the characteristics of a very complex molecule starting from Schroedinger equation, a practically impossible task."

Lattice QCD as 1st principle calc

- well-defined statistical system (finite a and L)
- gauge invarinat
- fully non-perturbative

Monte-Calro simulations

Quenched QCD : neglects creation-anihilation of quark-anitiquak pair Full QCD : includes creation-anihilation of quark-anitiquak pair

Status of Lattice QCD

- hadron masses (g.s.)

$\mathrm{Nf}=2+1$ clover fermion
$\mathrm{V}=32^{3} \mathrm{X} 64, \mathrm{~L}=2.9 \mathrm{fm}$,
$\mathrm{a}=0.09 \mathrm{fm}(1 / \mathrm{a}=2.18 \mathrm{GeV})$
$\mathrm{m} \pi(\mathrm{min})=156 \mathrm{MeV}$

PACS-CS Collab., PRD79(2009)034503

> 3\% accuracy at present

\perp Lattice QCD as 1st principle calc

- well-defined statistical system (finite a and L)
- gauge invarinat
- fully non-perturbative

Monte-Calro simulations

Quenched QCD : neglects creation-anihilation of quark-anitiquak pair Full QCD : includes creation-anihilation of quark-anitiquak pair

Nuclear Force from Lattice QCD [HAL QCD strategy]

- Potential is constructed so as to reproduce the NN phase shift (or, S-matrix)
- Nambu-Bethe-Salpeter(NBS) wave function

$$
\psi(\vec{r})=\langle 0| N(\vec{x}+\vec{r}, t) N(\vec{x}, t)|2 N\rangle
$$

- Key concept: asymptotic region \longleftrightarrow phase shift

$$
\left(\nabla^{2}+k_{\delta}^{2}\right) \psi(\vec{r})=0, \quad r>R
$$

- Define the potential at interaction region

$$
\left(\nabla^{2}+k_{\delta}^{2}\right) \psi(\vec{r})=\int d r^{\prime} U\left(\vec{r}, \overrightarrow{r^{\prime}}\right) \psi\left(\overrightarrow{r^{\prime}}\right), \quad r<R
$$

- Non-local, but E-independent potential

Luscher, NPB354(1991)531
C.-J.Lin et al., NPB619(2001)467 CP-PACS Coll., PRD71(2005)094504

Aoki-Hatsuda-Ishii PTP123(2010)89

Effective Schrodinger equation with E-independent potential

$K(\vec{x} ; E) \equiv\left(\vec{\nabla}^{2}+k^{2}\right) \psi(\vec{x} ; E) \quad$ [START] local but E-dep pot. ($\mathbf{L}^{3} \mathrm{xL}^{3}$ dof)

(1) We assume $\psi(x ; E)$ for different E is linearly independent with each other.
(2) $\psi(x$; E) has a "left inverse" as an integration operator as

$$
E \equiv 2 \sqrt{m_{N}^{2}+k^{2}}
$$

$$
\int d^{3} x \tilde{\psi}\left(\vec{x} ; E^{\prime}\right) \psi(\vec{x} ; E)=2 \pi \delta\left(E-E^{\prime}\right)
$$

(3) $K(x ; E)$ can be factorized as

$$
\equiv m_{N} U(\vec{x}, \vec{y})
$$

$$
\begin{aligned}
K(\vec{x} ; E) & =\int \frac{d E^{\prime}}{2 \pi} K\left(\vec{x} ; E^{\prime}\right) \times \int d^{3} 3 \bar{\psi}\left(\vec{y} ; E^{\prime}\right) \psi(\vec{y} ; E) \\
& =\int d^{3} y\left\{\sum_{\alpha} \int \frac{d E^{\prime}}{2 \pi} K\left(\vec{x} ; E^{\prime}\right) \tilde{\psi}\left(\vec{y} ; E^{\prime}\right)\right\} \psi(\vec{y} ; E)
\end{aligned}
$$

(4) We are left with an effective Schrodinger equation with an E-independent potental U .

$$
\left(\vec{\nabla}^{2}+k^{2}\right) \psi(\vec{x} ; E)=m_{N} \int d^{3} y U(\vec{x}, \vec{y}) \psi(\vec{y} ; E)
$$

Nuclear Force from Lattice QCD [HAL QCD strategy]

