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Hartmuth Arenhövel Workshop on NN Interaction and Nuclear Many-Body Problem

Johannes Gutenberg-Universität Tata Institute of Fundamental Research, Mumbai

Mainz, Germany November 22-27, 2010

Polarization Observables and Sum Rules for
Electromagnetic Reactions on the Deuteron

1. Introduction and Motivation

2. Polarization Observables

3. Electromagnetic Sum Rules

4. Conclusion and Outlook



2

1. Introduction and Motivation

A few basic facts:

• The spin of a particle is an important property and opens a new degree

of freedom which plays an essential role in its dynamics.

• One should keep im mind that it is a relativistic property, i.e. the

spin is of relativistic origin.

• The spin, integer or half-integer, determines the statistics in a system of

identical particles, either Bose-Einstein or Fermi-Dirac statistics.

• The exploitation of spin degrees of freedom as manifest in polar-

ization observables is a very important tool in various branches of

physics.
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A specific feature is the possibility to access small but interesting amplitudes

which usually are buried under dominant contributions in an unpolarized

experiment.

A very prominent example is parity violation in β-

decay of oriented 60Co (Wu-experiment), where

one measures the correlation between the orienta-

tion axis of 60Co and the direction of the emitted

electrons, which is a pseudoscalar quantity, gen-

erated by parity violation.

C60

orientation axis

electrons

First I will consider some general features of polarization observables.

Then I will discuss their role in electromagnetic reactions taking the deuteron

as an important example.

Finally I will review some general aspects of e.m. sum rules with special

emphasis on the Gerasimov-Drell-Hearn sum rule.
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2. Polarization Observables

Spin d.o.f become manifest in so-called “polarization observables”.

They arise in reactions where the initial state is partially polarized and/or the

final state is analyzed with respect to the polarization (polarimeter).

Consider, for example, a reaction:

a+ b→ c+ d+ . . .

Further assume that the initial system is prepared in a pure state |ψi,Ma
i

,Mb
i
〉

with specific spin projections Ma
i ,M

b
i and that the detector selects another

pure final state |ψf,Mc
f
,Md

f
,...〉.

Then the cross section is determined by the absolut square of the corresponding

reaction matrix T̂

σ(a+ b→ c+ d+ . . .) ∝ |〈ψf,Mc
f
,Md

f
,...|T̂ |ψi,Ma

i
,Mb

i
〉|2 .
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Spin degrees could then be investigated by varying the projections Ma
i ,M

b
i

and M c
f ,M

d
f , . . . of the initial and final states, and study how the cross section

changes.

This ideal situation of pure states, however, is almost never met, because

(i) the initial preparation results in general in a statistical ensemble of a

subset of different states (mixed state), and

(ii) similarly, the detector is sensitive to another statistical ensemble of states.

In other words, usually one has incomplete information about the initial and

final states.

Consequence: Statistical methods are needed

−→ Introduction of the Density Matrix for representing pure and mixed

states on an equal footing.
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Given an orthogonal ensemble of states {|ψi〉|i = 1, . . . , n0} with probabilities

pi with
∑

i pi = 1:

Definition of density matrix: ρ̂ =
∑

i |ψi〉pi〈ψi|

The case of a pure ensemble represented by a pure state is contained for

pi = δin0
with n0 ∈ {1, ..., n}.

Some properties of the density matrix:

(i) ρ̂ is hermitean: ρ̂† = ρ̂ , and normalized Trρ̂ = 1 .

(ii) Only for a pure state: ρ̂ 2 = ρ̂ , i.e. ρ̂ is idempotent or a projection

operator onto the pure state.

(iii) The expectation value of an operator Ω̂ is given by 〈Ω̂〉ρ = Tr(Ω̂ρ̂) .

(iv) Equation of motion with Ĥ as the hamiltonian of the system:

∂ρ̂

∂t
=
i

h̄

[
ρ̂, Ĥ

]
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A few examples:

(i) Density matrix for spin 1/2:

Two basis states: {| 12 ± 1
2 〉} ; ρ(1/2) represented by 2 × 2-matrix

ρ(1/2) = 1
2 (1+ P · σ)

Pi probability to find spin component in direction of i-axis.

For a pure state |P| = 1, while for a partially polarized particle one has

|P| < 1.

