UNIVERSAL $1 / r^{2}$ POTENTIALS at short and long range

 avoids collapse holds bound states
A. R. P. Rau

Department of Physics and Astronomy Louisiana State University, Baton Rouge

Angular Kinetic Energy $\quad \ell^{2} / 2 m r^{2}$

Repulsive barrier: at small r avoids collapse, at large r holds
low energy particles from penetration and/or escape
Classical Physics: Collapse for straight line $\ell=0$

Quantum Physics, \hbar, always an $\hbar^{2} / m r^{2}$ radial kinetic energy

Stability of H atom $\hbar^{2} /\left(2 m r^{2}\right)-e^{2} / r$ Bohr radius a_{0}

Wigner Threshold Law $k^{2 \ell+1}$ tunneling at large r

Tunneling through angular potential barrier

$k^{2 \ell+1} \quad$ elastic scattering phaseshift inelastic cross-section

Attractive $-a / 2 r^{2}$ potential, effective complex ang momentum

$$
\lambda=-\frac{1}{2}+i \alpha
$$

$$
\alpha=\sqrt{a-\frac{1}{4}}
$$

Number of bound states: Infinite number for long range

$$
\hbar^{2} / 2 m r^{2} \quad \text { vs } \quad-e^{2} / r
$$

$1 / r^{2}$ the dividing falloff between long/short range, infinite/finite \# for $1 / r^{2}$ itself, the strength parameter a decides
Infinite sequence described by $\sin (\quad)=0 \quad=>$ eigenvalues

$$
\epsilon=-\kappa^{2} / 2
$$

$$
\text { Coulomb : } \pi Z / \kappa=n \pi, \epsilon_{n}=-Z^{2} / 2 n^{2}
$$

Dipole bound states: molecules $\left(\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right), \mathrm{H}$ atom in $\mathrm{n}>1$:

$$
\alpha \ln (2 / \kappa)-\arg \Gamma(1-i \alpha)=(n+1 / 2) \pi \quad \epsilon_{n}=\epsilon_{0} e^{-2 n \pi / \alpha}
$$

D-dimensional Laplacian:

$$
\frac{\hbar^{2}}{2 M}\left\{-\frac{d^{2}}{d R^{2}}+\frac{D-1}{R} \frac{d}{d R}+\frac{\Lambda^{2}(\text { angles } \operatorname{an})}{R^{2}}\right\}
$$

$\Lambda^{2}: \lambda(\lambda+D-2), D=2: m^{2}, D=3: \ell(\ell+1)$
N - body problem : $\mathrm{D}=3(\mathrm{~N}-1) \quad$ three-body: 6 $R^{2}=r_{1}{ }^{2}+r_{2}{ }^{2}+\ldots . . \quad R$ overall size of the system, rest angles $R=\left(\sum_{i} m_{i} r_{i}^{2} / M\right)^{1 / 2}$

$$
\Psi \rightarrow R^{(D-1) / 2} \Psi
$$

$$
-\frac{d^{2}}{d R^{2}}+\frac{(D-1)(D-3)}{4 R^{2}}
$$

D = 2 attractive radial kinematic potential

D > 3 repulsive
V. Efimov, Phys. Lett. 33B, 563 (1970) L.H.Thomas (1935)

Two-body with range r_{0}, scattering length a Effective attractive $1 / R^{2}$ potential as scattering length gets large

Number of bound states as $|a|$ gets large: $(1 / \pi) \ln \left(|a| / r_{0}\right)$
As two-body binding increases, Efimov states disappear

N - N Potential Repulsive Barrier/Core at small R

1969 U. Fano Wannier 3-body threshold law with Coulomb
$\longrightarrow \mathrm{H}^{+}+\mathrm{e}+\mathrm{e}$
Repulsive 1/R ${ }^{2}$ Potential at small R