- Potential is constructed so as to reproduce the NN phase shift (or, S-matrix)
- Nambu-Bethe-Salpeter(NBS) wave function

$$
\psi(\vec{r})=\langle 0| N(\vec{x}+\vec{r}, t) N(\vec{x}, t)|2 N\rangle
$$

- Key concept: asymptotic region \longleftrightarrow phase shift

$$
\left(\nabla^{2}+k_{\delta}^{2}\right) \psi(\vec{r})=0, \quad r>R
$$

Luscher, NPB354(1991)531

- Define the potential at interaction region

$$
\left(\nabla^{2}+k_{\delta}^{2}\right) \psi(\vec{r})=\int d r^{\prime \prime} U\left(\vec{r}, \overrightarrow{r^{\prime}}\right) \psi\left(\overrightarrow{r^{\prime}}\right), \quad r<R
$$

- Non-local, but E-independent potential
- Velocity expansion

Okubo-Marshak(1958)

$$
U\left(\vec{r}, \overrightarrow{r^{\prime}}\right)=V_{c}(r)+S_{12} V_{\text {LO }}(r)+\vec{L} \cdot \overrightarrow{S_{N L O}} V_{L S}(r)+\underset{\text { NNLO }}{\mathcal{O}\left(\nabla^{2}\right)}
$$

Nuclear Potential (from Lat QCD)

Tensor Potential from Lat QCD

- Tensor operator

$$
S_{12}=3\left(\vec{\sigma}_{1} \cdot \vec{r}\right)\left(\vec{\sigma}_{2} \cdot \vec{r}\right) / r^{2}-\left(\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right)
$$

- Essential to understand the nuclei
- Responsible for deuteron binding
- Hyper nuclei binding ($\Lambda \mathrm{N}-\mathrm{\Sigma} \mathrm{~N}$)

- Coupled channel study in ${ }^{3} \mathrm{~S}_{1}-{ }^{-3} \mathrm{D}_{1}$ channel

$$
\begin{aligned}
& \left(H_{0}+V_{C}+V_{T} S_{12}\right) \psi=E \psi \\
& \psi=\psi_{S}+\psi_{D} \\
& \begin{array}{r}
\psi_{S}(\vec{r})=P \psi(\vec{r})=\frac{1}{24} \sum_{g \in O} \psi\left(g^{-1} \vec{r}\right) \\
\psi_{D}(\vec{r})=Q \psi(\vec{r})=(1-P) \psi(\vec{r}) \\
\\
\square \begin{array}{l}
\mathrm{P} \quad: \text { projection to L=0 } \\
\mathrm{Q}=(1-\mathrm{P}): \text { projection to } \mathrm{L}=2
\end{array} \\
\hline
\end{array} \\
& \begin{array}{l}
P\left(H_{0}+\overline{V_{C}}+V_{T} \beta_{12}\right) \psi=E P \psi \\
Q\left(H_{0}+\overline{V_{C}}+V_{T} \beta_{12}\right) \psi=E Q \psi
\end{array}
\end{aligned}
$$

Tensor Potential from Lat QCD

- Coupled channel study in ${ }^{3} \mathrm{~S}_{1}-{ }^{3} \mathrm{D}_{1}$ channel

Wave function

Potentials

Aoki-Hatsuda-Ishii, PTP 123 (2010) 89

Results from Full QCD Lattice

- Larger Repulsive Core
- Larger Tensor force
(N.B. 1/a is also different)

Quark mass dependence

Lighter mass corresponds to...

- Longer interaction range
- Larger Repulsive Core
- Stronger Tensor Force
- (stronger attraction in Center Force)

Phase shift from potential

Phase shift from potential

Scattering Length

Scatt. Length

(w.f. $\rightarrow \mathrm{k}^{2} \rightarrow$ Luscher's formula)

Attractive Scatt. Length

Further quantitative refinement in progress: precise determination of E and long-range w.f. behavior is essential

Yet, much smaller compared to the experimental values

$$
\begin{aligned}
& a_{0}\left({ }^{1} S_{0}\right) \sim 20 \mathrm{fm} \\
& a_{0}\left({ }^{3} S_{1}\right) \sim-5 \mathrm{fm}
\end{aligned}
$$

Scattering Length

Y.Kuramashi, PTPS122(1996)153

OBEP + lattice hadron masses

EFT

Scattering Length

Challenge in Next-Gen Simulation

Challenge in Next-Gen Simulation

Temporal info (Luscher's formula)

$$
\delta E=-\frac{2 \pi a_{0}}{\mu L^{3}}\left(1+c_{1} \frac{a_{0}}{L}+c_{2} \frac{a_{0}^{2}}{L^{2}}\right)+\mathcal{O}\left(L^{-6}\right)
$$

Spacial info (potential/phase shift)

$$
V(r \rightarrow \infty) \sim e^{-m \pi r} / r \quad \text { Localized! }
$$

Challenge in Next-Gen Talc
We are here

$$
\begin{array}{r}
a_{0}\left({ }^{3} S_{1}\right) \sim-5 \mathrm{fm} \\
\text { B.E. }\left({ }^{2} H\right) \sim 2 \mathrm{MeV} \\
\hline
\end{array}
$$

Challenge in Next-Gen Simulation

J apan＇s next gen computer

－K computer at Kobe，Japan
－10PFlops（2012）

```
次世代スーパーコンピュータ施設 完成イメージ図
```


SPARC64 ${ }^{\text {TM }}$ VIIIfx （C）fujitsu Limited
$K($ Kei $)=10^{16}=10$ Peta

Frequently Asked Questions

[Q1] Is potential observable ? Just give me phase shifts !

