Hadron-Hadron Interactions from Lattice QCD

Takumi Doi

(Univ. of Tsukuba)

for HAL QCD Collaboration

- S. Aoki, K. Sasaki (Univ. of Tsukuba)
- T. Hatsuda, N. Ishii (Univ. of Tokyo)
- Y. Ikeda (RIKEN)
- T. Inoue (Nihon Univ.)
- K. Murano (KEK)
- H. Nemura (Tohoku Univ.)

11/25/2010

Hadron-Hadron Interactions from Lattice QCD

Takumi Doi

(Univ. of Tsukuba)

for HAL QCD Collaboration

- Motivation
- Formulation for NN potential in Lattice QCD
- Extension to YN, YY potentials
- Recent progress on Three Nucleon Force (TNF)
- Summary and Outlook

Motivation

Understand the various phenomena from <u>fundamental theory</u>

- Nuclei
- Neutron star
- SuperNova

Nuclear Force is the key concept which bridges (effective) DOF in different hierarchy

Phenomenological NN potential

(~40 parameters to fit 5000 phase shift data)

11/25/2010

Nuclear Force from Experiments

Potential is constructed so as to reproduce the NN phase shift (or, S-matrix)

5

Nuclear Force from QCD

First principle calculation of QCD

Y. Nambu, "Quarks : Frontiers in Elementary Particle Physics", World Scientific (1985)

"Even now, it is impossible to completely describe nuclear forces beginning with a fundamental equation. But since we know that nucleons themselves are not elementary, this is like asking if one can exactly deduce the characteristics of a very complex molecule starting from Schroedinger equation, a practically impossible task."

Lattice QCD as 1st principle calc

Full QCD : includes creation-anihilation of quark-anitiquak pair

Lattice QCD as 1st principle calc

- gauge invarinat
- fully non-perturbative

Monte-Calro simulations

Quenched QCD : neglects creation-anihilation of quark-anitiquak pair Full QCD : includes creation-anihilation of quark-anitiquak pair

Nuclear Force from Lattice QCD [HAL QCD strategy]

- Potential is constructed so as to reproduce the NN phase shift (or, S-matrix)
- Nambu-Bethe-Salpeter(NBS) wave function

 $\psi(\vec{r}) = \langle 0 | N(\vec{x} + \vec{r}, t) N(\vec{x}, t) | 2N \rangle$

- Key concept: asymptotic region $\bigstar \Rightarrow$ phase shift $(\nabla^2 + k_{\delta}^2)\psi(\vec{r}) = 0, \quad r > R$
- Define the potential at interaction region $(\nabla^2 + k_{\delta}^2)\psi(\vec{r}) = \int d\vec{r'}U(\vec{r},\vec{r'})\psi(\vec{r'}), \quad r < R$
 - Non-local, but <u>E-independent</u> potential

(only practically), but we can **improve order by order**

Luscher, NPB354(1991)531

C.-J.Lin et al., NPB619(2001)467 CP-PACS Coll., PRD71(2005)094504

Aoki-Hatsuda-Ishii PTP123(2010)89 10

Nuclear Force from Lattice QCD [HAL QCD strategy]

- Potential is constructed so as to reproduce the NN phase shift (or, S-matrix)
- Nambu-Bethe-Salpeter(NBS) wave function

 $\psi(\vec{r}) = \langle 0 | N(\vec{x} + \vec{r}, t) N(\vec{x}, t) | 2N \rangle$

- Key concept: asymptotic region $\bigstar \Rightarrow$ phase shift $(\nabla^2 + k_{\delta}^2)\psi(\vec{r}) = 0, \quad r > R$
- Define the potential at interaction region $(\nabla^2 + k_{\delta}^2)\psi(\vec{r}) = \int d\vec{r'}U(\vec{r},\vec{r'})\psi(\vec{r'}), \quad r < R$
 - Non-local, but <u>E-independent</u> potential
- Velocity expansion Okubo-Marshak(1958) $U(\vec{r}, \vec{r'}) = V_c(r) + S_{12}V_T(r) + \vec{L} \cdot \vec{S}V_{LS}(r) + \mathcal{O}(\nabla^2)$ LO NLO NNLO
 - Truncation in expansion introduces E-dep (only practically), but we can improve order by order

