S_{3} Symmetric $q q q$ Force Dominance In High Momentum Limit of QCD For Understanding Proton Spin

A.N.Mitra *
244 Tagore Park, Delhi-110009, India

1 Introduction

This little contribution aims to provide an example of permutation symmetry, whose 'physics' seems to apply to the structure of the proton itself! The the-

[^0]oretical background is provided by a recent paper[1], hereafter designated as the $q q q$ paper, wherein the concept of a fundamental 3-body force is introduced at the quark-gluon level, as a folding of a $g g g$ vertex with 3 distinct $\bar{q} g q$ vertices, making up a Y-shaped diagram (see fig $1)$. This is of course in addition to the standard pairwise $q q$ force that is usually considered for baryon spectroscopy, but it turns out that in the high momentum limit of QCD , where the confining
$q q$ force may be neglected, the direct $q q q$ force dominates over the pairwise $q q$ forces, thus offering a new basis for exploring the structure of the proton in the high momentum limit of QCD, one in which the concept of permutation $\left(S_{3}\right)$ symmetry plays a central role. While referring the interested reader to [1] for mathematical details, in the context of the proton's spin anomaly [2] the essential features are the following.

The basic dynamics is provided by a

Figure 1: (a) Pictorial view of 2- \& 3- body interactions; (b) 'Mercedez-Benz' diagram for qqq-force
covariant Salpeter-like equation [3] governed by what is termed in the literature as the Markov-Yukawa Transversality Principle (MYTP for short)[4,5] which specifies that all $q q$ forces are transverse to the direction of the total hadron

4-momentum P_{μ}-a gauge principle in disguise [6]! The Salpeter equation has
a remarkable property of a 3D-4D interlinkage [7] which can be formulated within Dirac's LF Dynamics $[8,9]$ to take advantage of its bigger stability group. Using the notation, phase and normalization of [1], but skipping most of the details, the $q q q$ force in 3 D form reads

$$
\begin{equation*}
V_{q q q}=\frac{-g_{s}^{4}}{3} \frac{[S S S]}{k_{1}^{2} k_{2}^{2} k_{3}^{2}} \tag{1.1}
\end{equation*}
$$

where the dominant (spin-spin-spin) term
$S S S$ works out as

$$
\begin{aligned}
S S S= & 2 i \Sigma \cdot\left(\eta-\eta^{\prime}\right) \times\left(\xi-\xi^{\prime}\right) \\
& {\left[k_{1}^{2}+k_{2}^{2}+k_{3}^{2}\right] / \sqrt{3}-4\left[\left(\eta-\eta^{\prime}\right)\right.}
\end{aligned}
$$

$$
\begin{equation*}
\left.\times\left(\xi-\xi^{\prime}\right)\right]^{2} \tag{1.2}
\end{equation*}
$$

Σ being twice the total hadron spin operator. The procedure is now to insert this term within an interlinked 3D-4D BSE formalism wherein the complete 4D wave function Ψ satisfies a covariant Salpeter Eq a la MYTP on the light front (LF); The Ψ function whose spin dependence is fully described in terms of standard Dirac matrices, can be related through a sequence of transformations to a 3D scalar function ϕ which (on re-
duction of the above 4D BSE) satisfies a
3D Schroedinger-like (albeit LF covariant) equation. Next, a reconstruction of Ψ in terms of ϕ is achieved by Green's function techniques, so that the 4D spin structure of the former is recovered. Since the $q q q$ paper [1] had ended at this stage, we need to start from this stage to collect (in Sect 2) some essential material outlining the solution for the ϕ function, along with the reconstructed function Ψ. In Sect 3 we offer a first application
of this $q q q$ formalism to the evaluation, using 4 D loop diagrams, of some basic quantities like magnetic moments, $g_{3,8,0}$ in the notation and normalization of [2] and the (less trivial) baryon structure function.

2 Structure of Full 4D Ψ

The LF momenta in 3D form are [7]:

$$
\begin{aligned}
p_{i z} ; p_{i 0}= & \frac{M p_{i+}}{P_{+}} ; \frac{M p_{i-}}{2 P_{-}} \\
& \hat{p}_{i} \equiv\left\{p_{i \perp}, p_{i z}\right\}
\end{aligned}
$$

$\sqrt{2} \xi=p_{3}-p_{2} ; \quad \sqrt{6} \eta=-2 p_{3}+p_{1}+p_{2} ;$
(2.2)

There are three main steps
Step A: Define an auxiliary 4D scalar fin $\Phi:$

$$
\Psi=\Pi_{123} S_{F i}^{-1}\left(-p_{i}\right) \Phi\left(p_{i} p_{2} p_{3}\right) W(P)
$$