- Potential $\mathrm{U}(\mathrm{x}, \mathrm{y})$ is NOT observable, and is NOT unique. However, combination of ($\Phi(x), U(x, y)$) gives observable, which is unique.
- Same situation for QM($\Phi, \mathrm{U})$, QFT($\Phi($ (asym $)$, vertices), EFT(eff. dof, LECs) ... Yet, we use "wave function $\Phi(x)$ " in QM, etc.
- We study potential (in addition to phase shift), because:
- Convenient framework/concept to understand the physics
- Potential is essential to study many-body systems
- c.f. QM: Matrix mechanics vs. Wave mechanics

$$
\begin{aligned}
\text { Lat } & \rightarrow \delta_{E} \rightarrow U(x, y)
\end{aligned} \rightarrow \text { many-body }
$$

- It is very difficult to calculate phase shift at high energy
- Lattice \rightarrow only ground state + a few excited energy states
- Potential (hopefully) contains "useful" off-shell information
- Sys. error by velocity expansion can be checked order by orde

Frequently Asked Questions

[Q1] Is potential observalbe ? Just give me phase shifts !

- Potential $\mathrm{U}(\mathrm{x}, \mathrm{y})$ is NOT observable, and is NOT unique. However, combination of ($\Phi(x), U(x, y)$) gives observable, which is unique.
- Same situation for $\mathrm{QM}(\Phi, \mathrm{U}), \mathrm{QFT}(\Phi($ asym $)$, vertices), EFT(eff. dof, LECs) ... Yet, we use "wave function $\Phi(x)$ " in QM , etc.
- We study potential (in addition to phase shift), because:
- Convenient framework/concept to understand the physics
- Potential is essential to study many-body systems
- c.f. QM: Matrix mechanics vs. Wave mechanics

$$
\begin{aligned}
& \text { Lat } \rightarrow \delta_{E} \rightarrow U(x, y) \\
& \rightarrow \text { many-body } \\
& \text { Lat } \rightarrow \rightarrow U(x, y) \rightarrow \text { many-body }
\end{aligned}
$$

- It is very difficult to calculate phase shift at high energy
- Lattice \rightarrow only ground state + a few excited energy states
- Potential (hopefully) contains "useful" off-shell information
- Sys. error by velocity expansion can be checked order by order

Frequently Asked Questions

[Q1] Is potential observalbe ? Just give me phase shifts !

- Potential $\mathrm{U}(\mathrm{x}, \mathrm{y})$ is NOT observable, and is NOT unique. However, combination of ($\Phi(x), U(x, y)$) gives observable, which is unique.
- Same situation for $\mathrm{QM}(\Phi, \mathrm{U}), \mathrm{QFT}(\Phi($ asym $)$, vertices), EFT(eff. dof, LECs) ... Yet, we use "wave function $\Phi(x)$ " in QM , etc.
- We study potential (in addition to phase shift), because:
- Convenient framework/concept to understand the physics
- Potential is essential to study many-body systems
- c.f. QM: Matrix mechanics vs. Wave machanics

$$
\begin{aligned}
& \text { Lat } \rightarrow \delta_{E} \rightarrow U(x, y) \\
& \rightarrow \text { many-body } \\
& \text { Lat } \rightarrow \rightarrow U(x, y) \rightarrow \text { many-body }
\end{aligned}
$$

- It is very difficult to calculate phase shift at high energy
- Lattice \rightarrow only ground state + a few excited energy states
- Potential (hopefully) contains "useful" off-shell information
- Sys. error by velocity expansion can be checked order by order

Frequently Asked Questions

[Q2] Isrit Potential dependent on the sink operator?

- Yes, the potential is dependent on the choice of the sink operator, since Potential $U(x, y)$ is NOT observable. (\rightarrow go back to the 1st Q\&A)
- One can choose any sink opeartor, and the physical observables (at least phase shift) calculated from that potential remain same
- We choose local operator as convenient choice for the reduction formula
- Good operator \longleftrightarrow small non-locality in potential
- We check the velocity expansion convergence a posteriori

[Q3] How good is velocity expansion of potential ?