Luscher, NPB354(1991)531

C.-J.Lin et al., NPB619(2001)467 CP-PACS Coll., PRD71(2005)094504

Aoki-Hatsuda-Ishii PTP123(2010)89 12

Nuclear Potential (from Lat QCD)

 $\frac{\text{Quenched}}{m\pi} \text{ QCD}$ m\pi = 530MeV, L=4.4fm

Ishii-Aoki-Hatsuda, PRL99(2007)022001

11/25/2010

Tensor Potential from Lat QCD

 $S_{12} = 3(\vec{\sigma}_1 \cdot \vec{r})(\vec{\sigma}_2 \cdot \vec{r})/r^2 - (\vec{\sigma}_1 \cdot \vec{\sigma}_2)$

(repulsive)

- Tensor operator
 - Essential to understand the nuclei
 - Responsible for deuteron binding
 - Hyper nuclei binding (ΛN - ΣN)
- Coupled channel study in ³S₁-³D₁ channel

$$(H_0 + V_C + V_T S_{12})\psi = E\psi$$

$$\psi = \psi_S + \psi_D$$

$$\psi_S(\vec{r}) = P\psi(\vec{r}) = \frac{1}{24} \sum_{g \in O} \psi(g^{-1}\vec{r})$$

$$\psi_D(\vec{r}) = Q\psi(\vec{r}) = (1 - P)\psi(\vec{r})$$

$$P(H_0 + V_C + V_T S_{12})\psi = EP\psi$$

$$Q(H_0 + V_C + V_T S_{12})\psi = EQ\psi$$

11/25/2010

N-N INteraction meeting @ TIFR

(attractive)

Tensor Potential from Lat QCD

Coupled channel study in ³S₁-³D₁ channel

Wave function

Aoki-Hatsuda-Ishii, PTP 123 (2010) 89

Potentials

11/25/2010

N-N INteraction meeting @ TIFR

Quark mass dependence

Lighter mass corresponds to...

- Longer interaction range
- Larger Repulsive Core
- Stronger Tensor Force

11/25/2010

(stronger attraction in Center Force)

Attractive Scatt. Length

Further quantitative refinement in progress: precise determination of E and long-range w.f. behavior is essential

Yet, much smaller compared to the experimental values

$$a_0({}^1S_0) \sim 20 {
m fm}$$

 $a_0({}^3S_1) \sim -5 {
m fm}$

Scattering Length

Challenge in Next-Gen Simulation

Japan's next gen computer

K computer at Kobe, Japan
10PFlops (2012)

次世代スーパーコンピュータ施設 完成イメージ図

SPARC64[™] VIIIfx ©Fujitsu Limited

[Q1] Is potential observable ? Just give me phase shifts !

- Potential U(x,y) is NOT observable, and is NOT unique. However, combination of $(\Phi(x), U(x, y))$ gives observable, which is unique.
 - Same situation for QM(Φ,U), QFT(Φ(asym),vertices), EFT(eff. dof, LECs) ... Yet, we use "wave function Φ(x)" in QM, etc.
- We study potential (in addition to phase shift), because:
 - Convenient framework/concept to understand the physics
 - Potential is essential to study many-body systems
 - c.f. QM: Matrix mechanics vs. Wave mechanics

$$Lat \rightarrow \delta_E \rightarrow U(x,y) \rightarrow many-body$$

 $Lat \rightarrow \rightarrow U(x,y) \rightarrow many-body$

$$Lat \rightarrow \rightarrow \rightarrow U(x,y) \rightarrow many-body$$

- It is very difficult to calculate phase shift at high energy
 - Lattice → only ground state + a few excited energy states
- Potential (hopefully) contains "useful" off-shell information
 - Sys. error by velocity expansion can be checked order by orde 11/25/2010 N-N INteraction meeting @ TIFR

300

 δ [by Lat]

 δ_E [Lat]

100

 $\delta(E)$

200

E_{Lab} [MeV]

=

60

50 40

10

0 -10

-20

[ded] 30 20 δ [by U(x)]

[Q1] Is potential observalbe ? Just give me phase shifts !

