
S3 Symmetric qqq Force Dominance In

High Momentum Limit of QCD For

Understanding Proton Spin

A.N.Mitra ∗

244 Tagore Park, Delhi-110009, India

1 Introduction

This little contribution aims to provide

an example of permutation symmetry,

whose ‘physics’ seems to apply to the

structure of the proton itself ! The the-
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oretical background is provided by a re-

cent paper[1], hereafter designated as

the qqq paper, wherein the concept of a

fundamental 3-body force is introduced

at the quark-gluon level, as a folding of a

ggg vertex with 3 distinct q̄gq vertices,

making up a Y -shaped diagram (see fig

1). This is of course in addition to the

standard pairwise qq force that is usu-

ally considered for baryon spectroscopy,

but it turns out that in the high momen-

tum limit of QCD, where the confining
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qq force may be neglected, the direct

qqq force dominates over the pairwise

qq forces, thus offering a new basis for

exploring the structure of the proton

in the high momentum limit of QCD,

one in which the concept of permuta-

tion (S3) symmetry plays a central role.

While referring the interested reader to

[1] for mathematical details, in the con-

text of the proton’s spin anomaly [2] the

essential features are the following.

The basic dynamics is provided by a
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Figure 1: (a) Pictorial view of 2- & 3- body interactions; (b) ‘Mercedez-Benz’

diagram for qqq-force

covariant Salpeter-like equation [3] gov-

erned by what is termed in the litera-

ture as the Markov-Yukawa Transver-

sality Principle (MYTP for short)[4,5]

which specifies that all qq forces are trans-

verse to the direction of the total hadron

4-momentum Pµ–a gauge principle in

disguise [6]! The Salpeter equation has
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a remarkable property of a 3D-4D in-

terlinkage [7] which can be formulated

within Dirac’s LF Dynamics [8,9] to take

advantage of its bigger stability group.

Using the notation, phase and normal-

ization of [1], but skipping most of the

details, the qqq force in 3D form reads

Vqqq =
−g4

s

3

[SSS]

k2
1k

2
2k

2
3

(1.1)

where the dominant (spin-spin-spin) term

SSS works out as

SSS = 2iΣ.(η − η′)× (ξ − ξ′)

[k2
1 + k2

2 + k2
3]/
√

3− 4[(η − η′)
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×(ξ − ξ′)]2 (1.2)

Σ being twice the total hadron spin op-

erator. The procedure is now to insert

this term within an interlinked 3D-4D

BSE formalism wherein the complete

4D wave function Ψ satisfies a covari-

ant Salpeter Eq a la MYTP on the light

front (LF); The Ψ function whose spin

dependence is fully described in terms of

standard Dirac matrices, can be related

through a sequence of transformations

to a 3D scalar function φ which (on re-
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duction of the above 4D BSE) satisfies a

3D Schroedinger-like (albeit LF covari-

ant) equation. Next, a reconstruction

of Ψ in terms of φ is achieved by Green’s

function techniques, so that the 4D spin

structure of the former is recovered. Since

the qqq paper [1] had ended at this stage,

we need to start from this stage to col-

lect (in Sect 2) some essential material

outlining the solution for the φ function,

along with the reconstructed function

Ψ. In Sect 3 we offer a first application
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of this qqq formalism to the evaluation,

using 4D loop diagrams, of some basic

quantities like magnetic moments, g3,8,0

in the notation and normalization of [2]

and the (less trivial) baryon structure

function.

2 Structure of Full 4D Ψ

The LF momenta in 3D form are [7]:

piz; pi0 =
Mpi+

P+
;
Mpi−
2P−

p̂i ≡ {pi⊥, piz} (2.1)
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√
2ξ = p3−p2;

√
6η = −2p3+p1+p2;

(2.2)

There are three main steps

Step A: Define an auxiliary 4D scalar fn

Φ:

Ψ = Π123S
−1
Fi (−pi)Φ(pip2p3)W (P )

(2.3)

W (P ) = [χ′φ′ + χ′′φ′′]/
√

2 (2.4)

|χ′ >; |χ′′ > = [
M − iγ.P

2M
[iγ5; iγ̂µ/

√
3]C/

√
2]

⊗[[1; γ5γ̂µ]u(P )] (2.5)

Step B: Set up the Master Eq for Φ with

Gordon reduction.
9



Step C: Make a reduction of the Mas-

ter Eq for 4D Φ to one for 3D φ; then

reconstruct Φ in terms of φ,via Green’s

fn method adapted to LF formalism [7].