- We explicitly checked the validity of expansion using two methods:
- By Energy dependence of LO potential $\mathrm{V}_{\mathrm{C}}(\mathrm{r}) \quad$ K.Murano (HAL Collab.)
- By L^{2} dependence of $V_{C}(r)$
@ Lattice2009, Lattice2010

"Energy dependence" of LO $V_{c}(r)$ in velocity expansion

L^{2} dependence of $\mathrm{V}_{\mathrm{c}}(\mathrm{r})$ in $\mathrm{S}=0$

Towards the prediction from Lattice QCD

- "Realistic" NN potentials have achieved quite a good precision
- ~ 40 parameters for ~ 5000 (high prec) phase shifts, $\chi^{2 / d o f ~} \sim 1$
- Hyperon-Nucleon(YN), Hyperon-Hyperon(YY) potentials
- Large uncertainties in YN, YY potentials, and theoretical predictions are highly awaited
- Huge impact on EoS in high density, Neutron Star Core / Supernova
- "Generalization" of the nuclear force
- \rightarrow what is universal, what is not universal in hadron-hadron interactions ? (e.g. origin of repulsive core)
- Three Baryon Potentials
- The Lattice study of Three Nucleon Force (TNF)

Hyperon potentials (YN, YY)

- Generalized BB force

Hyperon potentials (YN, YY)

- Equation of State at high density

- Hyper nuclei
${ }_{\wedge}^{6} \mathbf{H e}$
- \longleftrightarrow Hyperon interactions ${ }^{4} \mathrm{He}+\Lambda+\Lambda$
- $\wedge \mathrm{N}$ attraction
- $\wedge \wedge$ weak attraction
- No deeply bound H-dibaryon

$$
7.25 \pm 0.1 \mathrm{MeV}
$$

Baryon-baryon interaction

\# $\mathrm{SU}(3) \times \mathbf{S U}(2)$ spin $\Rightarrow \mathbf{S U}(6)$ classification

- The $\mathbf{S U}(6)$ symmetry predicts a strong spin-isospin dependence of the $\Sigma \mathrm{N}$ interaction.
- It also predicts state dependences of the spin-orbit interaction.

Oka-Shimizu-Yazaki, NPA464(1987)700
M. Oka, J-PARC Hadron Salon talk (06/17/2010)

SU(3) study
 BB potentials

$$
\begin{gathered}
a=0.12 \mathrm{fm}, \mathrm{~L}=2 \mathrm{fm}, \\
\mathrm{~m}(\mathrm{PS})=0.84,1.01 \mathrm{GeV}
\end{gathered}
$$

Pauli principle at work !

8s,10: strong repulsive core

8a: weak repulsive core 1s: deep attractive pocket

H-dibaryon in the SU(3) limit world ?

Singlet potential with a certain value of E		Schroedinger eq. predicts a bound stat at $\mathrm{E}<-30 \mathrm{MeV}$			
${ }^{200}$	$V^{(1)}$	E [MeV]	Eo [MeV]	$\sqrt{\left\langle r^{2}\right\rangle}$	[fm]
200		$E=-30$	-0.018	24.7	
\sum_{8}		$E=-35$	-0.72	4.1	
,		$E=-40$	-2.49	2.3	

finite size effect is very large on this volume. (consistent with previous results.) simulations on larger volume is in progress.

$$
V(r)=a_{1} e^{-a_{2} r^{2}}+a_{3}\left(1-e^{-a_{4} r^{2}}\right)^{2}\left(\frac{e^{-a_{0} r}}{r}\right)^{2}
$$

Meson-Baryon system

- KN interaction (S-wave) in I=0, 1

$I=0(u \bar{s}+u d d, d \bar{s}+u u d) \quad I=1(u \bar{s}+u u d)$

Y.Ikeda et al., (HAL QCD Collab.) arXiv: 1002.2309

YN, YY potentials beyond SU(3) limit

$$
m_{\pi}=701 \mathrm{MeV}
$$

Repulsive core is surrounded by attractive well.
> Large spin dependence of repulsive core
$>$ Weak tensor force
$>$ Net interaction is attractive.