Not really a two-body but an effective potential of a manybody system
Number of particles not defined, a conjugate phase as in BCS
Born approximation: $\quad \sigma_{e l} \sim\left[E^{2} \ln \vec{p}^{2}-\vec{p}^{2}\right] / \vec{p}^{2}$

$$
E^{2}=\vec{p}^{2}+m^{2}
$$

Near zero-energy structures only from long range

 Wigner R-matrix Reaction zone) Asymptotic Far zone Two-body threshold lawsExactly at threshold, longest range potential gives energy dependence For short range interactions, angular momentum $\quad k^{2 \ell+1}$ For attractive Coulomb, that potential controls, irrespective of Photoionization cross-sections start finite at threshold for any

Reaction zone) Coulomb zone) Far asymptotic

$$
Z / r \quad r_{C}=2 Z / k^{2} \quad \varepsilon=k^{2} / 2
$$

Three-body Coulomb, two-electron escape Wannier Phys. Rev. 90, 817 (1953), Rau Phys. Rev. A 4, 207 (1971), Peterkop J. Phys. B 4, 513 (1971)

Two-electron escape at threshold

Final state in static screening models: "full" $\epsilon 3 / 2$, "partial" ϵ
"Dynamical" screening : sequence of screening determined by energy partitioning between the electrons and determining partitioning Wannier configuration $\mathrm{e}=\mathrm{H}^{+}$ \qquad e
Saddle point of configuration, tight angular and radial correlations, reaching their extreme at threshold for double escape cross-section $\epsilon^{\mu(Z)} \quad \mu=1.127 \quad Z=1$

Same correlations in high doubly-excited states,

Pauli principle, S and L, irrelevant except ${ }^{1{ }^{\mathrm{Pe}}}$ and ${ }^{3} \mathrm{~S}^{\mathrm{e}}$ more suppressed C.H.Greene and ARPR, Phys. Rev. Lett. 48, 533 (1982)

Efimov states of Cesium trimers

Kraemer et al, Nature 440, 315 (2006), Esry-Greene, p. 289
I.Mazumdar, ARPR, V.S.Bhasin, Phys.Rev.Lett. 97,062503 ('06)
neutron-rich, halo nuclei. $\quad{ }^{20} \mathrm{C}: \mathrm{n}+\mathrm{n}+{ }^{18} \mathrm{C}$ two-body energy ${ }^{19} \mathrm{C}$ tuned elastic $n+{ }^{19} C$ cross-section for energy E_{i}

$$
\begin{aligned}
E_{r} & =1.63 \mathrm{keV} \\
\Gamma & =0.25 \mathrm{keV} \\
\mathrm{q} & =4
\end{aligned}
$$

Doubly-excited states in atoms, two-neutron states in nuclei

Effect of finite angular momentum and symmetry

For a non-zero $\lambda, \lambda(\lambda+D-2) / R^{2}$ will swamp $-a / R^{2}$,

So Efimov states only at λ or $L=0$.

Fermions, Pauli antisymmetrization relevant only if 3 identical particles forbidden in $\mathrm{L}=0 .{ }^{4} \mathrm{~S}$
Macek and Sternberg, Phys. Rev. Lett. 97, 023201 (2006).

Efimov states only for 3 bodies: Amado and Greenwood, Phys. Rev. D 7, 2517 (1973).
3 particles define a plane and radial kinematic potential attractive only in 2-dimensions.

Figure 5.13. Beutler-Fano profiles with different values of the Fano q-parameter. From U. Fano, Phys. Rev. 124, 1866 (1961).

Resonances in physics: symmetric Lorentzian shapes Breit-Wigner in nuclear and particle physics

$$
\begin{gathered}
\sigma=\frac{A}{\left(E-E_{r}\right)^{2}+(\Gamma / 2)^{2}}=\frac{\sigma_{0}}{1+\epsilon^{2}} \\
\epsilon \equiv\left(E-E_{r}\right) /(\Gamma / 2)
\end{gathered}
$$

Fano (1961) resonance as interference between two pathways

$$
\sigma=\sigma_{0} \frac{(q+\epsilon)^{2}}{\left(1+\epsilon^{2}\right)}
$$

Fano profile, asymmetric, zero at $\epsilon=-q$
Reduces to Lorentzian for $\quad q \rightarrow \infty$

