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Motivation

Understand the various 
phenomena from 
fundamental theory

Nuclear Force is the key 
concept which bridges
(effective) DOF in 
different hierarchy

Nuclei
Neutron star
SuperNova

vacuum supernova

large-scale 
computation

neutron star

nuclei

Nuclear 
Force

particle physics 
nuclear physics                     

astrophysics
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Nuclear Force from Experiments

Potential is constructed so as to reproduce the NN 
phase shift (or, S-matrix)

Various applications: few/many-body 
system of nuclei, EOS of Nuclear matter..
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First principle calculation of QCD

Nuclear Force from QCD
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Lattice QCD as 1st principle calc
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Status of Lattice QCD

hadron masses (g.s.)

3% accuracy 
at present

Nf=2+1 clover fermion
V=323X64, L=2.9fm,   
a=0.09fm (1/a = 2.18GeV)       
mπ(min) = 156MeV

PACS-CS Collab., 
PRD79(2009)034503
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Lattice QCD as 1st principle calc
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Nuclear Force from Lattice QCD 
[HAL QCD strategy]

Potential is constructed so as to reproduce the 
NN phase shift (or, S-matrix)
Nambu-Bethe-Salpeter(NBS) wave function

Key concept: asymptotic region phase shift

Define the potential at interaction region

Non-local, but E-independent potential
Velocity expansion

Truncation in expansion introduces E-dep
(only practically), but we can improve order by order

R L

Luscher, NPB354(1991)531

C.-J.Lin et al., NPB619(2001)467 
CP-PACS Coll., PRD71(2005)094504

LO LO NLO NNLO

Okubo-Marshak(1958)

Aoki-Hatsuda-Ishii 
PTP123(2010)89
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(1) We assume ψ(x; E) for different E is linearly independent with each other.

(2) ψ(x; E) has a “left inverse” as an integration operator as

(3) K(x; E) can be factorized as

(4) We are left with an effective Schrodinger equation with an E-independent potential U.

( )2 2( ; ) ( ; )K x E k x Eψ≡ ∇ +
rr r

2 22 NE m k≡ +

( , )Nm U x y≡
r r

( )2 2 3( ; ) ( , ) ( ; )Nx E m d yU x y yk Eψ ψ∇ =+ ∫
r r r r r

Effective Schrodinger equation with E-independent potential

[START] local but E-dep pot.  (L3xL3 dof)

[GOAL] non-local but E-indep pot.  (L3xL3 dof)

Intuitive 
understanding
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Quenched QCD              
mπ = 530MeV, L=4.4fm

Ishii-Aoki-Hatsuda, 
PRL99(2007)022001 

NBS wave function Nuclear Force

Nuclear Potential (from Lat QCD)
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Tensor Potential from Lat QCD
Tensor operator

Essential to understand the nuclei
Responsible for deuteron binding
Hyper nuclei binding (ΛN-ΣN)

Coupled channel study in 3S1-3D1 channel

(repulsive)

(attractive)

P           : projection to L=0         
Q=(1-P) : projection to L=2
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Tensor Potential from Lat QCD

Coupled channel study in 3S1-3D1 channel

Aoki-Hatsuda-Ishii,    
PTP 123 (2010) 89

Wave function Potentials
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Results from Full QCD Lattice
Quenched QCD                  

mπ = 530MeV, L=4.4fm, a=0.14fmNf=2+1 Full QCD                      
mπ = 570MeV, L=2.9fm, a=0.1fm

Larger Repulsive Core
Larger Tensor force

(N.B. 1/a is also different)
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Quark mass dependence

Longer interaction range
Larger Repulsive Core
Stronger Tensor Force
(stronger attraction in Center Force)

Lighter mass corresponds to…

Central in 1S0

3S1-3D1 channel

C
en

tral
Ten

sor
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NN (phase shift from potentials)

Phase shift from potential
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NN (phase shift from potentials)

We have no deuteron so far.