(2.3)

$$
\begin{align*}
W(P)= & {\left[\chi^{\prime} \phi^{\prime}+\chi^{\prime \prime} \phi^{\prime \prime}\right] / \sqrt{2} } \\
\left|\chi^{\prime}>;\right| \chi^{\prime \prime}>= & {\left[\frac{M-i \gamma \cdot P}{2 M}\left[i \gamma_{5} ; i \hat{\gamma}_{\mu} / \sqrt{3}\right] C / \sqrt{2}\right] } \\
& \otimes\left[\left[1 ; \gamma_{5} \hat{\gamma}_{\mu}\right] u(P)\right]
\end{align*}
$$

Step B: Set up the Master Eq for Φ with
Gordon reduction.

Step C: Make a reduction of the Master Eq for $4 \mathrm{D} \Phi$ to one for $3 \mathrm{D} \phi$; then reconstruct Φ in terms of ϕ,via Green's fn method adapted to LF formalism [7]. The final result for reconstructed 4D spinor Ψ in terms 3D scalar ϕ is

$$
\begin{align*}
\Psi(\xi, \eta)= & \Pi_{123} S_{F}\left(p_{i}\right) D_{123} W(P) \\
& \sum_{123} \frac{\phi(\hat{\xi}, \hat{\eta})}{(2 \pi i)^{2}} \tag{2.6}
\end{align*}
$$

where

$$
\begin{equation*}
\frac{1}{D_{123}}=\int \frac{P_{+}^{2} d q_{12-} d p_{3-}}{4 M^{2}(2 i \pi)^{2} \Delta_{1} \Delta_{2} \Delta_{3}} \tag{2.7}
\end{equation*}
$$

and the 3D wave fn ϕ satisfies a 6D Differential equation in coordinate space
with S_{3} symmetric variables
$\sqrt{2} s_{3}=r_{1}-r_{2} ; \quad \sqrt{6} t_{3}=-2 r_{3}+r_{1}+r_{2}$
(2.8)

Pending a completely satisfactory solution of Eq.(2.7), we have attempted an approximate representation of Ψ in a two-component matrix form ψ (due to the spin-dependence (1.1) of the $q q q$ force, ψ with its 3D spin dependence, is a more convenient alternative to ϕ, and is more readily comparable to the Orsay group's [10]), on the lines of the Orsay
group [10] who had used a mixture of 56 and 70 states, each with $L=0^{+}$. In the present case, due to the high degree of $q q q$ symmetry, it seems more appropriate to take a mixture of $56 ; 0^{+}$and 20; 1^{+}, each with $J=1 / 2$, but taking account of the full $q q q$ symmetry :

$$
\begin{equation*}
\psi=\psi_{s}+i \frac{\sqrt{2} \Sigma . \eta \times \xi}{\xi^{2}+\eta^{2}} \psi_{0} \tag{2.9}
\end{equation*}
$$

where ξ, η are given by Eq.(2.2), and the norm of the second term is for later convenience. It turns out that ψ_{s}, ψ_{0} satisfy almost identical equations rep-
resented symbolically as

$$
\begin{align*}
D_{123}\left[\psi_{s} ; \psi_{0}\right]= & \int V_{s}\left[4(\eta \times \xi)^{2}-4 X+\right. \\
& \pm 2 X]\left(\psi_{s} ; \psi_{0}\right) ; \quad(2.10) \tag{2.10}
\end{align*}
$$

where

$$
X=\rho\left(\eta \times \xi . \hat{P} / \sqrt{3} ; \quad \rho=\xi^{2}+\eta^{2}\right.
$$

If as a first approximation, the term $\pm 2 X$ in Eq.(2.10) is dropped, there arises a remarkable simplification wherein the ratio of the ψ_{s} and ψ_{0} components is almost independent of the dynamics, except for a constant, while the dynamics
is almost entirely contained in a common function ψ satisfying an equation of the form (2.10). The effect of this simplification is best expressed by the relations

$$
\begin{equation*}
\psi_{s}=\cos \beta \psi ; \quad \psi_{0}=\sin \beta \psi \tag{2.12}
\end{equation*}
$$

where the phase factor β, plays the role of the mixing angle ϕ of [10]).

For the rest of the paper the 3 D LF function ψ of Eq.(2.12) will play a passive role (of normalization), so it will be dropped from further consideration.

3 Basic Matrix Elements

Figure 2: Schematic baryon spin diagram, with internal quark momenta p_{1}, p_{2}, p_{3}; basic spin operator $i \gamma_{\mu} \gamma_{5}$ is inserted in line p_{1}.

