

Few-Body Calculations in Three Dimensions

Ch. Elster

Supported by: U.S. DOE, OSC, NERSC

11/25/2010

n+d & p+d scattering

Faddeev Approach Los Alamos – Iowa Mainz – Bonn - Dubna Bochum – Cracow Lisbon - Hannover

Variational Approach & HH Pisa

Challenges in 3N Physics

- Test of nuclear forces in the simplest nuclear environment (over a large energy range!)
 - Two-body forces
 - Genuine three-body forces

Reaction mechanisms

- Examples: deuteron breakup, (p,n) charge exchange, exclusive breakup (specific configurations) ...
- Higher Energy: Lorentz vs. Galilean Invariance
- Check commonly used approximations (e.g. Glauber approach)

Total Cross Section for Neutron-Deuteron Scattering

Example: N.B. Ladygina: arXiv:0906.1910

Direct + Rescattering diagrams explicitly calculated.

Relativistic formulation.

Does not appear converged

Three-Body Scattering - General

- Transition operator for elastic scattering
 - $U = PG_0^{-1} + PT$

- Transition operator for breakup scattering

$$J_0 = (1 + P)T$$

$$T = tP + tG_0PT$$

Faddeev equation (Multiple Scattering Series)

$$T = tP + tG_0 PtP + \cdots$$

$$1^{\text{st}} \text{ Order in tP}$$

 $t = v + vg_0 t =: NN t$ -matrix $P = P_{12}P_{23} + P_{13}P_{23} \equiv Permutation Operator$

3-Body Transition Amplitude

$$T |\mathbf{q}_0 \varphi_d\rangle = tP |\mathbf{q}_0 \varphi_d\rangle + tG_0 PT |\mathbf{q}_0 \varphi_d\rangle$$

$$p = \frac{1}{2} \left(k_2 - k_3 \right) \frac{\text{non-relativistic}}{\text{relation}}$$
$$q = \frac{2}{3} \left(k_1 - \frac{1}{2} \left(k_2 + k_3 \right) \right)$$

The Faddeev Equation in momentum space by using Jacobi Variables

$$\langle \mathbf{pq} | \hat{T} | \mathbf{q}_{0} \varphi_{d} \rangle = \varphi_{d} \left(\mathbf{q} + \frac{1}{2} \mathbf{q}_{0} \right) \hat{t}_{s} \left(\mathbf{p}, \frac{1}{2} \mathbf{q} + \mathbf{q}_{0}, E - \frac{3}{4m} q^{2} \right)$$

$$+ \int d^{3} \mathbf{q}'' \frac{\hat{t}_{s} \left(\mathbf{p}, \frac{1}{2} \mathbf{q} + \mathbf{q}'', E - \frac{3}{4m} q^{2} \right)}{E - \frac{1}{m} \left(q^{2} + q''^{2} + \mathbf{q} \cdot \mathbf{q}'' \right) + i\varepsilon} \frac{\langle \mathbf{q} + \frac{1}{2} \mathbf{q}'', \mathbf{q}'' | \hat{T} | \mathbf{q}_{0} \varphi_{d} \rangle}{E - \frac{3}{4m} q''^{2} - E_{d} + i\varepsilon}$$

 $\hat{t}_s \equiv$ symmetrized 2-body t-matrix

Computational Challenge:

3N and 4N systems:

- standard treatment based on pw projected momentum space successful (3N scattering up to ≈250 MeV) but rather tedious
- 2N: j_{max}=5, 3N: J_{max}=25/2 \rightarrow 200 `channels'
- Computational maximum :
- 2N: j_{max}=7, 3N: J_{max}=31/2

 \Rightarrow Suggested approach:

 \Rightarrow NO partial wave decomposition of basis states

Variables for 3D Calculation

3 distinct vectors in the problem: $\mathbf{q}_0 \mathbf{q} \mathbf{p}$

5 independent variables:

$$p = |\mathbf{p}|$$
, $q = |\mathbf{q}|$

 $x_p = \hat{\mathbf{p}} \cdot \hat{\mathbf{q}}_0 , x_q = \hat{\mathbf{q}} \cdot \hat{\mathbf{q}}_0$ $x_{pq}^{q_0} = (\mathbf{q}_0 \times \mathbf{q}) \cdot (\mathbf{q}_0 \times \mathbf{p})$

q system : **z** || **q** q₀ system : **z** || **q**₀ Variables invariant under rotation:

freedom to choose coordinate system for numerical calculation

3D Integral Equation in 5 Variables

Singularities of 3N Propagator

("moving" singularities)

New approach for treating propagator singularities :

Elster, Glöckle, Witala, FBS **45**, 1 (2009)

PhD thesis H. Liu, OU

Faddeev multiple scattering series

$$T = tP + tG_0PT$$
$$T = tP + tG_0PtP + \cdots$$
$$1^{\text{st} \text{ Order or IA}}$$

Convergence of the MS as function of energy?