Phase shift from potential
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Scattering Length
Scatt. Length

(w.f. k2 Luscher’s formula)

Attractive Scatt. Length

Further quantitative refinement in progress: 
precise determination of E and                      
long-range w.f. behavior is essential

Yet, much smaller compared 
to the experimental values
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Scattering Length

Y.Kuramashi, PTPS122(1996)153

OBEP + lattice hadron masses

S.Beane et al., PRL97(2006)012001

at
tr

ac
ti

ve

re
pu

ls
iv

e

1S0

EFT
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Scattering Length

Y.Kuramashi, PTPS122(1996)153

It is crucial to go to 
physical quark mass region

OBEP + lattice hadron masses

“Unitary region”

S.Beane et al., PRL97(2006)012001

at
tr

ac
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ve

at
tr
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ve

1S0



11/25/2010 N-N INteraction meeting @ TIFR 23

Challenge in Next-Gen Simulation

N.B.  (still) not correct scale

mq

We are here
Challenge in Next-Gen Calc
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Challenge in Next-Gen Simulation

N.B. (still) not correct scale

mq

We are here
Challenge in Next-Gen Calc

Temporal info (Luscher’s formula)

Spacial info (potential/phase shift)
Localized !

2

N

k
m

−

Challenge:
Precise results at 
long range part 
are necessary
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Challenge in Next-Gen Simulation

We are here
Challenge in Next-Gen Calc

np : -23.7 fm
pp : -17.9 fm (w/o Coulomb)
nn : -16.5 fm

SU(2) breaking

QED

RBC(em) 
Nf= 2+1 DWF w/ quenched QED

mu ≠ md

T.Blum, R.Zhou, T.D., M.Hayakawa, T.Izubuchi, 
S.Uno, N.Yamada, arXiv:1006.1311

m(π+)-m(“π0”)[QED]=4.50(23)MeV 
mu=2.24(10)(34), md=4.65(15)(32)MeV

Nf=1+1+1 w/ full QED, 
RBC(em), PACS-CS, …NEXT
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Japan’s next gen computer

K computer at Kobe, Japan
10PFlops (2012)

Kobe

K (Kei) = 1016 = 10 Peta
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Frequently Asked Questions

Potential U(x,y) is NOT observable, and is NOT unique. However, 
combination of (Φ(x),U(x,y)) gives observable, which is unique. 

Same situation for QM(Φ,U), QFT(Φ(asym),vertices), EFT(eff. dof, LECs) …
Yet, we use “wave function Φ(x)” in QM, etc.

We study potential (in addition to phase shift), because:
Convenient framework/concept to understand the physics
Potential is essential to study many-body systems

c.f. QM: Matrix mechanics vs. Wave mechanics

It is very difficult to calculate phase shift at high energy
Lattice only ground state + a few excited energy states

Potential (hopefully) contains “useful” off-shell information
Sys. error by velocity expansion can be checked order by order

[Q1] Is potential observable ? Just give me phase shifts !
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Frequently Asked Questions
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Sys. error by velocity expansion can be checked order by order

Sys error

[Q1] Is potential observalbe ? Just give me phase shifts !
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Frequently Asked Questions

Yes, the potential is dependent on the choice of the sink operator, 
since Potential U(x,y) is NOT observable. ( go back to the 1st Q&A)

One can choose any sink opeartor, and the physical observables (at least 
phase shift) calculated from that potential remain same
We choose local operator as convenient choice for the reduction formula
Good operator small non-locality in potential

We check the velocity expansion convergence a posteriori

We explicitly checked the validity of expansion                              
using two methods:

By Energy dependence of LO potential VC(r)
By L2 dependence of VC(r)

[Q2] Isn’t Potential dependent on the sink operator ?

[Q3] How good is velocity expansion of potential ?

K.Murano (HAL Collab.)              
@ Lattice2009, Lattice2010
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“Energy dependence” of       
LO Vc(r) in velocity expansion

E ～ 0 MeV

K.Murano et al., (HAL QCD Collab.) 
PoS Lattice 2009 (2009) 126

Anti-periodic BC  
to achieve E ≠0

Quenched QCD 
mπ =0.53GeV 

a=0.137fm

O.K. !