- Potential U(x,y) is NOT observable, and is NOT unique. However, combination of $(\Phi(x), U(x, y))$ gives observable, which is unique.
 - Same situation for QM(Φ,U), QFT(Φ(asym),vertices), EFT(eff. dof, LECs) ... Yet, we use "wave function Φ(x)" in QM, etc.
- We study potential (in addition to phase shift), because:
 - Convenient framework/concept to understand the physics
 - Potential is essential to study many-body systems
 - c.f. QM: Matrix mechanics vs. Wave mechanics

$$Lat \rightarrow \delta_E \rightarrow U(x,y) \rightarrow many-body$$

$$Lat \rightarrow \rightarrow \rightarrow U(x,y) \rightarrow many-body$$

- It is very difficult to calculate phase shift at high energy
 - Lattice → only ground state + a few excited energy states
- Potential (hopefully) contains "useful" off-shell information
 - Sys. error by velocity expansion can be checked order by order 11/25/2010
 N-N INteraction meeting @ TIFR

δ [deg]

[Q1] Is potential observalbe ? Just give me phase shifts !

- Potential U(x,y) is NOT observable, and is NOT unique. However, combination of $(\Phi(x), U(x, y))$ gives observable, which is unique.
 - Same situation for QM(Φ,U), QFT(Φ(asym),vertices), EFT(eff. dof, LECs) ... Yet, we use "wave function Φ(x)" in QM, etc.
- We study potential (in addition to phase shift), because:
 - Convenient framework/concept to understand the physics
 - Potential is essential to study many-body systems
 - c.f. QM: Matrix mechanics vs. Wave machanics

$$Lat \rightarrow \delta_E \rightarrow U(x,y) \rightarrow \text{many-body}$$

 $Lat \rightarrow \rightarrow \rightarrow U(x,y) \rightarrow \text{many-body}$

- It is very difficult to calculate phase shift at high energy
 - Lattice → only ground state + a few excited energy states
- Potential (hopefully) contains "useful" off-shell information
 - Sys. error by velocity expansion can be checked order by order 11/25/2010
 N-N INteraction meeting @ TIFR

δ [deg]

[Q2] Isn't Potential dependent on the sink operator ?

- Yes, the potential is dependent on the choice of the sink operator, since Potential U(x,y) is NOT observable. (→ go back to the 1st Q&A)
 - One can choose any sink opeartor, and the physical observables (at least phase shift) calculated from that potential remain same
 - We choose local operator as convenient choice for the reduction formula
 - Good operator ← → small non-locality in potential
 - We check the velocity expansion convergence <u>a posteriori</u>

[Q3] How good is velocity expansion of potential?

- We <u>explicitly</u> checked the validity of expansion using two methods:
 - By Energy dependence of LO potential V_c(r)
 - By L² dependence of V_C(r)

"Energy dependence" of LO $V_c(r)$ in velocity expansion

Towards the <u>prediction</u> from Lattice QCD

- "Realistic" NN potentials have achieved quite a good precision
 - ~40 parameters for ~5000 (high prec) phase shifts, χ^2 /dof ~ 1
- Hyperon-Nucleon(YN), Hyperon-Hyperon(YY) potentials
 - Large uncertainties in YN, YY potentials, and theoretical predictions are highly awaited
 - Huge impact on EoS in high density, Neutron Star Core / Supernova
 - "Generalization" of the nuclear force
 - → what is universal, what is not universal in hadron-hadron interactions ? (e.g. origin of repulsive core)
- Three Baryon Potentials
 - The Lattice study of Three Nucleon Force (TNF)

Hyperon potentials (YN, YY)

Equation of State at high density

Baryon-baryon interaction

 ■ SU(3) × SU(2)spin ⇒ SU(6) classification
 MO, K. Shimizu, K. Yazaki, PLB130 (1983), NPA464 (1987)

1 × 0 [33] $\Lambda\Lambda$, N Ξ , $\Sigma\Sigma \rightarrow$ H di	ibaryon
---	---------

8 s	×	0	[51]	Pauli forbidden	ΣN (I=1/2, S=0)
------------	---	---	------	-----------------	-------------------------

- The SU(6) symmetry predicts a strong spin-isospin dependence of the ΣN interaction.
- It also predicts state dependences of the spin-orbit interaction.