Consider total cross sections

Unitarity Relation

$$\left\langle \phi \left| U \right| \phi' \right\rangle^* - \left\langle \phi' \left| U \right| \phi \right\rangle = \int d^3 q \left\langle \phi \left| U \right| \phi' \right\rangle^* 2\pi \, i \, \vartheta \left(E - E_q \right) \left\langle \phi_q \left| U \right| \phi \right\rangle$$
$$+ \frac{1}{3} \int d^3 p d^3 q \left\langle \phi_0 \left| U_0 \right| \phi' \right\rangle 2\pi \, i \, \vartheta \left(E - E_{pq} \right) \left\langle \phi_0 \left| U_0 \right| \phi \right\rangle$$

IF

$$-(2\pi)^{3}\frac{4m}{3q_{0}}\operatorname{Im}\langle q_{0},1,\varphi_{d}|U|q_{0}\varphi_{d}\rangle = \sigma_{tot} = \sigma_{el} + \sigma_{br}$$

 $U = PG_0^{-1} + PtG_0U$

n+d Cross Sections in the GeV Regime

- Original suggestion for calculation
 - R.J. Glauber 1955
- Specfic calculations:
 - D.R. Harrington, Phys. Rev. 135, B358 (1964)
 - V. Franco, R.J. Glauber, Phys. Rev. 142, 1195 (1966)
 - F.W. Byron, C.J. Joachain, E.H. Mund, Phys. Rev. D8, 2622 (1973)
- Calculations are
 - non-relativistic
 - neglect spin degrees of freedom
 - use an Eikonal form of the two-body NN interaction

Unique Opportunity

- Compare the Glauber approximation for 3-body scattering with an exact Faddeev calculation
- Use the same two-body input for both calculations
 - Two-body NN interaction of Malfliet-Tjon type
 - Solve for the deuteron wave function
 - Solve for the two-body t-matrix and scattering amplitude

$$f_{s}^{c}(p,\theta_{c.m.}) = -\frac{m}{2}(2\pi)^{2} t_{s}(p,p,x_{c};E_{p})$$
$$f_{s}^{l}(k_{l},\theta_{lab}) = 2\sqrt{\cos\theta_{l}} f_{s}^{c}(p,\theta_{c}(\theta_{l}))$$

Use the same kinematics – here non-relativistic

Glauber 3N amplitude

$$F_{3N}^{Gl}(\vec{q}) = 2 S(\frac{1}{2}\vec{q}) f(\vec{q}) + \frac{i}{2\pi k} \int d^2 q' S(\vec{q}') f(\frac{1}{2}\vec{q} + q') f(\frac{1}{2}\vec{q} - q')$$

With Deuteron Form Factor:

$$S(\vec{q}) = \int d^3r |\varphi_d(r)|^2 e^{i\vec{q}\cdot\vec{s}} = \int d^3r |\varphi_d(r)|^2 e^{i\vec{q}\cdot\vec{r}}$$

using $\vec{r} = \vec{s} + \hat{k}(\hat{k}\cdot\vec{r})$

3N Total Cross Section – 1st Order $F_{3N}^{1st}(\vec{q}) = 2 S(\frac{1}{2}q) f_s(\vec{q})$

$$\sigma_{tot}^{Gl(1st)} = \frac{4\pi}{k_l} \Im m F_{3N}^{1st}(0)$$

$$\sigma_{tot}^{ND,1st} = -(2\pi)^3 \frac{4m}{3q_0} \operatorname{Sm}\langle q_0, 1, \varphi_d | U^{1st} | q_0 \varphi_d \rangle$$

Reminder: $U = PG_0^{-1} + PT$

3N Total Cross Section – 1st Order

Glauber 3N amplitude:

$$F_{3N}^{Gl}(\vec{q}) = 2 S(\frac{1}{2}\vec{q}) f(\vec{q}) + \frac{i}{2\pi k} \int d^2 q' S(\vec{q}') f(\frac{1}{2}\vec{q} + q') f(\frac{1}{2}\vec{q} - q')$$