The baryonic matrix elements of a given operator A, are symbolically expressed by quantities like $<B_{1,2}|A| B_{1,2}>$, where $B_{1,2}$ are the two wave functions (56 and 20) of Eq.(2.9), whose full de-
grees of freedom (including spin and isospin) are

$$
\begin{align*}
\mid B_{1}> & =\psi \cos \beta\left(\phi^{\prime} \chi^{\prime}+\phi^{\prime \prime} \chi^{\prime \prime}\right) / \sqrt{2} \\
\mid B_{2}> & =\psi \sin \beta f_{20}\left(\phi^{\prime} \chi^{\prime \prime}-\phi^{\prime \prime} \chi^{\prime}\right) / \sqrt{2} \\
f_{20} & =i \frac{\sqrt{2} \Sigma . \eta \times \xi}{\rho} \tag{3.1}
\end{align*}
$$

the last line representing the angular effect of the 20 state. For a given form of A, after evaluating the isospin part of the matrix element, the spin part involves overlaps like $A^{\prime}=<\chi^{\prime}|A| \chi^{\prime}>$ and $A^{\prime \prime}=<\chi^{\prime \prime}|A| \chi^{\prime \prime}>$ for the 'direct' $[56 \rightarrow 56$ and $20 \rightarrow 20]$ tran-
sitions, while the mixed transitions involve the overlap $A_{m}=<\chi^{\prime}|A| \chi^{\prime \prime}>$, etc. Using the Dirac forms of the spin functions as given by (2.5), such overlaps correspond to loop integrals like in fig.2. A typical matrix element with $A=1$ (corresponding to a normalization integral) is of the form

$$
\begin{aligned}
N^{\prime}= & N_{1 ; 23}^{\prime}+5 \text { cyclicperms } \\
N^{\prime \prime}= & N_{1 ; 23}^{\prime \prime}+5 \text { cyclicperms }(3.2) \\
N_{1 ; 23}^{\prime}= & \bar{u}(P) S_{F}\left(p_{1}\right)\{1\} S_{F}\left(p_{1}\right) \gamma_{5} C \\
& S_{F}\left(p_{2}\right) C^{-1} \gamma_{5} P_{E}
\end{aligned}
$$

$$
\begin{equation*}
S_{F}\left(p_{3}\right) u(P) / 2 \tag{3.3}
\end{equation*}
$$

Similarly for $N_{1 ; 23}^{\prime \prime}$. Same pattern for other physical quantities : electric charge
; spin $i \gamma_{\mu} \gamma_{5}$

$$
\begin{equation*}
1 \Rightarrow e i \gamma_{\mu}\left[1 / 6+\tau_{3} / 2\right] \tag{3.4}
\end{equation*}
$$

3.1 Spin Matrix Elements in Low-

 est OrderThe spin matrix elements g_{i} in the notation of [2] are obtained with $A=i \gamma_{\mu} \gamma_{5} \lambda_{i}$ within this formalism, where the $\lambda^{\prime} s$ are the Gellmann matrixes as given in Licht-
enberg [11]. The 56-20 mixing affects g_{3}
but not g_{8} and g_{0}. The results in lowest order are
$g_{3}=(5 / 3) \cos ^{2} \beta-\sin ^{2} \beta ; \quad g_{8}=g_{0}=1 / \sqrt{3}$
(3.5)

Note that only g_{3} depends on β, and agrees with the observed value 1.248 for $\beta \approx 24^{\mathrm{deg}}$. The other two quantities (at $\approx 0.58)$ agree with [2]. Of the latter, only g_{0} is affected by the 2-gluon anomaly, but not g_{8}.

4 Two-gluon Anomaly Operator

Figure 3: Two gluon operator (crossed box) representing a sum of two distinct diagrams for axial vector coupling

The 2-gluon anomaly operator $\Delta_{\mu \nu \lambda}$
'crossed box' as a sum of two triangle diagrams, is
$\Delta_{\mu \nu \lambda}(k)=\frac{i g_{s}^{2}}{(2 \pi)^{4}} \operatorname{Tr}\left[\int d^{4} q i \gamma_{\nu} S_{F}\left(q+k_{1}\right)\right.$

$$
\left.i \gamma_{\mu} \gamma_{5} S_{F}\left(q+k_{2}\right) i \gamma_{\lambda} S_{F}(q)\right]
$$

$$
\begin{equation*}
+ \text { conj } \tag{4.1}
\end{equation*}
$$

Gauge Invariance duly incorporated.
Result

$$
\begin{equation*}
\Delta_{\mu \nu \lambda} \approx \alpha_{s} \epsilon_{\mu \nu \lambda \sigma} k_{\sigma} \tag{4.2}
\end{equation*}
$$