In our choice of wave function,      
E-dependence of the local potential 
turns out to be very small at low E.

Velocity expansion is good !
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L2 dependence of Vc(r) in S=0

K.Murano (HAL QCD Collab.) @ Lattice 2010

Quenched QCD 
mπ =0.53GeV 

a=0.137fm           
E ~= 45MeV

In our choice of wave function,      
L2-dependence of the local potential 

turns out to be small at low E.

Velocity expansion is good !

A1
+ NBS wave (1S0) T2

+ NBS wave (1D2)

~ Y2m (rr )∑

(consistent within stat. error)

Anti-periodic BC 
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Towards the prediction
from Lattice QCD

“Realistic” NN potentials have achieved quite a good precision
~40 parameters for ~5000 (high prec) phase shifts, χ2/dof ~ 1 

Hyperon-Nucleon(YN), Hyperon-Hyperon(YY) potentials
Large uncertainties in YN, YY potentials, and theoretical predictions 
are highly awaited

Huge impact on EoS in high density, Neutron Star Core / Supernova
“Generalization” of the nuclear force 

what is universal, what is not universal in hadron-hadron interactions ?   
(e.g. origin of repulsive core)

Three Baryon Potentials
The Lattice study of Three Nucleon Force (TNF)
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Hyperon potentials (YN, YY)

Generalized BB force

8 X 8 = 27 + 8s + 1 + 10* + 10 + 8a
symmetric anti-symmetric

NN channel
No phase shift available for YN 
and YY scatterings
Plenty of hyper-nucleus data will 
be soon available at J-PARC “Strange World”

is opening !
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Equation of State at high density

Hyper nuclei
Hyperon interactions

Hyperon potentials (YN, YY)

J.Schaffner-Bielich, NPA804(�f08)309.

・ ΛN attraction
・ ΛΛ weak attraction
・ No deeply bound H-dibaryon

4He+Λ+Λ

7.25 ±0.1 MeV

0+



11/25/2010 N-N INteraction meeting @ TIFR 36

M. Oka, J-PARC Hadron Salon talk (06/17/2010)

Oka-Shimizu-Yazaki, NPA464(1987)700
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Pauli principle  
at work !

SU(3) study a=0.12fm, L=2fm, 
m(PS)= 0.84, 1.01GeV

27,10*:              
Same as NN

8s,10:                                  
strong repulsive core

8a: weak repulsive core     
1s: deep attractive pocket

T.Inoue et al., (HAL QCD Collab.), 
PTP124(2010)591, arXiv:1007.3559

BB potentials

attractive core !
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H-dibaryon in the SU(3) limit world ?
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Meson-Baryon system
KN interaction (S-wave) in I=0, 1

Pauli principle works for 
meson-baryon system as well !

Y.Ikeda et al., (HAL QCD Collab.) 
arXiv:1002.2309

Phase shift

Nf=2+1 clover (CP-PACS/JLQCD) 
a=0.12fm, L=2fm, mπ=0.87GeV, 

mK=0.91GeV, mN=1.8GeV
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YN, YY potentials             
beyond SU(3) limit
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Nf=2+1 clover, L=2.9fm, 
a=0.091fm (1/a=2.18GeV)

PACS-CS Collab. 
PRD79(2009)034503

mπ=156MeV 
mK=554MeV

κud=0.13781 
κs =0.13640

mπ=296MeV 
mK=594MeV

κud=0.13770 
κs =0.13640

mπ=384MeV 
mK=582MeV

κud=0.13754 
κs =0.13660

mπ=411MeV 
mK=635MeV

κud=0.13754 
κs =0.13640

mπ=570MeV 
mK=713MeV

κud=0.13727 
κs =0.13640

mπ=701MeV 
mK=789MeV

κud=0.13700 
κs =0.13640
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at
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Scatt. length

H.Nemura (HAL QCD Collab.)                   
PoS Lattice2009 (2009)152

Nf=2+1 clover, L=2.9fm, 
a=0.091fm (1/a=2.18GeV) 

m(pi)=410-700MeV

c.f. NPLQCD: repulsive scatt. length ? 
PRD81(2010)054505
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Coupled channel study

BB system (S=-2, I=0)
small energy difference coupled channel

(variational method)

Coupled channel eq.