(ii) Density matrix for real photon:

Again two basis states, either linear or circular transverse photon polar-

izations: thus the density matrix ρ(γ) has the same structure as for a spin

one-half particle

ρ(γ) = 1
2 (1+ P · σ)

However, the meaning of P is different and depends on the chosen

representation, either linear or circular polarization basis.
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(iia) Density matrix for virtual photon (electron scattering)

Electron scattering is in lowest order described by exchange of a virtual

photon, thus has formal appearance of photo absorption of a virtual

photon.

For longitudinally polarized electrons of degree h the normalized density

matrix of the exchanged photon reads

(ρ̃(γ∗))λ′λ=
1

ξ2 + ξ + 2η




ξ2 ρ̃01 ρ̃0−1

ρ̃01
ξ
2 + η − h

√
η(ξ + η) − ξ

2

ρ̃0−1 − ξ
2

ξ
2 + η + h

√
η(ξ + η)


 ,

where ρ̃0±1 = ±ξ
√

(ξ + η)/2 − hξη/2, ξ = 1 − ω2/q2, and η = tan2(θe/2),

(ω, q) energy and momentum transfer, and θe electron scattering angle.

This leads to following interpretation of the virtual photon density matrix:

(i) Fraction of longitudinal photons: Plong = ξ2

ξ2+ξ+2η .

(ii) Fraction of transverse photons: Ptrans = ξ+2η
ξ2+ξ+2η .

(ii) Their ratio Plong/Ptrans = ξ2

ξ+2η approaches ξ = 1 − ω2/q2 for θe → 0.
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Furthermore, the transverse part of ρ̃(γ∗) is

ρ(γ∗)(t)=
η

ξ2 + ξ + 2η


 1 + ξ

2η + h
√

1 + ξ
η − ξ

2η

− ξ
2η 1 + ξ

2η − h
√

1 + ξ
η




=
η + ξ

2

ξ2 + ξ + 2η
(12 − εlσx + hεcσz)

Therefore,

(i) for unpolarized electrons the transverse part of the virtual photon density

matrix describes linear polarization in the scattering plane of degree

εl = ξ/(ξ + 2η).

(ii) Longitudinally polarized electrons create in addition circular polarization

of degree hεc with εc = 2
√
η(ξ + η)/(ξ + 2η).
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(iii) Density matrix for spin 1

Three basis states: {|1, 0,±1〉} ; ρ
(1)
M ′M is a 3× 3-matrix in spin-1 space.

ρ(1) can be decomposed into 9 independent matrices, the unit matrix and

8 traceless hermitean matrices.

They can be chosen as irreducible tensors under rotations, i.e. three vector

components Ω̂
[1]
M (1) and five tensor components Ω̂

[2]
M (1), defined by their

reduced matrix elements

〈1‖Ω̂[J](1)‖1〉 =
√

3(2J + 1) , J = 1, 2 .

; ρ(1) is governed by eight independent parameters: 3 for vector

polarization (P1M ) and 5 for tensor (P2M ).

ρ(1) =
1

3

(13 +
∑

J=1,2

∑

M

(−)M Ω̂
[J]
M (1)PIM

)
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For diagonal density matrix ρ
(1)
M ′M = δM ′MpM , where pM probability for finding

the particle in a state |1M〉 with respect to the z-axis as orientation axis.

P1M=δM0

√
3

2
(p1 − p−1) = δM0P

0
1

P2M=δM0

√
1

2
(p1 + p−1 − 2p0) = δM0

√
1

2
(1 − 3p0) = δM0P

0
2 .

For arbitrary direction of orientation axis, the spin-1 density matrix is

characterized by the spherical angles (θ, φ) of the orientation axis and two

parameters, P 0
1 for vector and P 0

2 for tensor polarization. In this case

PJM (θ, φ) = P 0
J D

J
0M (0,−θ,−φ) = P 0

Je
iMφdJ

M0(θ) (I = 1, 2)

and

ρ
(1)
m′m =

(−)1−m

√
3

2∑

J=0

P 0
J

J∑

M=−J

√
2J + 1

(
1 1 J

m −m′ −M

)
eiMφdJ

M0(θ)

where for convenience I have introduced P 0
0 = 1.
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(iv) Generalization to arbitrary spin I

ρ(I) =
1

Î2

(12I+1 + Î
2I∑

J=1

J∑

M=−J

(−)M Ω̂
[J]
−M (I)PJM

)

with operators Ω̂[J](I) (with 〈I||Ω̂[J](I)||I〉 = Î Ĵ , Î =
√

2I + 1)

Assume again an orientation axis at (θ, φ), for which ρ(I) becomes diagonal

(ρ
(I)
m′m = δm′mpm) with 2I orientation parameters P 0

J (P 0
0 = 1).

