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n+d & p+d scattering

Faddeev Approach
Los Alamos – Iowa

Mainz – Bonn - Dubna
Bochum – Cracow
Lisbon - Hannover

Variational Approach & HH
Pisa



Challenges in 3N Physics

• Test of nuclear forces in the simplest nuclear 
environment (over a large energy range!)
– Two-body forces
– Genuine three-body forces

• Reaction mechanisms
– Examples: deuteron breakup, (p,n) charge exchange,

exclusive breakup (specific configurations) … 
– Higher Energy: Lorentz vs. Galilean Invariance 
– Check  commonly used approximations (e.g. Glauber approach)



W.P. Abfalterer et al, PRL 81, 57 (1998)



Example:     N.B. Ladygina:  arXiv:0906.1910

Direct + Rescattering
diagrams explicitly 
calculated.

Relativistic formulation.

Does not 
appear 

converged



Three-Body Scattering - General

• Transition operator for elastic scattering
U = PG0

-1 + PT
• Transition operator for breakup scattering

U0 = (1 + P)T

T= tP + tG0PT
• Faddeev equation  (Multiple Scattering  Series)

U

U0

L++= PtPtGtPT 0

1st Order in tP

t = v +vg0t =: NN t-matrix P = P12 P23 + P13 P23 ≡ Permutation Operator



The Faddeev Equation in momentum 
space by using Jacobi Variables
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Computational Challenge:

3N and 4N systems:
• standard treatment based on pw projected momentum 

space successful (3N scattering up to ≈250 MeV) but 
rather tedious

• 2N: jmax=5,   3N: Jmax=25/2  → 200 `channels’
• Computational maximum :
• 2N: jmax=7,   3N: Jmax=31/2

⇒Suggested approach:
⇒ NO partial wave decomposition of basis statesNO partial wave decomposition of basis states



Variables invariant under rotation: 

freedom to choose coordinate system for 
numerical calculation

q system :  z || q

q0 system : z || q0

Variables for 3D Calculation

3 distinct vectors in the problem: q0 q   p

     q  ,  p == qp

5 independent variables:
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Moving Singularities:
Position depends on 

q, q”, x”

Fixed deuteron pole

3D Integral Equation in 5 Variables

Solved by Padé Summation



Singularities of 3N Propagator
(“moving” singularities)

New approach for 
treating propagator 
singularities :

Elster, Glöckle, Witala, 
FBS 45, 1 (2009)

PhD thesis H. Liu, OU



Faddeev multiple scattering series 

PTtGtPT 0  +=

L++= PtPtGtPT 0

1st Order or IA

Convergence  of the MS as function of energy?

Consider total cross sections









Unitarity Relation
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n+d Cross Sections in the GeV Regime

• Original suggestion for calculation 
– R.J. Glauber 1955

• Specfic calculations:
– D.R. Harrington, Phys. Rev. 135, B358 (1964)
– V. Franco, R.J. Glauber, Phys. Rev. 142, 1195 (1966)
– F.W. Byron, C.J. Joachain, E.H. Mund, Phys. Rev. D8, 2622 (1973)

• Calculations are 
non-relativistic 
neglect spin degrees of freedom
use an Eikonal form of the two-body NN interaction



Unique Opportunity
• Compare the Glauber approximation for 3-body 

scattering with an exact Faddeev calculation
• Use the same two-body input for both calculations

– Two-body NN interaction of Malfliet-Tjon type
– Solve for the deuteron wave function
– Solve for the two-body t-matrix and scattering amplitude

• Use the same kinematics – here non-relativistic
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Glauber 3N amplitude
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3N Total Cross Section – 1st Order
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3N Total Cross Section – 1st Order



Glauber 3N amplitude:
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Further Approximation suggested by Franco-Glauber:

Faddeev 2nd Order Correction: PPtGt ss 0  ∝δσ



2nd order correction to 3N total cross section





3N Differential Cross Section – 1st Order
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Position of q :

(a) In plane perpendicular to k ≡ klab (Glauber)

(b) In plane perpendicular to k+k’ (D.Harrington, C.Joachain)







Glauber 3N amplitude
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Integration over the
Fivefold differential cross section

Total Cross Sections
Total Cross Sections for Breakup Reactions

Via optical theorem



Compare: Faddeev & Glauber
• Total Cross Sections

– 1st order terms agree from ≈ 250 MeV
– 2nd order terms agree from ≈ 700 MeV
– At ≈ 700 MeV Faddeev and Glauber agree

• Differential Cross Sections
– 1st order calculations agree for forward angles
– 2nd order correction in Glauber does not fill in 1st minimum

• Total Cross Sections for Elastic Scattering
– 1st order agrees with Faddeev at ≈ 1 GeV (2nd order at 2 GeV)