Correction to total Cross Section explicitly

$$\delta\sigma = -\frac{4\pi}{p^2} \int_0^{q_{max}} dq \ 'q \ 'S(q \ ') \ \Re e\left[f^2(p, x = 1 - \frac{q \ '^2}{2p^2}; E_p)\right]$$

Further Approximation suggested by Franco-Glauber:

$$\delta \sigma = -\frac{4\pi}{p^2} \Re e \left[f^2(p, x = 1) \right] \int_0^{q_{max}} dq \ 'q \ 'S(q \ '),$$

Faddeev 2nd Order Correction: $\delta \sigma \propto t_s G_0 P t_s P$

3N Differential Cross Section – 1st Order $F_{3N}^{1st}(\vec{q}) = 2 S(\frac{1}{2}q) f(\vec{q})$ $\frac{d\sigma_{3N}^{1st}}{d\Omega} = |F_{3N}^{1st}(\vec{q})|^2$

Position of **q** :

(a) In plane perpendicular to k ≡ k_{lab} (Glauber)
(b) In plane perpendicular to k+k' (D.Harrington, C.Joachain)

Glauber 3N amplitude

$$F_{3N}^{Gl}(\vec{q}) = 2 S(\frac{1}{2}\vec{q}) f(\vec{q}) + \frac{i}{2\pi k} \int d^2 q' S(\vec{q}') f(\frac{1}{2}\vec{q} + \vec{q}') f(\frac{1}{2}\vec{q} - \vec{q}')$$

$$\frac{d\sigma_{3N}^{Gl}}{d\Omega} = \left|F_{3N}\left(\vec{q}\right)\right|^2$$

Total Cross Sections

Total Cross Sections for Breakup Reactions

	Faddeev			Glauber		
E_{lab} [MeV]	$\sigma_{tot}^{\rm ND}$ [fm	²] σ_{el}^{ND} [fm ²] σ	$b_{r}^{\rm ND}$ [fm ²]	$\sigma_{tot}^{\rm Gl}$ [fm ²	²] $\sigma_{br}^{\text{Gl}}(\mathbf{a})[\text{fm}^2]$	$\sigma_{br}^{\rm Gl}({\rm b})[{\rm fm}^2]$
100	34.16	26.53	7.63	29.00	0.76	-
200	19.00	15.31	3.69	17.39	2.33	1.93
500	10.30	6.74	3.56	9.49	2.97	2.93
800	7.22	4.32	2.90	6.77	2.58	2.56
1000	6.00	3.46	2.54	5.74	2.33	2.31
1200	5.23	2.96	2.27	5.01	2.13	2.12
1500	4.37	2.41	1.96	4.22	1.89	1.88
2000	3.35	1.76	1.59	3.36	1.56	1.59
Integration over the						

Fivefold differential cross section

Via optical theorem

Compare: Faddeev & Glauber

- Total Cross Sections
 - 1^{st} order terms agree from $\approx 250 \text{ MeV}$
 - 2^{nd} order terms agree from $\approx 700 \text{ MeV}$
 - At \approx 700 MeV Faddeev and Glauber agree
- Differential Cross Sections
 - 1st order calculations agree for forward angles
 - 2nd order correction in Glauber does not fill in 1st minimum
- Total Cross Sections for Elastic Scattering
 - 1^{st} order agrees with Faddeev at ≈ 1 GeV (2nd order at 2 GeV)
- Total Cross Sections for Breakup Reactions
 - Faddeev & Glauber agree at 2 GeV

Published in PRC 78, 034002 (2008)

Similar study for p+¹¹Be by R. Crespo et al in PRC 76, 014620 (2007)

Platonova & Kukulin repeated the Glauber study for p+d with cd-bonn PRC 81, 014004 (2010)

Relativistic Three-Body Problem

- Context: Poincarė Invariant Quantum Mechanics
 - Poincarė invariance is exact symmetry, realized by a unitary representation of the Poincarė group on a fewparticle Hilbert space
 - Instant form
 - Faddeev equations same operator form but different ingredients
- Kinematics
 - Lorentz transformations between frames
- Dynamics
 - Bakamjian-Thomas Scheme: Mass Operator $M=M_0+V$ replaces Hamiltonian $H=H_0+v$
 - Connect Galilean two-body v with Poincare two-body v
 - Construct V := $\sqrt{M^2 + q^2} \sqrt{M_0^2 + q^2}$