(asymptotic region)

120MeV

30MeV
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Preliminary result (3)

coupled channel potential
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Set 0: SU(3) limit

Irreducible flavor representations begin to mix with each other with decreasing u,d quark mass.

K.Sasaki (HAL QCD Collab.) 
@ Lattice2010
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Three Nucleon Force (TNF)
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Importance of                         
Three Nucleon Force (TNF)

Precise few-body calc:  
e.g. benchmark calc of 4He by 7 methods (NN only) 

NN force cannot reproduce B.E.
δΒ.Ε.= 0.5-1MeV for 3H 
δΒ.Ε.= 2-4   MeV for 4He

Attractive TNF 
necessary Nogga et al., PRL85(2000)944

4MeV

1MeV

H.Kamada et al., 
PRC64(2001)044001

0.5% prec. for B.E.

missing TNF
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S.C.Pieper, Riv.Nuovo.Cim31(2008)709 
arXiv:0711.1500

Three Nucleon Force 

indispensable !
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Importance of                         
Three Nucleon Force (TNF)

Precise few-body calc:                                         
NN force cannot reproduce B.E.

Saturation density/energy of nuclear matter 
also requires TNF

EOS of neutron star
Flavor universal TNF (repulsive) ? 

Takatsuka et al., PTPS174(2008)80

δΒ.Ε.= 0.5-1MeV for 3H 
δΒ.Ε.= 2-4   MeV for 4He

Attractive TNF 
necessary

A.Akmal et al., PRC58(1998)1804Repulsive TNF 
also necessary

4MeV

1MeV
TNF

Nogga et al., PRL85(2000)944

E/
A

ρ

TNF

Nishizaki et al., 
PTP108(2002)703

Y
Universal 
TNF?

2NF only
empirical

Freire (2009)

(J1903+0327)

Demorest et al. (2010)

(J1614-2230)
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Importance of                         
Three Nucleon Force (TNF)

Precise few-body calc:                                         
NN force cannot reproduce B.E.

Saturation density/energy of nuclear matter also 
requires TNF

EOS of neutron star
Flavor universal TNF (repulsive) ? 

The effect on the nuclear chart
anomaly in drip line and magic numbers by TNF

Ay puzzle in N-d, N-A scatt., etc.

Takatsuka et al., PTPS174(2008)80

δΒ.Ε.= 0.5-1MeV for 3H 
δΒ.Ε.= 2-4   MeV for 4He

Attractive TNF 
necessary

A.Akmal et al., PRC58(1998)1804

(TNF may worsen
the situation)

Repulsive TNF 
also necessary

Nogga et al., PRL85(2000)944

4MeV

1MeV
TNF

T.Otsuka et al., PRL105(2010)032501
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Importance of                         
Three Nucleon Force (TNF)

T.Otsuka et al., PRL105(2010)032501 
J.D.Holt et al., arXiv:1009.5984

drip line:  28O 24O

The effect on the nuclear chart
anomaly in drip line and nontrivial magic number in 
neutron rich nuclei by TNF

nontrivial magic number 
N=28 for 20Ca

Nucleosynthesis by Supernova
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Importance of                         
Three Nucleon Force (TNF)

Precise few-body calc:                                         
NN force cannot reproduce B.E.

Saturation density/energy of nuclear matter also 
requires TNF

EOS of neutron star
Flavor universal TNF (repulsive) ? 