4.1 Spin corrections from 2-gluon

Anomaly

Now insert $\Delta_{\mu \nu \lambda}$ in the quark lines Fig.
3 - forward scattering amplitude for the
baryon.
Two ways for insertion : 1) self-energy-
like in line p_{1} (Fig.3a); Designate these as $\Sigma^{\prime}, \Sigma^{\prime \prime} 2$) exchange -like connecting p_{1} and p_{2} (Fig.3b). Designate these as $V^{\prime}, V^{\prime \prime}$ respectively. And add their allowed perms as before.

$$
\begin{align*}
\Sigma^{\prime}= & \frac{2 g_{s}^{2}}{3(2 \pi)^{4}} \int d^{4} k \bar{u}(P) P_{s} S_{F}\left(p_{1}\right) \\
& \Delta_{\mu \nu \lambda} i \gamma_{\nu} S_{F}\left(p_{1}-k\right) i \gamma_{\lambda} D^{2}(k) S_{F}\left(p_{1}\right) P_{E} \\
& \frac{1}{2} \gamma_{5} C S_{F}\left(-p_{2}\right) C^{-1} \gamma_{5} P_{E} S_{F}\left(p_{3}\right) \\
& P_{s} u(P)+\mathrm{conj} \tag{4.3}
\end{align*}
$$

A similar form exists for $\Sigma^{\prime \prime}$. For the exchange type insertions, V^{\prime} :

$$
\begin{align*}
V^{\prime}= & \frac{2 g_{s}^{2}}{3(2 \pi)^{4}} \int d^{4} k \bar{u}(P) P_{s} S_{F}\left(p_{1}\right) \frac{P_{E} \gamma_{5}}{2} \\
& \Delta_{\mu \nu \lambda} S_{F}\left(-p_{2}+k\right) \gamma_{\nu} D(k) S_{F}\left(-p_{2}\right) \\
& \gamma_{5} P_{E} S_{F}\left(p_{3}\right) \gamma_{\lambda} D(k) S_{F}\left(p_{3}+k\right) P_{s} u(P) \\
& + \text { conj } \tag{4.4}
\end{align*}
$$

Similar result for $V^{\prime \prime}$. These quantities, when integrated over $s d \tau$, and divided by the normalizer N, qualify directly as 2-gluon anomaly corrections (same relative normalization) to the spin matrix element $g_{A}^{(0)}$. The process involves:
(a) integration over $d^{4} k$;
(b) integration over $d \tau$, as in above.

The (logarithmic) divergence of the k integration is removed by dimensional regularization of t^{\prime} Hooft and Veltmann.

The result for the fractional correction to $g_{A}^{(0)}$ may be expressed in the form

$$
\begin{equation*}
\delta g_{A}=\theta\left[\frac{\alpha_{S}}{\pi}\right]^{2} g_{A}^{(0)} \tag{4.5}
\end{equation*}
$$

And a very crude estimate yields

$$
\theta \sim-2.0
$$

which with $\alpha \approx 0.39$, amounts to a small correction, albeit of the right sign.

5 Summary and Conclusion

To conclude, we have presented a first application of a new form of dynamics within the framework of QCD in the high momentum limit, viz., the role of a direct $q q q$ force which has been shown to produce an additional singularity in the structure of the $q q q$ wave fn ϕ. This application indicates the possibility of addressing the details of the proton structure function, including spin anomaly, through the inclusion of internal dynam-
ics.

References

[1] A.N. Mitra, Ann. Phys(NY). 323, 845-865 (2007).
[2] S.D. Bass Rev. Mod. Phys. 77, 1257-1302 (2005).
[3] E.E. Salpeter, Phys.Rev. 87, 328 (1952).
[4] M.A. Markov, Sov. J. Phys. 3, 452 (1940).
[5] H. Yukawa, Phys.Rev. 77, 219 (1950).
[6] J. Lukierski and M. Oziwicz, Phys. Lett. B69, 339 (1977).
[7] A.N. Mitra, Nucl. Phys. A684, 313c (2000).
[8] P.A.M. Dirac, Rev. Mod. Phys. 21, 392 (1949).
[9] S. Weinberg, Phys. Rev. 150, 1313 (1966).
[10] A.Le Yaouanc et al, Phys.Rev.
D12, 2137 (1975).
[11] D.B. Lichtenberg, Unitary Symmetry and Elementary Particles,

Second Edition, Academic Press, Inc, New York, 1978.

Figure 4: Two-gluon operator, fig (2), inserted in the internal quark lines of the baryon: (a) 'self-energy' like insertion in line p_{1}; (b) 'exchange-like' insertion connecting lines p_{2} and p_{3}

[^0]: *Email: (1) ganmitra@nde.vsnl.net.in; (2) anmitra@physics.du.ac.in