Kinematic Relativistic Ingredients:

- Lorentz transformation Lab \rightarrow c.m. frame (3-body)
- Phase space factors in cross sections
- Poincarė-Jacobi momenta
- Permutations for identical particles

Kinematics: Poincaré-Jacobi momenta

• Nonrelativistic (Galilei)

$$p = \frac{1}{2}(\mathbf{k}_2 - \mathbf{k}_3)$$

$$q = \frac{2}{3}(\mathbf{k}_1 - \frac{1}{2}(\mathbf{k}_2 + \mathbf{k}_3))$$

Relativistic (Lorentz)

$$p = \frac{1}{2}(\mathbf{k}_{2} - \mathbf{k}_{3}) + \frac{\mathbf{k}_{2} + \mathbf{k}_{3}}{2m_{23}} \left(\frac{(\mathbf{k}_{2} - \mathbf{k}_{3}) \cdot (\mathbf{k}_{2} + \mathbf{k}_{3})}{(E_{2} + E_{3}) + m_{23}} - (E_{2} - E_{3}) \right)$$
$$q = \mathbf{k}_{1} + \frac{\mathbf{K}}{M} \left(\frac{\mathbf{k}_{1} \cdot \mathbf{K}}{E + M} - E_{1} \right) \quad \text{in c.m. frame } \mathbf{K} = \mathbf{0}$$

$$\left| \mathbf{k}_{1}\mathbf{k}_{2}\mathbf{k}_{3} \right\rangle = \left| \frac{\partial(Kpq)}{\partial(\mathbf{k}_{2}\mathbf{k}_{3})} \right|^{\frac{1}{2}} \left| Kpq \right\rangle \neq 1$$

$$E = E_1 + E_2 + E_3$$

$$K = \mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3$$

$$M = \sqrt{E^2 - \mathbf{K}^2}$$

$$m_{23} = \sqrt{(E_2 + E_3)^2 - (\mathbf{k}_2 + \mathbf{k}_3)^2}$$

Relativistic kinematics⁻ IA (1st order) T = tP

- Lorentz transformation
 Lab → c.m. frame) (3-body)
- Phase space factors in cross sections
- Poincarė-Jacobi momenta
- Permutations

Quantum Mechanics

Galilei Invariant:
$$H = \frac{K^2}{2M} + h$$
 ; $h = h_0 + v_{12}^{NR} + v_{13}^{NR} + v_{23}^{NR}$

Poincaré Invariant:

$$H = \sqrt{K^2 + M^2}$$
; $M = M_0 + V_{12} + V_{23} + V_{31}$

$$V_{ij} = M_{ij} - M_0 = \sqrt{(m_{0,ij} + v_{ij})^2 + q_k^2} - \sqrt{m_{0,ij}^2 + q_k^2}$$

Two-body interaction embedded in the 3-particle Hilbert space

$$m_{0,ij} = \sqrt{m_i^2 + p_{ij}^2} + \sqrt{m_j^2 + p_{ij}^2}$$
$$M_0 = \sqrt{m_{0,ij}^2 + q_k^2} + \sqrt{m_k^2 + q_k^2}$$

 V_{ij} embedded in the 3-particle Hilbert space

$$V_{ij} = M_{ij} - M_0 = \sqrt{(m_{0,ij} + v_{ij})^2 + q_k^2} - \sqrt{m_{0,ij}^2 + q_k^2}$$

need matrix elements: $\langle \vec{k} | V(\vec{p}) | \vec{k}' \rangle$

$$\begin{split} &= v(\vec{k},\vec{k}') + \psi_b(\vec{k})(\sqrt{M_b^2 + p^2} - M_b)\psi_b(\vec{k}') + \frac{1}{\omega - \omega'} \bigg[(\sqrt{\omega^2 + p^2} - \omega) \Re[t(\vec{k}',\vec{k};\omega)] \\ &- (\sqrt{\omega'^2 + p^2} - \omega') \Re[t(\vec{k},\vec{k}';\omega')] \bigg] + \frac{1}{\omega - \omega'} \bigg[\mathcal{P} \int d^3k'' \frac{(\sqrt{\omega''^2 + p^2} - \omega'')}{\omega'' - \omega} t(\vec{k},\vec{k}'';\omega'') t^*(\vec{k}',\vec{k}'';\omega'') \\ &- \mathcal{P} \int d^3k'' \frac{(\sqrt{\omega''^2 + p^2} - \omega'')}{\omega'' - \omega'} t(\vec{k},\vec{k}'';\omega'') t^*(\vec{k}',\vec{k}'';\omega'') \bigg]. \end{split}$$