Oka-Shimizu-Yazaki, NPA464(1987)700 M. Oka, J-PARC Hadron Salon talk (06/17/2010)

H-dibaryon in the SU(3) limit world ?

11/25/2010

YN, YY potentials beyond SU(3) limit

11/25/2010

NA potential (2+1 flavor QCD)

- Repulsive core is surrounded by attractive well.
- Large spin dependence of repulsive core
- Weak tensor force
- Net interaction is attractive.

 $m_r = 701 \text{MeV}$

Nf=2+1 clover, L=2.9fm, a=0.091fm (1/a=2.18GeV)

$\kappa_{ud} = 0.13700$ $\kappa_s = 0.13640$	m _π =701MeV m _K =789MeV
$\kappa_{ud} = 0.13727$ $\kappa_s = 0.13640$	m_{π} =570MeV m_{K} =713MeV
$\kappa_{ud} = 0.13754$ $\kappa_s = 0.13640$	m_{π} =411MeV m_{K} =635MeV
$\kappa_{ud} = 0.13754$ $\kappa_s = 0.13660$	m _π =384MeV m _K =582MeV
$\kappa_{ud} = 0.13770$ $\kappa_s = 0.13640$	m_{π} =296MeV m_{K} =594MeV
$\kappa_{ud} = 0.13781$ $\kappa_s = 0.13640$	m_{π} =156MeV m_{K} =554MeV

PACS-CS Collab. PRD79(2009)034503 4

11/25/2010

Quark mass dependence of NA potential

Coupled channel study

• BB system (S=-2, I=0) $m_{\Sigma\Sigma} = 2380 \text{MeV}$ small energy difference
 coupled channel 120Me\ $\begin{cases} \psi_{\alpha}^{\Sigma\Sigma} = \langle 0|\Sigma(\vec{r})\Sigma(\vec{0})|E_{\alpha}\rangle \\ \psi_{\alpha}^{N\Xi} = \langle 0|N(\vec{r})\Xi(\vec{0})|E_{\alpha}\rangle \\ \psi_{\alpha}^{\Lambda\Lambda} = \langle 0|\Lambda(\vec{r})\Lambda(\vec{0})|E_{\alpha}\rangle \end{cases} \qquad \begin{array}{c} |E_{1}\rangle, |E_{2}\rangle, |E_{3}\rangle \\ (\alpha = 1, 2, \alpha) \\ (\alpha = 1, 2, \alpha$ $m_{N}= = 2260 \text{MeV}$ $(\alpha = 1, 2, 3)$ (variational method) 30MeV $m_{\Lambda\Lambda} = 2230 \text{MeV}$ Coupled channel eq. $\begin{aligned} (\nabla^2 + k_{\alpha}^2) \psi_{\alpha}^{\wedge \wedge}(\vec{x}) &= U_{\wedge \wedge, \wedge \wedge}(\vec{x}) \psi_{\alpha}^{\wedge \wedge}(\vec{x}) + U_{\wedge \wedge, N \equiv}(\vec{x}) \psi_{\alpha}^{N \equiv}(\vec{x}) + U_{\wedge \wedge, \Sigma \Sigma}(\vec{x}) \psi_{\alpha}^{\Sigma \Sigma}(\vec{x}) \\ (\nabla^2 + p_{\alpha}^2) \psi_{\alpha}^{N \equiv}(\vec{x}) &= U_{N \equiv, \wedge \wedge}(\vec{x}) \psi_{\alpha}^{\wedge \wedge}(\vec{x}) + U_{N \equiv, N \equiv}(\vec{x}) \psi_{\alpha}^{N \equiv}(\vec{x}) + U_{N \equiv, \Sigma \Sigma}(\vec{x}) \psi_{\alpha}^{\Sigma \Sigma}(\vec{x}) \\ (\nabla^2 + q_{\alpha}^2) \psi_{\alpha}^{\Sigma \Sigma}(\vec{x}) &= U_{\Sigma \Sigma, \wedge \wedge}(\vec{x}) \psi_{\alpha}^{\wedge \wedge}(\vec{x}) + U_{\Sigma \Sigma, N \equiv}(\vec{x}) \psi_{\alpha}^{N \equiv}(\vec{x}) + U_{\Sigma \Sigma, \Sigma \Sigma}(\vec{x}) \psi_{\alpha}^{\Sigma \Sigma}(\vec{x}) \end{aligned}$ $(\alpha = 1, 2, 3)$ $E_{\alpha} = 2\sqrt{m_{\Lambda}^2 + k_{\alpha}^2}$ $= \sqrt{m_N^2 + p_\alpha^2} + \sqrt{m_{\Xi}^2 + p_\alpha^2} \quad (asymptotic region)$ $= 2\sqrt{m_{\Sigma}^2 + q_{\alpha}^2}$ 11/25/2010 IN-IN INteraction meeting @ TIFR 43