The effect on the nuclear chart
anomaly in drip line and magic numbers by TNF

Ay puzzle in N-d, N-A scatt., etc.
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δΒ.Ε.= 0.5-1MeV for 3H 
δΒ.Ε.= 2-4   MeV for 4He

Attractive TNF 
necessary

A.Akmal et al., PRC58(1998)1804

(TNF may worsen
the situation)

Repulsive TNF 
also necessary

4MeV

1MeV
TNF

Nogga et al., PRL85(2000)944
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It is natural to expect the existence of TNF
It is very nontrivial to determine TNF from QCD
2πE-TNF Fujita-Miyazawa, PTP17(1957)360

Off-energy-shell πN scatt

EFT expansion TNF appears at NNLO order

Phenomenological short-range repulsion is necessary

2πE-TNF too attractive, often suppressed (artificially) 
by form factor

NB: the combination of (2NF,3NF) observables

Three Nucleon Force (TNF)

π
π

π
π

Δ
π π

ρ,  σ

U.v.Kolck, PRC49(1994)29322NF 3NF

2NF 3NF

(c
an

ce
l)

Epelbaum, Prog.Part.Nucl.Phys.57(06)654
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In the case of 2N system…
Calc 4pt func NBS amp.

Extention to 3N system
Calc 6pt func NBS amp. of NNN

Obtain TNF through

Difficulty(1): volume factor
2N: naïve O(L6) calc O(L3 log L3)
3N: naïve O(L9) calc O(L6 log L6)

Difficulty(2): naïve calc of quark dof grows in factorial (~Nu! Nd!)
2N: O(L3) X Nwick X color/spinor loops
3N: O(L6) X Nwick X color/spinor loops

How can we tackle TNF in 
Lattice QCD ?

by 2N calc

O(104-105) factor

O(L3) X O(4000) = O(107-108) factor

TNF is 
exceptionally 
challenging
problem !

c.f. pioneering lat calc of B.E. 3He(=3H), 4He 
T.Yamazaki et al., arXiv:0912.1383
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We studied the effective 2N potential in 3N system (3H)

Relatively small calc cost (yet, still much expensive than 2N)
Good precision achieved thanks to the sum over spectator particle
Indirect access to TNF (due to off-diag 2N), and the effect of TNF is 
“smeared” by spacial average with triton wave function

Calculation for fixed 3D-configuration of 3N system
Direct access to TNF is possible !

We can explore the various features of TNF (spin/isospin/spacial, etc.)
Much more expensive calc cost (O(10-100) factor) and yet worse S/N
We study linear setup

How can we tackle TNF in 
Lattice QCD ? (cont’d)
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We studied the effective 2N potential in 3N system (3H)

Relatively small calc cost (yet, still much expensive than 2N)
Good precision achieved thanks to the sum over spectator particle
Indirect access to TNF (due to off-diag 2N), and the effect of TNF is 
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We can explore the various features of TNF (spin/isospin/spacial, etc.)
Much more expensive calc cost (O(10-100) factor) and yet worse S/N
We study linear setup

How can we tackle TNF in 
Lattice QCD ? (cont’d)
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Features of Linear setup for 3H

Simplified coupled channel analysis possible
The vector to 3rd particle

L(1,2)-pair = Ltotal = 0 or 2 only
Possible bases are only three, which can be labeled by     

1S0, 3S1, 3D1 for (1,2)-pair
However, in order to determine TNF in 3x3 coupled 
channel, we need information of parity-odd potential

Although (1,2)-pair is L=even, (3,1),(2,3)-pair have L=odd 
components
Partial wave expansion with different Jacobi setup is impossible, 
since we do not have full wave function (only linear setup)

Parity-odd potential from lattice QCD (still) in progress 
3X3 channel, but unknown VC

I,S=0,0,VC
I,S=1,1,VT

I,S=1,1,TNF(s)

(1)

(2)

(3)
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Rotate the basis

We can construct the wave function in which any 2N pair
is spin/isospin anti-symmetric

L=even for any 2N pair automatically guaranteed

Solution using
“symmetric” wave function 

(1)

(2)
(3)

(1)

(2)

(3)(1)

(2)

(3)
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Rotate the basis

We can construct the wave function in which any 2N pair
is spin/isospin anti-symmetric