H. Kamada,^{1,*} W. Glöckle,^{2,†} J. Golak,^{2,3,‡} and Ch. Elster^{4,§} PHYSICAL REVIEW C **66**, 044010 (2002)

Two-Body Input: T1-operator embedded in 3-body system

$$T_{1}(p', p; q) = V(p', p; q) + \int d^{3}k'' \frac{V(p', k''; q) T_{1}(k'', p; q)}{\sqrt{(2E(p'))^{2} + q^{2}} - \sqrt{(2E(k''))^{2} + q^{2}} + i\varepsilon}$$

 Obtain fully off-shell matrix elements T₁(k,k',q) from half shell transition matrix elements by

Solving a 1st resolvent type equation:

$$T_{I}(q) = T_{I}(q') + T_{I}(q) [g_{0}(q) - g_{0}(q')] T_{I}(q')$$

- For every single off-shell momentum point
- Proposed in
 - Keister & Polyzou, PRC 73, 014005 (2006)
- Carried out for the first time in PRC 76, 1014010 (2007) [PhD T. Lin]

Exact Boost

Obtain embedded 2N t-matrix $T_1(k,k',z')$ halfshell in 2-body c.m. frame first :

$$\langle \mathbf{k} | T_1(\mathbf{q}; z') | \mathbf{k'} \rangle = \langle \mathbf{k} | V(\mathbf{q}) | \mathbf{k'} \rangle$$

$$= \frac{2(E_{k'} + E_k)}{\sqrt{4E_{k'}^2 + \mathbf{q}^2} + \sqrt{4E_k^2 + \mathbf{q}^2}} t(\mathbf{k}, \mathbf{k'}; 2E_{k'})$$

$$t(\mathbf{k}, \mathbf{k}'; 2E_{k'}) = v(\mathbf{k}, \mathbf{k}') + \int d\mathbf{k}'' \frac{v(\mathbf{k}, \mathbf{k}'')t(\mathbf{k}'', \mathbf{k}'; 2E_{k'})}{E_{k'} - 2\sqrt{m^2 + k''^2} + i\epsilon}$$

Solution of the relativistic 2N LS equation with 2-body potential

Two-body Potential?

Phase Equivalent 2-body t-matrices based on Transformation by Coester-Pieper-Serduke (CPS) (PRC11, 1 (1975)) and given in Polyzou PRC 58, 91 (1998))

 Add interaction to square of non-interacting mass operator

$$M^{2} = M_{0}^{2} + u = 4mh \quad \text{with} \quad h \equiv \frac{k^{2}}{m} + \frac{u}{4m} + m$$
$$u = v^{2} + \left\{ M_{0}^{2}, v \right\}$$

- NO need to evaluate v directly, since M, M², h have the same eigenstates
- Relation between half-shell t-matrices

$$\left\langle k' \left| t_R(e(k)) \right| k \right\rangle = \frac{4m}{e(k) + e(k')} \left\langle k' \left| t_{NR}(k^2 / m) \right| k \right\rangle$$

 Relativistic and nonrelativistic cross sections are identical functions of the invariant momentum k

Total Cross Section for Elastic Scattering: Scalar Interaction

Breakup Scattering

Exclusive: Measure energy & angles of two ejected particles
V.Punjabi et al. PRC 38, 2728 (1998) – TRIUMF p+d @ 508 MeV
Outgoing protons are measured in the scattering plane

Exclusive Breakup Scattering (symmetric configuration)

$E_{lab} = 508 MeV$

(V.Punjabi et al. PRC 38, 2728 (1998)

Exclusive Breakup Scattering

Exclusive Breakup Scattering Space-Star

 $E_{lab} = 508 \text{ MeV}$

Poincaré Invariant Faddeev Calculations

- Carried out up to 2 GeV for elastic and breakup scattering for scalar interactions
 - Solved Faddeev equation in vector variables = NO partial waves
- Relativistic effects are important at 500 MeV and higher
 - Relativistic total elastic cross section increases up to 10% compared to the non-relativistic
 - Relativistic kinematics determines QFS peak positions in inclusive and exclusive breakup
 - Breakup: Relativistic effects very large dependent on configuration
- Above 800 MeV projectile energy:
 - multiple scattering series converges after ~2 iterations
 - In breakup QFS conditions 1st order calculations sufficient