Three Nucleon Force (TNF)

11/25/2010

- Precise few-body calc:
 - e.g. benchmark calc of ⁴He by 7 methods (NN only)

Method	$\langle T \rangle$	$\langle V \rangle$	E _b	$\sqrt{\langle r^2 \rangle}$
FY	102.39(5)	-128.33(10)	-25.94(5)	1.485(3)
CRCGV	102.30	-128.20	-25.90	1.482
SVM	102.35	-128.27	-25.92	1.486
HH	102.44	-128.34	-25.90(1)	1.483
GFMC	102.3(1.0)	-128.25(1.0)	-25.93(2)	1.490(5)
NCSM	103.35	-129.45	-25.80(20)	1.485
EIHH	100.8(9)	-126.7(9)	-25.944(10)	1.486

→ 0.5% prec. for B.E.

4MeV

27.5

25.0

7.5

7.75

Alpha Bindingenergy

Tjon-line

8.0 **Triton Binding energy**

H.Kamada et al., PRC64(2001)044001

 $\delta B.E. = 0.5$ -1MeV for ³H missing $\delta B_{*}E_{*} = 2-4$ MeV for ⁴He

11/25/2010

N-N INteraction meeting @ TIFR

8.25

With View

1MeV

force

And three-body

Ay puzzle in N-d, N-A scatt., etc. (TNF may worsen the situation)

11/25/2010

The effect on the nuclear chart

 anomaly in drip line and nontrivial magic number in neutron rich nuclei by TNF______

nontrivial magic number N=28 for ₂₀Ca

T.Otsuka et al., PRL105(2010)032501 J.D.Holt et al., arXiv:1009.5984

11/25/2010

Nucleosynthesis by Supernova

- Flavor universal TNF (repulsive) ?
- The effect on the nuclear chart T.Otsuka et al., PRL105(2010)032501
 - anomaly in drip line and magic numbers by TNF
- Ay puzzle in N-d, N-A scatt., etc. (TNF may worsen the situation)

Three Nucleon Force (TNF)

- It is natural to expect the existence of TNF
- It is very nontrivial to determine TNF from QCD
- 2πE-TNF Fujita-Miyazawa, PTP17(1957)360
 - Off-energy-shell πN scatt

$$\tau^{-\pi^{-1}}$$
 \longrightarrow $\tau^{-\pi^{-1}}$

- EFT expansion → TNF appears at NNLO order
- Phenomenological short-range repulsion is necessary
- 2πE-TNF too attractive, often suppressed (artificially) by form factor
- NB: the combination of $(2NF, 3NF) \rightarrow$ observables

U.v.Kolck, PRC49(1994)2932 Epelbaum, Prog.Part.Nucl.Phys.57(06)654

How can we tackle TNF in Lattice QCD ? c.f. pioneering lat calc of B.E. ${}^{3}\text{He}(={}^{3}\text{H})$, ${}^{4}\text{He}$

T.Yamazaki et al., arXiv:0912.1383

In the case of 2N system... $\psi(\vec{r}) = \langle 0|N(\vec{x} + \vec{r}; t)N(\vec{x}; t)|2N \rangle$ \rightarrow $(E - H_0)\psi(\vec{r})$ $|2N\rangle = \bar{N}_{src}(t=0)\bar{N}_{src}(t=0)|0\rangle$

$$= [V_c(r) + S_{12}V_T(r) + \cdots]\psi(r)$$

Extention to 3N system

■ Calc 6pt func → NBS amp. of NNN

 $\psi(\vec{r},\vec{\rho}) = \langle 0 N(\vec{x}+\vec{r}) N(\vec{x}) N(\vec{x}+\vec{r}/2+\vec{\rho}) | 3N \rangle$ Obtain TNF through

$$(E - H_0^r - H_0^\rho)\psi(\vec{r}, \vec{\rho}) = \left[\sum_{i < j} V_{ij}(\vec{r}_{ij}) + V_{TNF}(\vec{r}, \vec{\rho})\right]\psi(\vec{r}, \vec{\rho})$$