Quark mass dependence of $\mathrm{N} /$ potential

With decreasing u and d quark masses,
$>$ Repulsive core is enhanced.
> Attractive well moves to outer region.
> Small quark mass dependence of tensor potential

$$
\begin{gathered}
\mathrm{Nf}=2+1 \text { clover, } \mathrm{L}=2.9 \mathrm{fm}, \\
\mathrm{a}=0.091 \mathrm{fm}(1 / \mathrm{a}=2.18 \mathrm{GeV}) \\
\mathrm{m}(\mathrm{pi})=410-700 \mathrm{MeV}
\end{gathered}
$$

Scatt. length

c.f. NPLQCD: repulsive scatt. length ? PRD81(2010)054505

Coupled channel study

- BB system ($\mathrm{S}=-2, \mathrm{I}=0$)
- small energy difference \rightarrow coupled channel

$$
\left\{\begin{array}{l}
\psi_{\alpha}^{\sum \sum}=\langle 0| \Sigma(\vec{r}) \Sigma(\overrightarrow{0})\left|E_{\alpha}\right\rangle \\
\psi_{\alpha}^{N \equiv}=\langle 0| N(\vec{r}) \equiv(\overrightarrow{0})\left|E_{\alpha}\right\rangle \\
\psi_{\alpha}^{\Lambda \Lambda}=\langle 0| \wedge(\vec{r}) \wedge(\overrightarrow{0})\left|E_{\alpha}\right\rangle
\end{array}\right.
$$

$$
\begin{array}{r}
\left|E_{1}\right\rangle,\left|E_{2}\right\rangle,\left|E_{3}\right\rangle \\
(\alpha=1,2,3) \\
\text { (variational method) }
\end{array}
$$

$m_{\Sigma \Sigma}=2380 \mathrm{MeV}$

120 MeV
$m_{N \equiv}=2260 \mathrm{MeV}$
30 MeV
$m_{\wedge \wedge}=2230 \mathrm{MeV}$

Coupled channel eq.

Irreducible flavor representations begin to mix with each other with decreasing u, d quark mass.
11/25/2010
N-N INteraction meeting @ TIFR

Three Nucleon Force (TNF)

Importance of

Three Nucleon Force (TNF)

- Precise few-body calc:
- e.g. benchmark calc of ${ }^{4} \mathrm{He}$ by 7 methods (NN only)

Method	$\langle T\rangle$	$\langle V\rangle$	E_{b}	$\sqrt{\left\langle r^{2}\right\rangle}$
FY	$102.39(5)$	$-128.33(10)$	$-25.94(5)$	$1.485(3)$
CRCGV	102.30	-128.20	-25.90	1.482
SVM	102.35	-128.27	-25.92	1.486
HH	102.44	-128.34	$-25.90(1)$	1.483
GFMC	$102.3(1.0)$	$-128.25(1.0)$	$-25.93(2)$	$1.490(5)$
NCSM	103.35	-129.45	$-25.80(20)$	1.485
EIHH	$100.8(9)$	$-126.7(9)$	$-25.944(10)$	1.486

$\rightarrow \mathbf{0 . 5 \%}$ prec. for B.E.
H.Kamada et al., PRC64(2001)044001

- NN force cannot reproduce B.E.

$$
\begin{aligned}
& \text { סB.E. }=0.5-1 \mathrm{MeV} \text { for }{ }^{3} \mathrm{H} \quad \text { missing } \\
& \delta B . E .=2-4 \quad \mathrm{MeV} \text { for }{ }^{4} \mathrm{He} \quad \text { men }
\end{aligned}
$$

Attractive TNF necessary

Importance of Three Nucleon Force (TNF)

- Saturation density/energy of nuclear matter also requires TNF
- EOS of neutron star

Repulsive TNF also necessary

- Flavor universal TNF (repulsive) ?
A.Akmal et al., PRC58(1998)1804

Takatsuka et al., PTPS174(2008)80

Importance of Three Nucleon Force (TNF)

- The effect on the nuclear chart t.otsuka et al., PRL105(2010)032501
- anomaly in drip line and magic numbers by TNF
- Ay puzzle in N-d, N-A scatt., etc. (TNF may worsen the situation)

Importance of Three Nucleon Force (TNF)

- The effect on the nuclear chart
- anomaly in drip line and nontrivial magic number in neutron rich nuclei by TNF

T.Otsuka et al., PRL105(2010)032501
J.D.Holt et al., arXiv: 1009.5984

Nucleosynthesis by Supernova

Importance of Three Nucleon Force (TNF)

- Precise few-body calc: NN force cannot reproduce B.E.