Including spin and isospin degrees of Freedom: General Form of NN interaction

Space (e.g. momenta)

$$\vec{p}' - \vec{p}, \vec{p}' + \vec{p}, \vec{p}' \times \vec{p}$$

– Basis: vector variables

• Spin – Operators $\vec{\sigma}_1$ and $\vec{\sigma}_2$

- Isospin Operators $\vec{\tau}_1$ and $\vec{\tau}_2$
- **Idea:** form scalar functions with the vector variables handle operators analytically

General Form of NN interaction, cont'd

Allow explicit isospin dependence: $\langle t'm'_t | V | tm_t \rangle = \delta_{tt'}\delta_{m_tm'_t}V^{tm_t}$

Spin momentum operator structure invariant under rotation, parity, time-reversal

$$w_1(\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2, \mathbf{p}', \mathbf{p}) = 1$$

$$w_2(\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2, \mathbf{p}', \mathbf{p}) = \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2$$

$$w_3(\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2, \mathbf{p}', \mathbf{p}) = i (\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) \cdot (\mathbf{p} \times \mathbf{p}')$$

$$w_4(\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2, \mathbf{p}', \mathbf{p}) = \boldsymbol{\sigma}_1 \cdot (\mathbf{p} \times \mathbf{p}') \boldsymbol{\sigma}_2 \cdot (\mathbf{p} \times \mathbf{p}')$$

$$w_5(\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2, \mathbf{p}', \mathbf{p}) = \boldsymbol{\sigma}_1 \cdot (\mathbf{p}' + \mathbf{p}) \boldsymbol{\sigma}_2 \cdot (\mathbf{p}' + \mathbf{p})$$

$$w_6(\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2, \mathbf{p}', \mathbf{p}) = \boldsymbol{\sigma}_1 \cdot (\mathbf{p}' - \mathbf{p}) \boldsymbol{\sigma}_2 \cdot (\mathbf{p}' - \mathbf{p})$$

Most general expression for any NN potential:

$$V^{tm_t} \equiv \sum_{j=1}^{6} v_j^{tm_t}(\mathbf{p}', \mathbf{p}) \ w_j(\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2, \mathbf{p}', \mathbf{p})$$

where $v_i^{tm_t}(\mathbf{p}', \mathbf{p})$ is a scalar function of $|\mathbf{p}'|, |\mathbf{p}|, |\mathbf{p}|, |\mathbf{p}|, |\mathbf{p}|$

Examples:

χEFT LO potential:

$$V_{LO} = -\frac{1}{(2\pi)^3} \frac{g_A^2}{4F_\pi^2} \frac{\boldsymbol{\sigma}_1 \cdot \mathbf{q} \, \boldsymbol{\sigma}_2 \cdot \mathbf{q}}{\mathbf{q}^2 + M_\pi^2} \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 + \frac{C_S}{(2\pi)^3} + \frac{C_T}{(2\pi)^3} \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2,$$
$$\mathbf{q} = \mathbf{p}' - \mathbf{p}$$

χEFT NLO potential:

$$V_{NLO} = -\frac{1}{(2\pi)^3} \frac{\tau_1 \cdot \tau_2}{384\pi^2 F_{\pi}^4} L^{\tilde{\Lambda}}(q) \left[4m_{\pi}^2 (5g_A^4 - 4g_A^2 - 1) + q^2 (23g_A^4 - 10g_A^2 - 1) + \frac{48g_A^4 m_{\pi}^4}{4m_{\pi}^2 + q^2} \right] - \frac{1}{(2\pi)^3} \frac{3g_A^4}{64\pi^2 F_{\pi}^4} L^{\tilde{\Lambda}}(q) \left(\sigma_1 \cdot q \, \sigma_2 \cdot q - \sigma_1 \cdot \sigma_2 \, q^2 \right) + \frac{C_1}{(2\pi)^3} q^2 + \frac{C_2}{(2\pi)^3} k^2 + \left(\frac{C_3}{(2\pi)^3} q^2 + \frac{C_4}{(2\pi)^3} k^2 \right) \sigma_1 \cdot \sigma_2 + \frac{C_5}{(2\pi)^3} \frac{i}{2} \left(\sigma_1 + \sigma_2 \right) \cdot \mathbf{q} \times \mathbf{k} + \frac{C_6}{(2\pi)^3} \mathbf{q} \cdot \sigma_1 \mathbf{q} \cdot \sigma_2 + \frac{C_7}{(2\pi)^3} \mathbf{k} \cdot \sigma_1 \mathbf{k} \cdot \sigma_2, \quad (C2)$$