- Difficulty(1): volume factor 1 by 2N calc **TNF** is

 - 2N: naïve O(L⁶) calc → O(L³ log L³)
 3N: naïve O(L⁹) calc → O(L⁶ log L⁶)
 O(10⁴-10⁵) factor
- Difficulty(2): naïve calc of quark dof grows in factorial (~N_u! N_d!) problem !
 - 2N: O(L³) X N_{wick} X color/spinor loops
 - $O(L^3) \times O(4000) = O(10^7 10^8)$ factor • 3N: O(L⁶) X N_{wick} X color/spinor loops

11/25/2010

exceptionally

challenging

How can we tackle TNF in Lattice QCD ? (cont'd)

• We studied the effective 2N potential in 3N system (³H) $(E - H_0^r)\phi(\vec{r}) = \left[V_{12}(\vec{r}) + \delta V_{eff}(\vec{r})\right]\phi(\vec{r})$

 $= \left[V_{12}(\vec{r})\phi(\vec{r}) + \int d\vec{\rho}(V_{13}(\vec{r},\vec{\rho}) + V_{23}(\vec{r},\vec{\rho}) + V_{TNF}(\vec{r},\vec{\rho})\psi(\vec{r},\vec{\rho}) \right]$

- Relatively small calc cost (yet, still much expensive than 2N)
- Good precision achieved thanks to the sum over spectator particle
- Indirect access to TNF (due to off-diag 2N), and the effect of TNF is "smeared" by spacial average with triton wave function

Calculation for fixed 3D-configuration of 3N system

- Direct access to TNF is possible !
- → We can explore the various features of TNF (spin/isospin/spacial, etc.)
- Much more expensive calc cost (O(10-100) factor) and yet worse S/N

How can we tackle TNF in Lattice QCD ? (cont'd)

- We studied the effective 2N potential in 3N system (³H) $(E - H_0^r)\phi(\vec{r}) = \left[V_{12}(\vec{r}) + \delta V_{eff}(\vec{r})\right]\phi(\vec{r})$
 - $= \left[V_{12}(\vec{r})\phi(\vec{r}) + \int d\vec{\rho}(V_{13}(\vec{r},\vec{\rho}) + V_{23}(\vec{r},\vec{\rho}) + V_{TNF}(\vec{r},\vec{\rho}))\psi(\vec{r},\vec{\rho}) \right]$
 - Relatively small calc cost (yet, still much expensive than 2N)
 - Good precision achieved thanks to the sum over spectator particle
 - Indirect access to TNF (due to off-diag 2N), and the effect of TNF is "smeared" by spacial average with triton wave function

Calculation for fixed 3D-configuration of 3N system

- Direct access to TNF is possible !
- → We can explore the various features of TNF (spin/isospin/spacial, etc.)
- Much more expensive calc cost (O(10-100) factor) and yet worse S/N

Features of Linear setup for ³H

- Simplified coupled channel analysis possible
 - The vector to 3rd particle $\vec{\rho} = \vec{0}$
 - $\bullet \quad \bullet \quad L^{(1,2)-\text{pair}} = L^{\text{total}} = 0 \text{ or } 2 \text{ only}$

- However, in order to determine TNF in 3x3 coupled channel, we need information of parity-odd potential
 - Although (1,2)-pair is L=even, (3,1),(2,3)-pair have L=odd components
 - Partial wave expansion with different Jacobi setup is impossible, since we do not have full wave function (only linear setup)
- Parity-odd potential from lattice QCD (still) in progress
 - → 3X3 channel, but unknown $V_C^{I,S=0,0}, V_C^{I,S=1,1}, V_T^{I,S=1,1}, TNF(s)$