$\delta B . E .=0.5-1 \mathrm{MeV}$ for ${ }^{3} \mathrm{H}$
$\delta B . E=2-4 \quad \mathrm{MeV}$ for ${ }^{4} \mathrm{He}$

Attractive TNF necessary

- Saturation density/energy of nuclear matter also requires TNF
- EOS of neutron star
A.Akmal et al., PRC58(1998)1804

Takatsuka et al., PTPS174(2008)80

- Flavor universal TNF (repulsive) ?
- The effect on the nuclear chart t.Otsuka et al., PRLL105(2010)032501
- anomaly in drip line and magic numbers by TNF
- Ay puzzle in N-d, N-A scatt., etc. (TNF may worsen the situation)

Three Nucleon Force (TNF)

- It is natural to expect the existence of TNF
- It is very nontrivial to determine TNF from QCD
- $2 \pi \mathrm{E}-\mathrm{TNF}$ Fujita-Miyazawa, PTP17(1957)360
- Off-energy-shell $\pi \mathrm{N}$ scatt

π^{π}	\square	$\pi \Delta^{\pi}$	- $-\frac{\pi}{}$

- EFT expansion \rightarrow TNF appears at NNLO order
- Phenomenological short-range repulsion is necessary
- $2 \pi \mathrm{E}-\mathrm{TNF}$ too attractive, often suppressed (artificially) by form factor
- NB: the combination of (2NF,3NF) \rightarrow observables

U.v.Kolck, PRC49(1994)2932

Epelbaum, Prog.Part.Nucl.Phys.57(06)654

How can we tackle TNF in Lattice QCD ?

- In the case of 2N system... $\psi(\vec{r})=\langle 0| N(\vec{x}+\vec{r} ; t) N(\vec{x} ; t)|2 N\rangle$
$\rightarrow \quad\left(E-H_{0}\right) \psi(\vec{r})$

$$
|2 N\rangle=\bar{N}_{s r c}(t=0) \bar{N}_{s r c}(t=0)|0\rangle
$$

$$
=\left[V_{c}(r)+S_{12} V_{T}(r)+\cdots\right] \psi(r)
$$

- Obtain TNF through

$$
\left(E-H_{0}^{r}-H_{0}^{\rho}\right) \psi(\vec{r}, \vec{\rho})=\left[\frac{\sum_{i<j} V_{i j}\left(\vec{r}_{i j}\right)}{\widehat{ }}+V_{T N F}(\vec{r}, \vec{\rho})\right] \psi(\vec{r}, \vec{\rho})
$$

- Difficulty(1): volume factor
- 2N: naïve $O\left(L^{6}\right)$ calc $\rightarrow O\left(L^{3} \log L^{3}\right)$
- 3N: naïve $O\left(L^{9}\right)$ calc $\rightarrow O\left(L^{6} \log L^{6}\right)$
- Difficulty(2): naïve calc of quark dof grows in factorial ($\sim N_{u}$! N_{d} !)
- 2N: O(L³) X N wick \times color/spinor loops
- 3N: O(L6) $\times \mathrm{N}_{\text {wick }} \times$ color/spinor loops

How can we tackle TNF in Lattice QCD ? (cont'd)

- We studied the effective 2 N potential in 3 N system $\left({ }^{3} \mathrm{H}\right)$
$\left(E-H_{0}^{r}\right) \phi(\vec{r})=\left[V_{12}(\vec{r})+\delta V_{e f f}(\vec{r})\right] \phi(\vec{r})$
$=\left[V_{12}(\vec{r}) \phi(\vec{r})+\int d \vec{\rho}\left(V_{13}(\vec{r}, \vec{\rho})+V_{23}(\vec{r}, \vec{\rho})+V_{T N F}(\vec{r}, \vec{\rho}) \psi(\vec{r}, \vec{\rho})\right]\right.$
- Relatively small calc cost (yet, still much expensive than 2N)
- Good precision achieved thanks to the sum over spectator particle

- Indirect access to TNF (due to off-diag 2N), and the effect of TNF is "smeared" by spacial average with triton wave function
- Calculation for fixed 3D-configuration of 3N system
- Direct access to TNF is possible!
- \rightarrow We can explore the various features of TNF (spin/isospin/spacial, etc.)
- Much more expensive calc cost (O(10-100) factor) and yet worse S / N
- We study linear setup

How can we tackle TNF in Lattice QCD ? (cont'd)

- We studied the effective 2 N potential in 3 N system (34) $\left(E-H_{0}^{\circ}\right) \phi(t)=V_{12}(r)+\delta V_{V / V}(r) \phi(r)$
- Relatively small caic cost (yet, still much expensive than 2 N)
- Good precision achieved thanks to the sum over spectator particie
a Indirect access to TNF (due to off-diag 2 N), and the effect of TNF is "smeared" by spacial average with triton wave function
- Calculation for fixed 3D-configuration of 3N system
- Direct access to TNF is possible!
- \rightarrow We can explore the various features of TNF (spin/isospin/spacial, etc.)
- Much more expensive calc cost ($\mathbf{O}(\mathbf{1 0 - 1 0 0})$ factor) and yet worse S / N
- We study linear setup