$$\mathbf{k} = \frac{1}{2} \left(\mathbf{p'} + \mathbf{p} \right)$$

NN t-matrix: $t^{tm_t} = V^{tm_t} + V^{tm_t}G_0t^{tm_t}$

$$t^{tm_t} \equiv \sum_{j=1}^{6} t_j^{tm_t}(\mathbf{p}', \mathbf{p}) \ w_j(\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2, \mathbf{p}', \mathbf{p})$$

$$V^{tm_t} \equiv \sum_{j=1}^{6} v_j^{tm_t}(\mathbf{p}', \mathbf{p}) \ w_j(\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2, \mathbf{p}', \mathbf{p})$$

$$\begin{split} \sum_{j=1}^{6} t_{j}^{tm_{t}}(\mathbf{p}',\mathbf{p}) \, \mathbf{w}_{j}(\mathbf{p}',\mathbf{p}) &= \sum_{j=1}^{6} v_{j}^{tm_{t}}(\mathbf{p}',\mathbf{p}) \mathbf{w}_{j}(\mathbf{p}',\mathbf{p}) \\ &+ 2\mu \lim_{\epsilon \to 0} \sum_{k,j=1}^{6} \int d\mathbf{p}'' \frac{v_{k}^{tm_{t}}(\mathbf{p}',\mathbf{p}'') \mathbf{w}_{k}(\mathbf{p}',\mathbf{p}'') t_{j}^{tm_{t}}(\mathbf{p}'',\mathbf{p}) \mathbf{w}_{j}(\mathbf{p}'',\mathbf{p})}{p^{2} + i\epsilon - p''^{2}} \end{split}$$

Project with w_k from the left and perform the trace in NN spin space

$$\sum_{j} A_{kj}(\mathbf{p}', \mathbf{p}) t_{j}^{tm_{t}}(\mathbf{p}', \mathbf{p}) = \sum_{j} A_{kj}(\mathbf{p}', \mathbf{p}) v_{j}^{tm_{t}}(\mathbf{p}', \mathbf{p})$$
$$+ \int d^{3}p'' \sum_{jj'} v_{j}^{tm_{t}}(\mathbf{p}', \mathbf{p}'') G_{0}(p'') t_{j'}^{tm_{t}}(\mathbf{p}'', \mathbf{p}) B_{kjj'}(\mathbf{p}', \mathbf{p}'', \mathbf{p})$$

All functions are scalar !

$$A_{kj}(\mathbf{p}',\mathbf{p}) \equiv \operatorname{Tr}\left(w_k(\boldsymbol{\sigma}_1,\boldsymbol{\sigma}_2,\mathbf{p}',\mathbf{p}) w_j(\boldsymbol{\sigma}_1,\boldsymbol{\sigma}_2,\mathbf{p}',\mathbf{p})\right)$$

$$B_{kjj'}(\mathbf{p}',\mathbf{p}'',\mathbf{p}) \equiv \operatorname{Tr}\left(w_k(\boldsymbol{\sigma}_1,\boldsymbol{\sigma}_2,\mathbf{p}',\mathbf{p}) w_j(\boldsymbol{\sigma}_1,\boldsymbol{\sigma}_2,\mathbf{p}',\mathbf{p}'') w_{j'}(\boldsymbol{\sigma}_1,\boldsymbol{\sigma}_2,\mathbf{p}'',\mathbf{p})\right)$$