 $\vec{o} = 0$

(1)

■ → L=even for any 2N pair automatically guaranteed

11/25/2010

Solution using "symmetric" wave function

- Rotate the basis $(\psi_{1S_0}), (\psi_{3S_1}), |\psi_{3D_1}\rangle \longrightarrow |\psi_S\rangle, |\psi_M\rangle, |\psi_{3D_1}\rangle$ $|\psi_S\rangle = 1/\sqrt{2} \left(-|\psi_{1S_0}\rangle + |\psi_{3S_1}\rangle\right) \qquad |\psi_M\rangle = 1/\sqrt{2} \left(+|\psi_{1S_0}\rangle + |\psi_{3S_1}\rangle\right)$
- We can construct the wave function in which <u>any 2N pair</u> is spin/isospin anti-symmetric

- → L=even for any 2N pair automatically guaranteed
- 3x3 coupled channel is reduced to
 - one channel with only TNF unknown (L²-dep ignored)
 - two channels with $V_C^{I,S=0,0}$, $V_C^{I,S=1,1}$, $V_T^{I,S=1,1}$, (TNF) unknown
- → Even without parity-odd V, we can determine one TNF
 - This methodology works for any fixed 3D-conf other than linear
 N-N INteraction meeting @ TIFR

Repulsive TNF (TNR)

- We determine TNF assuming scalar/isoscalar
 - Phenomenologically introduced to reproduce saturation density/energy of nuclear matter, etc.

Lattice calculation setup

- Nf=2 dynamical clover fermion + RG improved gauge configs (CP-PACS)
 - 598 configs X 16 measurements
 - beta=1.95, (a⁻¹=1.27GeV, a=0.156fm)
 - 16³ X 32 lattice, L=2.5fm
 - Kappa(ud)=0.13750
 - $M(\pi) = 1.13 \text{GeV}$
 - M(N) = 2.15 GeV• $M(\Delta) = 2.31 \text{GeV}$
- CP-PACS Coll. S. Aoki et al., Phys. Rev. D65 (2002) 054505 [E: D67 (2003) 059901]

BGL@KEK

- Techniques
 - Automatic Wick contraction code to handle 4 up- and 5 down-quarks
 - Non-rela limit op is used to create 3N state at source

$$N^{src} = \epsilon_{abc} (u_a^T C \gamma_5 \frac{1 + \gamma_4}{2} d_b) \frac{1 + \gamma_4}{2} u_c$$

 \rightarrow Factor of 2³=8 faster

11/25/2010

Results for wave functions

Genuine Three Nucleon Force

63

Summary/Outlook

Potentials from Lattice QCD using NBS wave function

- Central and tensor potentials in parity-even channel
- Qualitative features of NN potentials are reproduced, Velocity expansion checked
- Significant step toward <u>Nuclear Physics from QCD</u>
- Lattice QCD can give <u>useful predictions</u> on unknown potentials
 - YN, YY: Strangeness physics, hyperon matter in neutron star, SU(3) & beyond SU(3)
 - Meson-Baryon: N-K, N-ccbar (Kawanai-Sasaki), Q-Qbar: (Iida-Ikeda)
- The First calculation on <u>Three Nucleon Force (TNF)</u> from Lattice QCD
 - 2N subtraction is possible using only parity-even potentials
 - Calculation of linear setup of 3N (³H) system

Indication of Repulsive TNF at short distance, further studies ongoing

- Various complementary approaches useful
 - Operator-Product-Expansion (Aoki-Balog-Weisz)
 - Lattice nuclei (Yamazaki-Kuramashi-Ukawa)
 - Strong-coupling limit (de Forcrand-Fromm)
- Outlook
 - Realistic potentials (and phase shifts) with physically light masses w/ large volume
 - Parity-odd potentials, Higher derivative terms (LS-force and more) → More TNFs
 - Understand the insight of nuclei: lattice nuclei vs. lattice potentials + ab initio calc.
 - Resonances from potentials ? (ρ , Δ , H-dibaryon, exotics...)
 - TNF: other 3D-conf (triangle etc.) for spacial info, I=3/2, $SU(2)_f \rightarrow SU(3)_f$: Astro physics