The final result for reconstructed 4D

spinor Ψ in terms 3D scalar φ is

Ψ(ξ, η) = Π123SF (pi)D123W (P )

∑

123

φ(ξ̂, η̂)

(2πi)2
(2.6)

where

1

D123
=

∫ P 2
+dq12−dp3−

4M2(2iπ)2∆1∆2∆3
(2.7)

and the 3D wave fn φ satisfies a 6D Dif-

ferential equation in coordinate space
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with S3 symmetric variables

√
2s3 = r1−r2;

√
6t3 = −2r3+r1+r2

(2.8)

Pending a completely satisfactory so-

lution of Eq.(2.7), we have attempted

an approximate representation of Ψ in

a two-component matrix form ψ (due

to the spin-dependence (1.1) of the qqq

force, ψ with its 3D spin dependence, is

a more convenient alternative to φ, and

is more readily comparable to the Orsay

group’s [10]), on the lines of the Orsay
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group [10] who had used a mixture of

56 and 70 states, each with L = 0+. In

the present case, due to the high degree

of qqq symmetry, it seems more appro-

priate to take a mixture of 56; 0+ and

20; 1+, each with J = 1/2, but taking

account of the full qqq symmetry :

ψ = ψs + i

√
2Σ.η × ξ

ξ2 + η2 ψ0 (2.9)

where ξ, η are given by Eq.(2.2), and

the norm of the second term is for later

convenience. It turns out that ψs, ψ0

satisfy almost identical equations rep-

12



resented symbolically as

D123[ψs; ψ0] =
∫
Vs[4(η × ξ)2 − 4X +

±2X ](ψs; ψ0); (2.10)

where

X = ρ(η × ξ.P̂ /
√

3; ρ = ξ2 + η2

(2.11)

If as a first approximation, the term

±2X in Eq.(2.10) is dropped, there arises

a remarkable simplification wherein the

ratio of the ψs and ψ0 components is al-

most independent of the dynamics, ex-

cept for a constant, while the dynamics
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is almost entirely contained in a com-

mon function ψ satisfying an equation

of the form (2.10). The effect of this

simplification is best expressed by the

relations

ψs = cos βψ; ψ0 = sin βψ (2.12)

where the phase factor β, plays the role

of the mixing angle φ of [10]).

For the rest of the paper the 3D LF

function ψ of Eq.(2.12) will play a pas-

sive role (of normalization), so it will be

dropped from further consideration.
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3 Basic Matrix Elements
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Figure 2: Schematic baryon spin diagram, with internal

quark momenta p1, p2, p3 ; basic spin operator iγµγ5 is

inserted in line p1.

The baryonic matrix elements of a given

operator A, are symbolically expressed

by quantities like < B1,2 | A | B1,2 >,

where B1,2 are the two wave functions

(56 and 20) of Eq.(2.9), whose full de-
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grees of freedom (including spin and isospin)

are

|B1 > = ψ cos β(φ′χ′ + φ′′χ′′)/
√

2

|B2 > = ψ sin βf20(φ
′χ′′ − φ′′χ′)/

√
2;

f20 = i

√
2Σ.η × ξ

ρ
(3.1)

the last line representing the angular ef-

fect of the 20 state. For a given form of

A, after evaluating the isospin part of

the matrix element, the spin part in-

volves overlaps like A′ =< χ′|A|χ′ >

and A′′ =< χ′′|A|χ′′ > for the ‘di-

rect’ [56 → 56 and 20 → 20] tran-
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sitions, while the mixed transitions in-

volve the overlap Am =< χ′|A|χ′′ >,

etc. Using the Dirac forms of the spin

functions as given by (2.5), such over-

laps correspond to loop integrals like in

fig.2. A typical matrix element with

A = 1(corresponding to a normaliza-

tion integral) is of the form

N ′ = N ′
1;23 + 5cyclicperms

N ′′ = N ′′
1;23 + 5cyclicperms(3.2)

