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1 Introduction

This little contribution aims to provide
an example of permutation symmetry,
whose ‘physics’ seems to apply to the
structure of the proton itself | The the-
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oretical background is provided by a re-
cent paper|l], hereafter designated as
the qqq paper, wherein the concept of a
fundamental 3-body force is introduced
at the quark-gluon level, as a folding of a
ggg vertex with 3 distinct ggq vertices,
making up a Y -shaped diagram (see fig
1). This is of course in addition to the
standard pairwise gq force that is usu-
ally considered for baryon spectroscopy,
but it turns out that in the high momen-

tum limit of QQCD, where the confining



qq force may be neglected, the direct
qqq torce dominates over the pairwise
qq forces, thus offering a new basis for
exploring the structure of the proton
in the high momentum limit of QCD,
one in which the concept of permuta-
tion (53) symmetry plays a central role.
While referring the interested reader to
1] for mathematical details, in the con-
text of the proton’s spin anomaly 2] the
essential features are the following.

The basic dynamics is provided by a
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Figure 1: (a) Pictorial view of 2- & 3- body interactions; (b) ‘Mercedez-Benz’

diagram for qqq-force

covariant Salpeter-like equation |3 gov-
erned by what is termed in the litera-
ture as the Markov-Yukawa Transver-
sality Principle (MYTP for short)[4,5]
which specifies that all qq forces are trans-
verse to the direction of the total hadron
4-momentum F,~a gauge principle in

disguise [6]! The Salpeter equation has
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a remarkable property of a 3D-4D in-
terlinkage [7] which can be formulated
within Dirac’s LF Dynamics [8,9] to take
advantage of its bigger stability group.
Using the notation, phase and normal-
ization of [1], but skipping most of the

details, the gqq force in 3D form reads
3 kiksk3 |

where the dominant (spin-spin-spin) term

quq —

SS5.S works out as
SSS = 2¥.(n—n') x (£ = &)
kT + k3 + k3)/V/3 — 4[(n — )
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x(& =& (1.2)
22 being twice the total hadron spin op-
erator. The procedure is now to insert
this term within an interlinked 3D-4D
BSE formalism wherein the complete
4D wave function W satisfies a covari-
ant Salpeter Eq a la MYTP on the light
front (LF); The ¥ function whose spin
dependence is fully described in terms of
standard Dirac matrices, can be related
through a sequence of transformations

to a 3D scalar function ¢ which (on re-
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duction of the above 4D BSE) satisfies a
3D Schroedinger-like (albeit LF covari-
ant) equation. Next, a reconstruction
of W in terms of ¢ is achieved by Green’s
function techniques, so that the 4D spin
structure of the former is recovered. Since
the qqq paper |1] had ended at this stage,
we need to start from this stage to col-
lect (in Sect 2) some essential material
outlining the solution for the ¢ function,
along with the reconstructed function

V. In Sect 3 we offer a first application



of this ggq formalism to the evaluation,
using 4D loop diagrams, of some basic
quantities like magnetic moments, g3 g
in the notation and normalization of [2]
and the (less trivial) baryon structure

function.

2 Structure of Full 4D U

The LF momenta in 3D form are |7]:
Mp; Mp;—

P, 2P
pi =4piL piz} (2.1)

Piz; Pi0 —



V26 = p3—p2; V61 = —2p3+p1+po;
(2.2)
There are three main steps

Step A: Define an auxiliary 4D scalar in
O:
U = 19355 (—pi) @(pipops) W (P)
(2.3)

W(P)=[X'¢' +x"¢")/vV2  (24)
M—wy.P_ .

TV Gl V3|C/V2)
(L5 v5Yu]u(P)] (2.5)

Step B: Set up the Master Eq for ® with

X > X > =

Gordon reduction.



Step C: Make a reduction of the Mas-
ter Eq for 4D ® to one for 3D ¢; then
reconstruct ® in terms of ¢,via Green’s
fn method adapted to LF formalism |7].
The final result for reconstructed 4D
spinor V¥ in terms 3D scalar ¢ is

V() = i23Sr(pi) D123W (P)
o(&,n

2.6
1%3 (27i)? (2.6)
where
1 P?dqio—dps—
— = TEYIRY, (2.7)
D193 4M (2271') A1A9A3

and the 3D wave fn ¢ satisfies a 6D Dit-

ferential equation in coordinate space
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with S3 symmetric variables

\/583 = r1—79; \/6153 = —2r3+r1+ry
(2.8)

Pending a completely satistactory so-
lution of Eq.(2.7), we have attempted
an approximate representation of ¥ in
a two-component matrix form ¢ (due
to the spin-dependence (1.1) of the gqq
force, 1) with its 3D spin dependence, is
a more convenient alternative to ¢, and
is more readily comparable to the Orsay

group’s [10]), on the lines of the Orsay
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group |10] who had used a mixture of
56 and 70 states, each with L = 0T, In
the present case, due to the high degree
of gqq symmetry, it seems more appro-

priate to take a mixture of 56; 07 and

20; 17, each with J = 1/2, but taking

)

account of the full ggq symmetry :

V22X x €
0

&+
where &, 7 are given by Eq.(2.2), and

V= s + o (2.9)

the norm of the second term is for later
convenience. It turns out that yg, g

satisfy almost identical equations rep-
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resented symbolically as

Diag[ths;wbo] = [ Vsld(n x €)% — 4X +
+2X|(¢s:1p);  (2.10)

where

X =pnx&P/NV3: p=E+1
(2.11)
If as a first approximation, the term
+2X in Eq.(2.10) is dropped, there arises
a remarkable simplification wherein the
ratio of the 14 and 1y components is al-
most independent of the dynamics, ex-

cept for a constant, while the dynamics
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is almost entirely contained in a com-
mon function ¢ satistying an equation
of the form (2.10). The effect of this
simplification is best expressed by the

relations

ths = cos ;g =sinfyp  (2.12)

where the phase factor 3, plays the role
of the mixing angle ¢ of [10]).