; ρ
(I)
m′m =

(−)I−m

Î

2I∑

J=0

P 0
J

J∑

M=−J

Ĵ

(
I I J

m −m′ −M

)
eiMφdJ

M0(θ)

The orientation parameters P 0
J are related to the diagonal elements pm by

P 0
J = Î Ĵ

∑

m

(−)I−m

(
I I J

m −m 0

)
pm
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General type of polarization observable

The set of operators {Ω̂[J]
M (I); J = 0, . . . , 2I+1}, introduced for the representa-

tion of the density matrix, serves also as a convenient basis for any polarization

observable. (note Ω̂
[0]
0 (I) = 12I+1 and Ω̂

[1]
M ( 1

2 ) = σM )

Consider reaction a+ b→ c+ d with spins Ia, . . . , Id and reaction matrix T̂ .

A convenient set of all possible polarization observables is given by

O(Ja,Ma; Jb,Mb; Jc,Mc; Jd,Md)=

Tr
(
T̂ †Ω̂

[Jc]
Mc

(Ic) Ω̂
[Jd]
Md

(Id) T̂ Ω̂
[Ja]
Ma

(Ia) Ω̂
[Jb]
Mb

(Ib)
)
.

The trace refers to all spin degrees of initial and final particles.

For example, polarization of outgoing s = 1/2 particle c is determined by

PM (c) ∝ Tr
(
T̂ † Ω̂

[1c]
M (

1

2
) T̂

)
= Tr

(
T̂ † σM (c) T̂

)
.
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Example (I): Deuteron photo disintegration

Differential cross section for partially polarized photon and oriented deuteron:

dσ(θ)

dΩ
=Tr((T̂ γ)†T̂ γ ρ(γ)ρ(d))

=
dσ0

dΩ

(
1 + P γ

l Σl(θ) cos 2φ

+
∑

J=1,2

P d
J {

∑

M≤0

(TJM (θ) cos (M(φd − φ) − δJ1
π

2
)

+P γ
c T

c
JM (θ) sin (M(φd − φ) + δJ1

π

2
))dJ

M0(θd)

+P γ
l

J∑

M=−J

T l
JM (θ) cos (M(φd − φ) + 2φ− δJ1

π

2
)dJ

M0(θd)}
)

Defines various photon, target and photon-target asymmetries Σl, TJM , T c
JM ,

and T l
JM .

Of particular interest is the vector target asymmetry for circularly polarized

photons T c
10, because it determines the GDH sum rule.
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(i) Photon asymmetry Σl for unoriented deuteron (P d
1 = P d

2 = 0) but

linearly polarized photons perpendicular and parallel to reaction plane

dσ⊥
dΩ

=
dσ0

dΩ
(1 − P γ

l Σl(θ)) for φ = π/2 (perpendicular polarization)

dσ‖
dΩ

=
dσ0

dΩ
(1 + P γ

l Σl(θ)) for φ = 0 (parallel polarization)

Thus measuring the cross sections for parallel and perpendicular linear

polarization allows one to determine the photon asymmetry

Σl(θ) =
1

P γ
l

dσ‖ − dσ⊥

dσ‖ + dσ⊥

Σl is sensitive to the interference of various multipoles.
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Photon asymmetry Σl for deuteron photo disintegration

At 20 and 100 MeV with contributions from meson exchange currents (MEC),

isobar configurations (IC), relativistic effects (RC) (left panels), and comparison

to experiments (right panels).
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(ii) Target asymmetries TJM for unpolarized photons (P γ
l = P γ

c = 0) but

oriented deuterons:

By proper choices of deuteron orientation axis perpendicular to the photon

momentum (θd = 90◦), one can extract the asymmetries.