Features of Linear setup for ${ }^{3} \mathrm{H}$

- Simplified coupled channel analysis possible
- The vector to 3rd particle $\vec{\rho}=\overrightarrow{0}$
- $\Rightarrow \mathrm{L}^{(1,2) \text {-pair }}=\mathrm{L}^{\text {total }}=0$ or 2 only

- \rightarrow Possible bases are only three, which can be labeled by 1S0, 3S1, 3D1 for (1,2)-pair
- However, in order to determine TNF in 3x3 coupled channel, we need information of parity-odd potential
- Although (1,2)-pair is L=even, $(3,1),(2,3)$-pair have $L=$ odd components
- Partial wave expansion with different J acobi setup is impossible, since we do not have full wave function (only linear setup)
- Parity-odd potential from lattice QCD (still) in progress
- $\rightarrow 3 \times 3$ channel, but unknown $\mathrm{V}_{\mathrm{C}}^{1,5=0,0}, \mathrm{~V}_{\mathrm{C}}^{1, \mathrm{~S}=1,1}, \mathrm{~V}_{\mathrm{T}}^{1,5=1,1}, \mathrm{TNF}(\mathrm{s})$

Solution using

"symmetric" wave function

- Rotate the basis $\left.\left.\quad\left|\psi_{1 S_{0}}\right\rangle,\left\langle\psi_{3_{S_{1}}}\right\rangle,\left|\psi_{3_{D_{1}}}\right\rangle —\left|\psi_{S}\right\rangle| | \psi_{M}\right\rangle\right\rangle\left|\psi_{3_{D_{1}}}\right\rangle$

$$
\left|\psi_{S}\right\rangle=1 / \sqrt{2}\left(-\left|\psi_{1_{S_{0}}}\right\rangle+\left|\psi_{3_{S_{1}}}\right\rangle\right) \quad\left|\psi_{M}\right\rangle=1 / \sqrt{2}\left(+\left|\psi_{1 S_{0}}\right\rangle+\left|\psi_{3_{S_{1}}}\right\rangle\right)
$$

- We can construct the wave function in which any 2 N pair is spin/isospin anti-symmetric

$$
\begin{array}{r}
\left|\psi_{S}\right\rangle=1 / \sqrt{6}\left[-\left(p_{\uparrow} n_{\uparrow}-n_{\uparrow} p_{\uparrow}\right) n_{\downarrow}\right. \\
-\left(n_{\uparrow} n_{\downarrow}-n_{\downarrow} n_{\uparrow}\right) p_{\uparrow}
\end{array}
$$

$$
+1 / 2\left(p_{\uparrow} n_{\downarrow}+n_{\uparrow} p_{\downarrow}-p_{\downarrow} n_{\uparrow}-n_{\downarrow} p_{\uparrow}\right) n_{\uparrow}
$$

$$
\left.+1 / 2\left(p_{\uparrow} n_{\downarrow}-n_{\uparrow} p_{\downarrow}+p_{\downarrow} n_{\uparrow}-n_{\downarrow} p_{\uparrow}\right) \quad n_{\uparrow}\right] \quad(\leftarrow I=0, S=1)
$$

- \rightarrow L=even for any 2N pair automatically guaranteed

Solution using

"symmetric" wave function

- Rotate the basis
$\left.\left.\left(\left|\psi_{1 S_{0}}\right\rangle\right),\left(\psi_{3 S_{1}}\right\rangle\right)\left|\psi_{B_{D_{1}}}\right\rangle \rightarrow\left|\psi \psi_{S}\right\rangle,\left|\psi_{M}\right\rangle\right\rangle\left|\psi_{3_{D_{1}}}\right\rangle$
$\left|\psi_{S}\right\rangle=1 / \sqrt{2}\left(-\left|\psi_{1_{S_{0}}}\right\rangle+\left|\psi_{3_{S_{1}}}\right\rangle\right) \quad\left|\psi_{M}\right\rangle=1 / \sqrt{2}\left(+\left|\psi_{1_{S_{0}}}\right\rangle+\left|\psi_{3_{S_{1}}}\right\rangle\right)$
- We can construct the wave function in which any 2 N pair is spin/isospin anti-symmetric

- \rightarrow L=even for any $2 N$ pair automatically guaranteed
- 3×3 coupled channel is reduced to
- one channel with only TNF unknown
(L^{2}-dep ignored)
- two channels with $\mathrm{V}_{\mathrm{C}}{ }^{1, S=0,0}, \mathrm{~V}_{\mathrm{C}}{ }^{1, S=1,1}, \mathrm{~V}_{\mathrm{T}}^{1, S=1,1}$,(TNF) unknown
- \rightarrow Even without parity-odd V, we can determine one TNF
- This methodology works for any fixed 3D-conf other than linear 11/25/2010

Repulsive TNF (TNR)

- We determine TNF assuming scalar/isoscalar
- Phenomenologically introduced to reproduce saturation density/energy of nuclear matter, etc.