NN t-matrix consists of 6 coupled eqs of scalar functions

Structure of some of the A_{ki} and $B_{kii'}$:

$$A_{26}(\mathbf{p}', \mathbf{p}) = 4(\mathbf{p}' - \mathbf{p})^2$$

$$A_{33}(\mathbf{p}', \mathbf{p}) = -8(\mathbf{p} \times \mathbf{p}')^2$$

$$A_{56}(\mathbf{p}', \mathbf{p}) = 4(p'^2 - p^2)^2$$

14 non-vanishing

 $B_{261}(\mathbf{p}', \mathbf{p}'', \mathbf{p}) = 4(\mathbf{p}' - \mathbf{p}'')^{2}$ $B_{612}(\mathbf{p}', \mathbf{p}'', \mathbf{p}) = 4(\mathbf{p}' - \mathbf{p})^{2}$ $B_{133}(\mathbf{p}', \mathbf{p}'', \mathbf{p}) = -8(\mathbf{p}'' \times \mathbf{p}') \cdot (\mathbf{p} \times \mathbf{p}'')$ $B_{331}(\mathbf{p}', \mathbf{p}'', \mathbf{p}) = -8(\mathbf{p} \times \mathbf{p}') \cdot (\mathbf{p}'' \times \mathbf{p}')$ $B_{313}(\mathbf{p}', \mathbf{p}'', \mathbf{p}) = -8(\mathbf{p} \times \mathbf{p}') \cdot (\mathbf{p} \times \mathbf{p}'')$ $B_{145}(\mathbf{p}', \mathbf{p}'', \mathbf{p}) = 4\{(\mathbf{p} \times \mathbf{p}') \cdot \mathbf{p}''\}^{2}$ $B_{155}(\mathbf{p}', \mathbf{p}'', \mathbf{p}) = 4\{(\mathbf{p}' + \mathbf{p}'') \cdot (\mathbf{p}'' + \mathbf{p})\}^{2}$ $B_{551}(\mathbf{p}', \mathbf{p}'', \mathbf{p}) = 4\{(\mathbf{p}' + \mathbf{p}) \cdot (\mathbf{p}' + \mathbf{p}'')\}^{2}$

148 non-vanishing

Road to Realistic NN Forces

- Work with operator representation of states
 - Operators built from spin & position vectors
 - Allows to carry out spin algebra analytically
 - Relative momenta are contained in scalar coefficient functions
- Deuteron (Fachruddin, Elster, Glöckle, PRC 63, 054003 (2001)

$$\begin{split} \Psi_{m_d} &= \left[\phi_1(p) + \left(\sigma_{(2)} \cdot p \ \sigma_{(3)} \cdot p - \frac{1}{3} p^2 \right) \ \phi_2(p) \right] |1m_d\rangle \\ &\text{with } \phi_1 = \frac{1}{\sqrt{4\pi}} u(q) \text{ and } \phi_2 = \frac{3}{4q^2} \frac{1}{\sqrt{2\pi}} d(q) \\ &\text{and } |\Psi_{m_d}|^2 = \int_0^\infty dq \ q^2 \left(u^2(q) + d^2(q) \right) \end{split}$$

³H and ³He:

Fachruddin, Glöckle, Elster, Nogga PRC 69, 064002 (2004)

$$\psi_{tT}(\boldsymbol{p},\boldsymbol{q}) = \sum_{i=1}^{8} \phi_{tT}^{(i)}(\boldsymbol{p},\boldsymbol{q}) \ O_i |\chi^m\rangle$$

 $|\chi^m\rangle = |(0\frac{1}{2})\frac{1}{2}m\rangle$

Apply this to Faddeev equations outlined in

Glöckle, Elster, Golak, Skibinski Witala, Kamada, FBS 47, 25 (2010)

Glöckle, Fachruddin, Elster, Golak Skibinski, Witala, EPJ A43, 339 (2010)

Isospin states : $|(0\frac{1}{2})\frac{1}{2}\rangle, |(1\frac{1}{2})\frac{1}{2}\rangle, |(1\frac{1}{2})\frac{3}{2}\rangle \rightarrow \sigma(23) \equiv \frac{1}{2}(\sigma_{(2)} - \sigma_{(3)})$

$$O_{1} = 1$$

$$O_{2} = \sigma(23) \cdot \sigma_{(1)}$$

$$O_{3} = \sigma_{(1)} \cdot (\hat{p} \times \hat{q})$$

$$O_{4} = \sigma(23) \cdot \hat{p} \times \hat{q}$$

$$O_{5} = \sigma(23) \cdot \hat{q} \sigma_{(1)} \cdot \hat{p}$$

$$O_{6} = \sigma(23) \cdot \hat{p} \sigma_{(1)} \cdot \hat{q}$$

$$O_{7} = \sigma(23) \cdot \hat{p} \sigma_{(1)} \cdot \hat{p}$$

$$O_{8} = \sigma(23) \cdot \hat{q} \sigma_{(1)} \cdot \hat{q}.$$