T11=
1√
2P d

1

dσ↑ − dσ↓

dσ0

T20=
1

P d
2

(
2 − dσ⊙ + 1

2 (dσ↑ + dσ↓)

dσ0

)

T22=

√
2√

3P d
2

dσ⊙ − 1
2 (dσ↑ + dσ↓)

dσ0

with different orientation angle φd:

↑: φd = 90◦ ⊙ : φd = 0◦ ↓: φd = −90◦

perpendicular to photon momentum in the reaction plane (⊙) and

perpendicular to the reaction plane (↑, ↓).
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Vector target asymmetry T11 for deuteron photo disintegration

At various energies with contributions from meson exchange currents (MEC),

isobar configurations (IC), relativistic effects (RC).
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Example (II): Deuteron electro disintegration and

neutron electric form factor

• For e-n scattering the unpolarized cross section is dominated by GM , while

GE gives a tiny contribution only: −→ would be difficult to measure.

• For polarized electron and initial polarized neutron the target asymmetry

An,x is linear in the ratio GE/GM and thus more sensitive to GE .

• The same holds for an unpolarized initial neutron and the final neutron

polarization component Px.

In the absence of neutron targets of sufficient density, light nuclei are used

as effective neutron targets, and one studies, e.g., inelastic electron scattering

d(e, e′n)p in quasi-free kinematics, where the emitted neutron takes up energy

and momentum transfer such that the recoiling proton remains at rest in the

laboratory:

p
p = 0

= p  /2M2
nω

k

k

p = q

i

f

n

electron

neutron

proton
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• For quasi-free kinematics the cross section is roughly given by the cross

section on the neutron, thus allowing the determination of GM .

• However, since the electric form factor GE of the neutron is much smaller

than its magnetic one, its contribution is buried under competing binding

and final state interaction effects.

One needs a vector polarized deuteron target for having an initially polarized

neutron, because

(i) the bound neutron is almost completly polarized along the orientation axis,

i.e. Pn = (p1 − p−1)(1 − 3
2PD), with PD for the D-wave probability.

(ii) For quai-free kinematics the deuteron target vector asymmetry is propor-

tional to GE/GM .

Instead of using an initially polarized neutron, one can measure the polarization

of the outgoing neutron in d(
→
e , e′

→
n)p which again is proportional to GE/GM .
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Two examples for quasi-free kinematics (q2 = 12 fm−2)

Polarization component P ′
x

of final neutron.

Dotted GEn = 0

Vector asymmetry AV
ed

at θd = 90◦, φd = 0.

Dotted GEn = 0

Different models for GE (dipol and Gari-Krümpelmann).
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3. Electromagnetic Sum Rules

The interest in sum rules arises from the fact, that by summing an observable

over the whole spectrum of excited states, one often arrives at a simple

interpretation in terms of ground state properties without explicit knowledge

of the complicated excitation spectrum.

A well known example is the Thomas-Reiche-Kuhn sum rule in atomic as

well as in nuclear physics. Asuming unretarded E1 contributions and using

completeness one finds for the integrated total photoabsorption cross section
∫
dE σE1

tot(E) = 2π2e2
NZ

AM
(1 + κ) ,

where κ = (MA/NZ)〈0|[Dz[V,Dz]]|0〉 is measure of exchange effects in the

NN -interaction and electromagnetic current.



23

This sum rule was later generalized by Gell-Mann, Goldberger, Thirring

applying dispersion relations.

Another example is the energy weighted sum rule related to the electric

polarizability αE ∫
dE

E2
σE1

tot(E) ∝ αE .

Here I would like to concentrate on the Gerasimov-Drell-hearn sum rule

(GDH):
∫ ∞

0

dk

k

(
σP (k) − σA(k)︸ ︷︷ ︸

)
= 4π2κ2 e

2

M2
t

I ,

spin asymmetry of total absorption cross section ,

with I as ground state spin, Mt as mass and κ as anomalous magnetic moment.

Thus the GDH sum rule links a ground state property, κ, to the whole internal

excitation spectrum, i.e., to the total integrated and energy weighted spin

asymmetry of the absorption cross section.
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GDH sum rule belongs to a larger class of photoabsorption sum rules based

on dispersion relations of the forward elastic Compton scattering amplitude.