L=even for any 2N pair automatically guaranteed
3x3 coupled channel is reduced to

one channel with only TNF unknown
two channels with VC

I,S=0,0, VC
I,S=1,1, VT

I,S=1,1,(TNF) unknown
Even without parity-odd V, we can determine one TNF
This methodology works for any fixed 3D-conf other than linear

Solution using
“symmetric” wave function 

(1)

(2)
(3)

(1)

(2)

(3)(1)

(2)

(3)

(L2-dep ignored)



11/25/2010 N-N INteraction meeting @ TIFR 60

Repulsive TNF (TNR)

We determine TNF assuming scalar/isoscalar
Phenomenologically introduced to reproduce 
saturation density/energy of nuclear matter, etc.

Plot of TNR only:               
there is cancellation from TNA

Urbana/Illinois

AdS/CFT:
K.Hashimoto, N.Iizuka
arXiv:1005.4412
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Lattice calculation setup
Nf=2 dynamical clover fermion + RG improved gauge configs
(CP-PACS)

598 configs X 16 measurements
beta=1.95, (a-1=1.27GeV, a=0.156fm)
163 X 32 lattice, L=2.5fm
Kappa(ud)=0.13750

Μ(π) = 1.13GeV
M(N) = 2.15GeV
Μ(Δ) = 2.31GeV

Techniques
Automatic Wick contraction code to handle 4 up- and 5 down-quarks
Non-rela limit op is used to create 3N state at source

CP-PACS Coll. S. Aoki et al.,
Phys. Rev. D65 (2002) 054505 
[E: D67 (2003) 059901]

Factor of 23=8 faster

BGL@KEK
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Results for wave functions

Red:     ΨS
Blue:    ΨM
Others: Ψ3D1

Zoom

ΨM

Ψ3D1

ΨS
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Genuine Three Nucleon Force

M(π)=1.13GeV

Indication of 
short-range 
repulsive TNF

Note:
GS saturation may not be sufficient 
Constant energy shift not included  

O(10)MeV shift possible 

V
(T

N
F)

-
δE

[M
eV

] PRELIMINARY

T.D. (HAL QCD Collab.) 
arXiv:1011.0657

Scalar/Isoscalar TNF
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Genuine Three Nucleon Force

Discretization error in 
Laplacian op. is small

V
(T

N
F)

-
δE

[M
eV

]

Scalar/Isoscalar TNF

Comparison with 
improved Laplacian op.
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Summary/Outlook
Potentials from Lattice QCD using NBS wave function

Central and tensor potentials in parity-even channel
Qualitative features of NN potentials are reproduced, Velocity expansion checked
Significant step toward Nuclear Physics from QCD

Lattice QCD can give useful predictions on unknown potentials
YN, YY: Strangeness physics, hyperon matter in neutron star, SU(3) & beyond SU(3)
Meson-Baryon: N-K, N-ccbar (Kawanai-Sasaki), Q-Qbar: (Iida-Ikeda)

The First calculation on Three Nucleon Force (TNF) from Lattice QCD
2N subtraction is possible using only parity-even potentials
Calculation of linear setup of 3N (3H) system

Indication of Repulsive TNF at short distance, further studies ongoing
Various complementary approaches useful

Operator-Product-Expansion (Aoki-Balog-Weisz)
Lattice nuclei (Yamazaki-Kuramashi-Ukawa)
Strong-coupling limit (de Forcrand-Fromm)

Outlook
Realistic potentials (and phase shifts) with physically light masses w/ large volume
Parity-odd potentials, Higher derivative terms (LS-force and more) More TNFs
Understand the insight of nuclei: lattice nuclei vs. lattice potentials + ab initio calc.
Resonances from potentials ? (ρ, Δ, H-dibaryon, exotics…)
TNF: other 3D-conf (triangle etc.) for spacial info, I=3/2, SU(2)f SU(3)f : Astro physics
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A Space Odyssey                    
 

From QCD to Nuclear/Astro Physics

has just begun !