Plot of TNR only:
there is cancellation from TNA

Lattice calculation setup

- $\mathrm{Nf}=2$ dynamical clover fermion + RG improved gauge configs (CP-PACS)
- 598 configs $X 16$ measurements
- beta=1.95, ($\left.a^{-1}=1.27 \mathrm{GeV}, a=0.156 f m\right)$
- $16^{3} \times 32$ lattice, $L=2.5 f m$
- Kappa(ud) $=0.13750$
- $\mathrm{M}(\pi)=1.13 \mathrm{GeV}$
- $M(N)=2.15 \mathrm{GeV}$
- $\mathrm{M}(\Delta)=2.31 \mathrm{GeV}$

CP-PACS Coll. S. Aoki et al., Phys. Rev. D65 (2002) 054505

BGL@KEK
[E: D67 (2003) 059901]

- Techniques
- Automatic Wick contraction code to handle 4 up- and 5 down-quarks
- Non-rela limit op is used to create 3 N state at source

$$
N^{s r c}=\epsilon_{a b c}\left(u_{a}^{T} C \gamma_{5} \frac{1+\gamma_{4}}{2} d_{b}\right) \frac{1+\gamma_{4}}{2} u_{c}
$$

\rightarrow Factor of $2^{3}=8$ faster

Results for wave functions

Genuine Three Nucleon Force

Scalar/ I soscalar TNF

I ndication of short-range repulsive TNF

Note:

GS saturation may not be sufficient Constant energy shift not included
$\rightarrow O(10) M e V ~ s h i f t ~ p o s s i b l e ~$

$$
\mathrm{M}(\pi)=1.13 \mathrm{GeV}
$$

Genuine Three Nucleon Force

Scalar/ I soscalar TNF

Comparison with improved Laplacian op.

】
Discretization error in Laplacian op. is small
$\begin{array}{ll}\nabla_{s t d}^{2} f(\vec{x})=\frac{1}{a^{2}} \sum_{i}\left[f\left(\vec{x}+a_{i}\right)+f\left(\vec{x}-a_{i}\right)-2 f(\vec{x})\right] & =\nabla^{2} f(\vec{x})+\mathcal{O}\left(a^{2}\right) \\ \nabla_{p r c t}^{2} f(\vec{x})=\frac{1}{-12 a^{2}} \sum_{i}\left[-\left(f\left(\vec{x}+2 a_{i}\right)+f\left(\vec{x}-2 a_{i}\right)\right)+16\left(f\left(\vec{x}+a_{i}\right)+f\left(\vec{x}-a_{i}\right)\right)-30 f(\vec{x})\right]=\nabla^{2} f(\vec{x})+\mathcal{O}\left(a^{4}\right)\end{array}$

Summary/Outlook

- Potentials from Lattice QCD using NBS wave function
- Central and tensor potentials in parity-even channel
- Qualitative features of NN potentials are reproduced, Velocity expansion checked
- Significant step toward Nuclear Physics from QCD
- Lattice QCD can give useful predictions on unknown potentials
- YN, YY: Strangeness physics, hyperon matter in neutron star, SU(3) \& beyond SU(3)
- Meson-Baryon: N-K, N-ccbar (Kawanai-Sasaki), Q-Qbar: (I ida-I keda)
- The First calculation on Three Nucleon Force (TNF) from Lattice QCD
- 2 N subtraction is possible using only parity-even potentials
- Calculation of linear setup of $3 \mathrm{~N}\left({ }^{3} \mathrm{H}\right)$ system
- Indication of Repulsive TNF at short distance, further studies ongoing
- Various complementary approaches useful
- Operator-Product-Expansion (Aoki-Balog-Weisz)
- Lattice nuclei (Yamazaki-Kuramashi-Ukawa)
- Strong-coupling limit (de Forcrand-Fromm)
- Outlook
- Realistic potentials (and phase shifts) with physically light masses w/ large volume
- Parity-odd potentials, Higher derivative terms (LS-force and more) \rightarrow More TNFs
- Understand the insight of nuclei: lattice nuclei vs. lattice potentials +ab initio calc.
- Resonances from potentials ? (ρ, Δ, H-dibaryon, exotics...)
- TNF: other 3D-conf (triangle etc.) for spacial info, $\mathrm{I}=3 / 2, \mathrm{SU}(2)_{\mathrm{f}} \rightarrow \mathrm{SU}(3)_{\mathrm{f}}$: Astro physics