They relate the polarization observables of the total photoabsorption cross

section to ground state properties.

The general form of the total absorption cross section with beam and target

polarization (target spin I) is (H.A., Phys.Rev. 171(1968)1212).

σtot(k, ρ
γ , ρt)=

1

2

2I∑

J=0

P t
J [(1 + (−)J)σ11

J (k) + (1 − (−)J)P γ
c σ

11
J (k)PJ(cos θt)

+(1 + (−)J)P γ
l σ

−11
J (k) dJ

20(θt) cos(2φt)] ,

where P γ
l and P γ

c denote the degree of linear and circular photon polarization,

respectively, and P t
J and (θt, φt) the target polarization parameters.

The σλ′λ
J (λ′, λ = ±1) are related to the forward Compton scattering

amplitude via the optical theorem

σλ′λ
J (k) =

4π

k
Im T J

λ′λ(k) ,
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where T J
λ′λ is a partial wave contribution to the elastic forward scattering

amplitude

Tλ′M′,λM (k) = (−)I−M
Î

2I∑

J=0

Ĵ

(
I J I

−M
′

λ − λ
′

M

)
T

J
λ′λ(k) .

It can be expressed in terms of generalized e.m.

polarizabilities PL′Lλ′λ
J (k)

T J
λ′λ(k) =

Ĵ

Î

∑

L′L

(−)L′+L

(
L L′ J

λ −λ′ λ′ − λ

)
PL′Lλ′λ

J (k) .

with

PL′Lλ′λ
J (k) =

∑

ν′,ν=0,1

λ′ν
′

λνPJ(Mν′

L′,MνL; k) ,

where M0 = E (electric) and M1 = M (magnetic) mul-

tipole.

L ν

L ν’ ’

N’

Nγ

γ

J

’
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The T J
λ′λ are also related to the expansion of the scattering amplitude in terms

of the complete set of operators Ω̂[J] introduced for the general density matrix:

Tλ′M ′,λM (k) =
2I∑

J=0

(−)−λ′+λ〈IM ′|Ω̂[J]
λ−λ′ |IM〉T J

λ′λ(k) ,

Specifically one has

σ11
J =

Ĵ

Î

∑

M

(−)I−M

(
I J I

−M 0 M

)
σ1M ,

where σ1M denotes the absorption cross section of a photon with helicity λ = 1

at a target with definite spin projection M on the photon momentum.

Corresponding expressions hold for σ−11
J with respect to the absorption of

linearly polarized photons.
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In detail one finds for J = 0, 1, 2

σ11
0 =

1

Î2

∑

M

σ1M , unpolarized total cross section,

σ11
1 =

√
3

Î2
√
I(I + 1)

∑

M

M σ1M ,

σ11
2 =

√
5

Î2
√
I(I + 1)

∑

M

(3M2 − I(I + 1))

̂(I − 1) ̂(I + 1)
σ1M ,

And for the spin asymmetry (σP/A = σ1,±I)

σP − σA = Î
∑

J

Ĵ (1 − (−)J)

(
I I J

I −I 0

)
σ11

J .
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Then sum rules are obtained by use of dispersion relations in conjunction with

crossing symmetry

(T J
λ′λ(−k))∗ = (−)J T J

λ′λ(k) .

Assuming for J = even a once-subtracted dispersion relation for T J
λ′λ(k):

Re
(
T J

λ′λ(k) − T J
λ′λ(0)

)
=

2k2

π
P

∫ ∞

0

dk′

k′
Im T J

λ′λ(k′)

k′2 − k2

=
k2

2π2
P

∫ ∞

0

dk′
σλ′λ

J (k′)

k′2 − k2
,

while for J = odd an unsubtracted dispersion relation may be used:

Re T J
λ′λ(k)=

2k

π
P

∫ ∞

0

dk′
Im T J

λ′λ(k′)

k′2 − k2

=
k

2π2
P

∫ ∞

0

dk′ k′
σλ′λ

J (k′)

k′2 − k2
.
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With the help of a power series expansion for the partial amplitude

T J
λ′λ(k) =





∑∞
ν=0 t

λ′λ, J
ν kν for J even,

∑∞
ν=0 t

λ′λ, J
ν kν+1 for J odd,

where the coefficients are given as ground state expectation values of certain

operators, and an analogous one for the dispersion integral, one finds by

comparison of the coefficients a general class of sum rules

tλ
′λ, J

ν =





1
2π2

∫ ∞

0
dk′

σλ′λ
J (k′)
k′2ν for J even and ν = 1, 2, . . . ,

1
2π2

∫ ∞

0
dk′

σλ′λ
J (k′)
k′2ν+1 for J odd and ν = 0, 1, . . . ,

one of which is the GDH, namely for J = 1 and ν = 0.