For the rest of the paper the 3D LF
function v of Eq.(2.12) will play a pas-
sive role (of normalization), so it will be

dropped from turther consideration.
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3 Basic Matrix Elements

1Y Y5

P v
P2y
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Figure 2: Schematic baryon spin diagram, with internal
quark momenta pi, p2, p3 ; basic spin operator i7,ys 1s

inserted in line p;.

The baryonic matrix elements of a given
operator A, are symbolically expressed
by quantities like < By | A | By g >,
where Bj 9 are the two wave functions

(56 and 20) of Eq.(2.9), whose full de-
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grees of freedom (including spin and isospin)

are

By > = eos B¢’ + ¢"X")/V2

By > = ¢sin Bfoo(¢'x" — ¢"x)/V2;
V25 X &

foo =i , (3.1)

the last line representing the angular ef-

fect of the 20 state. For a given form of
A, after evaluating the isospin part of
the matrix element, the spin part in-
volves overlaps like A" =< Y/|Alx" >
and A” =< x"|A|x" > for the ‘di-
rect’ [56 — 56 and 20 — 20| tran-
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sitions, while the mixed transitions in-
volve the overlap Ay, =< x/|A|x" >,
etc. Using the Dirac forms of the spin
functions as given by (2.5), such over-
laps correspond to loop integrals like in
fig.2. A typical matrix element with
A = 1(corresponding to a normaliza-

tion integral) is of the form

N' = N{;Qg + deyclicperms

N" = N{/;QB + beyclicperms(3.2)

Ni.93 = u(P)Sp(p1){1}Sp(p1)vsC
Sp(p2)C ™5 Pg
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Sp(ps)u(P)/2 (3:3)

Similarly for N{’;Qg. Same pattern for

other physical quantities : electric charge
; SPIN 7Yy, Y5

1 = eiyy,|1/6 + 13/2) (3.4)

3.1 Spin Matrix Elements in Low-

est Order

The spin matrix elements g, in the nota-
tion of |2] are obtained with A = y,,75;
within this formalism, where the \’s are

the Gellmann matrixes as given in Licht-
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enberg [11]. The 56-20 mixing affects g3
but not gg and ¢gg. The results in lowest

order are

g3 = (5/3) cos” B—sin” B; gg = go=1/V3
(3.5)
Note that only g3 depends on (. and
agrees with the observed value 1.248 for
B ~ 249¢8  The other two quantities
(at &~ 0.58) agree with [2]. Of the lat-
ter, only gg is affected by the 2-gluon

anomaly, but not gs.
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4 Two-gluon Anomaly Operator

HLLLL Y Y5 Y5
= X+ X

Figure 3: Two gluon operator (crossed box) representing a

sum of two distinct diagrams for axial vector coupling

The 2-gluon anomaly operator A,
‘crossed box’ as a sum of two triangle

diagrams, is

A,uz/)\UC) —

. 2
(/ .
s Trlf d*qivySp(q+ k1)

(2m)*
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Y y5S (g + k2)ivaSkE(q)]
+conj (4.1)

Gauge Invariance duly incorporated.

Result

11 Spin corrections from 2-gluon

Anomaly

Now insert A,y in the quark lines Fig.
3 — forward scattering amplitude for the
baryon.

Two ways for insertion : 1) self-energy-
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like in line p; ( Fig.3a); Designate these
as ¥/, 3/ 2) exchange -like connecting
p1 and py (Fig.3b). Designate these as
V! V" respectively. And add their al-

lowed perms as before.
295

3(2m)*

A i SE(p1 — k)iyyD*(k)SE(p1) PE

;750 Sp(—p2)C ™ 5 PESp(ps)

Psu(P) + conj (4.3)

s — [ d*ka(P)PsSp(pr)
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A similar form exists for 3. For the

exchange type insertions, V'

292 4, Pgys
3(277)4/d ku(P)PsSp(p1)—,
NyASE(=p2 + k) D(k)Sp(—po)

V5 PESp(p3) 7D (k)SF(ps + k) Psu(P)

+conj (4.4)

VI =

Similar result for V. These quantities,
when integrated over sdr, and divided
by the normalizer N, quality directly as
2-gluon anomaly corrections (same rel-
ative normalization) to the spin matrix

(0)

element g, ’. The process involves:
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(a) integration over d*k;

(b) integration over dr, as in above.
The (logarithmic) divergence of the k-
integration is removed by dimensional
regularization of t'Hooft and Veltmann.
The result for the fractional correction

(0)

to g’ may be expressed in the form
sga =0 Pgl). (45)
And a very crude estimate yields
6~ —2.0

which with o ~ 0.39, amounts to a

small correction, albeit of the right sign.
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5 Summary and Conclusion

To conclude, we have presented a first
application of a new form of dynamics
within the framework of QCD in the
high momentum limit, viz., the role of a
direct qqq force which has been shown
to produce an additional singularity in
the structure of the qqq wave fn ¢. This
application indicates the possibility of
addressing the details of the proton struc-
ture function, including spin anomaly,

through the inclusion of internal dynam-
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Figure 4: T'wo-gluon operator, fig (2), inserted in the in-
ternal quark lines of the baryon: (a) ‘self-energy’ like in-
sertion in line py; (b) ‘exchange-like’ insertion connecting

lines py and ps
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