N ′
1;23 = ū(P )SF (p1){1}SF (p1)γ5C

SF (p2)C
−1γ5PE
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SF (p3)u(P )/2 (3.3)

Similarly for N ′′
1;23. Same pattern for

other physical quantities : electric charge

; spin iγµγ5

1 ⇒ eiγµ[1/6 + τ3/2] (3.4)

3.1 Spin Matrix Elements in Low-

est Order

The spin matrix elements gi in the nota-

tion of [2] are obtained with A = iγµγ5λi

within this formalism, where the λ′s are

the Gellmann matrixes as given in Licht-
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enberg [11]. The 56-20 mixing affects g3

but not g8 and g0. The results in lowest

order are

g3 = (5/3) cos2 β−sin2 β; g8 = g0 = 1/
√

3

(3.5)

Note that only g3 depends on β, and

agrees with the observed value 1.248 for

β ≈ 24deg. The other two quantities

(at ≈ 0.58) agree with [2]. Of the lat-

ter, only g0 is affected by the 2-gluon

anomaly, but not g8.
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4 Two-gluon Anomaly Operator
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Figure 3: Two gluon operator (crossed box) representing a

sum of two distinct diagrams for axial vector coupling

The 2-gluon anomaly operator ∆µνλ

‘crossed box’ as a sum of two triangle

diagrams, is

∆µνλ(k) =
ig2

s

(2π)4
Tr[

∫
d4qiγνSF (q + k1)
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iγµγ5SF (q + k2)iγλSF (q)]

+conj (4.1)

Gauge Invariance duly incorporated.

Result

∆µνλ ≈ αsεµνλσkσ; (4.2)

4.1 Spin corrections from 2-gluon

Anomaly

Now insert ∆µνλ in the quark lines Fig.

3 – forward scattering amplitude for the

baryon.

Two ways for insertion : 1) self-energy-
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like in line p1 ( Fig.3a); Designate these

as Σ′ , Σ′′ 2) exchange -like connecting

p1 and p2 (Fig.3b). Designate these as

V ′, V ′′ respectively. And add their al-

lowed perms as before.

Σ′ =
2g2

s

3(2π)4
∫
d4kū(P )PsSF (p1)

∆µνλiγνSF (p1 − k)iγλD2(k)SF (p1)PE
1

2
γ5CSF (−p2)C

−1γ5PESF (p3)

Psu(P ) + conj (4.3)
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A similar form exists for Σ′′. For the

exchange type insertions, V ′:

V ′ =
2g2

s

3(2π)4
∫
d4kū(P )PsSF (p1)

PEγ5

2
∆µνλSF (−p2 + k)γνD(k)SF (−p2)

γ5PESF (p3)γλD(k)SF (p3 + k)Psu(P )

+conj (4.4)

Similar result for V ′′. These quantities,

when integrated over ∫ dτ , and divided

by the normalizer N , qualify directly as

2-gluon anomaly corrections (same rel-

ative normalization) to the spin matrix

element g
(0)
A . The process involves:
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(a) integration over d4k;

(b) integration over dτ , as in above.

The (logarithmic) divergence of the k-

integration is removed by dimensional

regularization of t′Hooft and Veltmann.

The result for the fractional correction

to g
(0)
A may be expressed in the form

δgA = θ[
αs

π
]2g

(0)
A . (4.5)

And a very crude estimate yields

θ ∼ −2.0

which with α ≈ 0.39, amounts to a

small correction, albeit of the right sign.
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5 Summary and Conclusion

To conclude, we have presented a first

application of a new form of dynamics

within the framework of QCD in the

high momentum limit, viz., the role of a

direct qqq force which has been shown

to produce an additional singularity in

the structure of the qqq wave fn φ. This

application indicates the possibility of

addressing the details of the proton struc-

ture function, including spin anomaly,

through the inclusion of internal dynam-
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ics.
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Figure 4: Two-gluon operator, fig (2), inserted in the in-

ternal quark lines of the baryon: (a) ‘self-energy’ like in-

sertion in line p1; (b) ‘exchange-like’ insertion connecting

lines p2 and p3
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