This is achieved in conjunction with the low-energy expansion of the Compton

amplitude

TλM,λM(k) = −e2 Q
2

Mt
+ λκ2 e2

M2
t

〈|Sz|〉IM k + O(k2) .
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This low energy expansion gives specifically for the partial amplitudes

T J
λ′λ(k)=−δλ′λ δJ0 e

2 Q
2

Mt
+ O(k2) ,

for J = even, and

T J
λ′λ(k)=k

(
δλ′λ δJ1 λκ

2 e2

M2
t

√
I(I + 1)√

3
+ O(k2)

)
,

for J = odd.

The latter yields the GDH sum rule in the form

4π2 κ
2 e2

M2
t

I=
2
√

3I√
I + 1

∫ ∞

0

dk′

k′
σ11

1 (k′)

=

∫ ∞

0

dk′

k′

(
σP (k′) − σA(k′)

)
.

The latter results from the fact that the integrals over the higher order

contributions σ11
J for J > 1 vanish.
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Example: GDH sum rule for the deuteron

Deuteron is isoscalar and its anomalous magnetic moment is very small

κd = −0.143, resulting in → IGDH
d = 0.65µb.

This is in contrast to the nucleon GDH-values IGDH
p = 205µb for proton and

IGDH
n = 233µb for neutron.

Photo absorptive processes on the deuteron:

(i) photodisintegration γ + d → n+ p,

(ii) meson production.

Neglecting interference effects, i.e. considering the deuteron as an incoherent

n-p target results in an estimate of a large positive GDH contribution from

meson production:

IGDH
p + IGDH

n = 438µb

It has to be canceled by the other absorptive reaction, namely photodisinte-

gration.
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Spin asymmetry for deuteron photodisintegration
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Near threshold spin asymmetry is dominated by isovector M1 transition to 1S0-

state → huge negative spin asymmetry of order [mb]. The positive asymmetry

at higher energies is much less important for the GDH-integral because of the

energy weighting.

As a result a large negative GDH contribution of −381µb is found. Fur-

thermore, relativistic effects reduce quite sizable the spin asymmetry at low

energies and thus are quite important.
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Spin asymmetry for pion production on deuteron and nucleon
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In addition, two-pion and eta meson production give substantial contributions

to the GDH-integral.

Summary of contributions of various channels to finite GDH integral up to

0.9 GeV for γd → np and 1.5 GeV for γd → π(d + NN), γN → πN and

γN → ππN in µb.

∫
np

∫
π

∫
ππ

∫
η Σ

∫
GDH

n 138.95 55.06 −5.77 188.24 233.16

p 176.38 51.24 −8.77 218.85 204.78

d −381.52 263.44 104.13 −13.95 −27.90 0.65

The present value of the GDH-integral is quite a success for the theory if one

takes into account the large cancellations (small difference of large numbers).

The deviation from the sum rule value might reflect the theoretical uncertainties

and neglected channels as well, thus leaving room for additional contributions

like, e.g, three meson production.
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4. Conclusions and Outlook

The main conclusions are:

• Polarization observables provide us with much more detailed information

on a reaction than just unpolarized total and differential cross sections.

• They serve as more stringent tests for theoretical models and are in general

more sensitive to small but interesting effects like, e.g. parity violation.

• Sum rules provide links between ground state properties and the whole

excitation spectrum.

Future experimental and theoretical efforts should be devoted to

• The development of more intense polarized beams and targets as well as

highly efficient polarimeters.

• Experimental studies of various polarization observables of lightes nuclei

(d and 3He) over a large range of energy and momentum transfers.

• Theoretical predictions for preferentially a complete set of polarization

observables also over a large range of energy and momentum transfers.