• Total Cross Sections for Breakup Reactions
– Faddeev & Glauber agree at 2 GeV

Similar study for p+11Be by R. Crespo et al in PRC 76,  014620 (2007)

Published in PRC 78, 034002 (2008)

Platonova & Kukulin repeated the Glauber study for p+d with cd-bonn
PRC 81, 014004 (2010)



Relativistic Three-Body Problem
• Context: Poincarė Invariant Quantum Mechanics

– Poincarė invariance is exact symmetry, realized by a 
unitary representation of the Poincarė group on a few-
particle Hilbert space   

– Instant form
– Faddeev equations same operator form but different 

ingredients 

• Kinematics
– Lorentz transformations between frames

• Dynamics
– Bakamjian-Thomas Scheme: Mass Operator  M=M0+V 

replaces Hamiltonian H=H0+v
– Connect Galilean two-body v with Poincarė two-body v
– Construct V := 22

0
22 qMqM +−+



Kinematic Relativistic Ingredients:

• Lorentz transformation  Lab → c.m. frame  (3-body)
• Phase space factors in cross sections

• Poincarė-Jacobi momenta

• Permutations for identical particles 



Kinematics:  Poincaré-Jacobi momenta

• Nonrelativistic (Galilei)

• Relativistic (Lorentz)
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Relativistic kinematics:
IA (1st order)

• Lorentz transformation  
Lab → c.m. frame) (3-body)

• Phase space factors in 
cross sections

• Poincarė-Jacobi momenta
• Permutations

tPT =



Quantum Mechanics
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Poincaré Invariant:
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Two-body interaction embedded in the 3-particle Hilbert space



Vij embedded in the 3-particle Hilbert space 
( ) 22

,0
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need matrix elements :



• Obtain fully off-shell matrix elements T1(k,k’,q) from half shell 
transition matrix elements by 

Solving a 1st resolvent type equation:

• For every single off-shell momentum point
• Proposed in

– Keister & Polyzou, PRC 73, 014005 (2006)
• Carried out for the first time in PRC 76, 1014010 (2007) [PhD T. Lin]

T1(q) = T1(q’ ) + T1(q) [g0(q) - g0(q’ )] T1(q’ )

Two-Body Input: T1-operator embedded in 3-body system
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Do not solve for V!Do not solve for V!



Obtain embedded 2N t-matrix T1(k,k’,z’) half-
shell in 2-body c.m. frame first :

Solution of the relativistic 2N LS equation with 2-body potential

k’(-)〉

Two-body Potential ?



Phase Equivalent  2-body t-matrices based on 
Transformation by Coester-Pieper-Serduke (CPS)
(PRC11, 1 (1975)) and given in Polyzou PRC 58, 91 (1998))

• Add interaction to square of non-interacting mass 
operator

• NO need to evaluate v directly, since M, M2, h have the same 
eigenstates

• Relation between half-shell t-matrices

• Relativistic and nonrelativistic cross sections are identical 
functions of the invariant momentum k
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Total Cross Section for Elastic Scattering:  Scalar Interaction

1st

Order
T = t P



Breakup Scattering

Exclusive: Measure energy & angles of two ejected particles

V.Punjabi et al. PRC 38, 2728 (1998) – TRIUMF p+d @ 508 MeV

Outgoing protons are measured in the scattering plane



Exclusive Breakup Scattering               Elab = 508 MeV
(symmetric configuration)                             (V.Punjabi et al. PRC 38, 2728 (1998) 

QFS



Exclusive Breakup Scattering          Elab = 508 MeV

QFS



Exclusive Breakup Scattering
Space-Star

Elab = 508 MeV



Poincaré Invariant Faddeev Calculations

• Carried out up to 2 GeV for elastic and breakup scattering for scalar 
interactions

– Solved Faddeev equation in vector variables = NO partial waves

• Relativistic effects are important at 500 MeV and higher

– Relativistic total elastic cross section increases up to 10% compared to the 
non-relativistic

– Relativistic kinematics determines QFS peak positions in inclusive and 
exclusive breakup

– Breakup: Relativistic effects very large dependent on configuration

• Above 800 MeV projectile energy:

– multiple scattering series converges after ~2 iterations

– In breakup QFS conditions 1st order calculations sufficient



Including spin and isospin
degrees of Freedom: 

General Form of NN interaction

• Space (e.g. momenta)
– Basis:  vector variables  

• Spin – Operators

• Isospin - Operators

pppppp rrrrrr
×+− '   ,'   ,'

2   1   and  σσ rr

2   1   and  ττ rr

Idea: form scalar functions with the vector variables

handle operators analytically



General Form of NN interaction, cont’d

Allow explicit isospin dependence:

Spin momentum operator structure invariant under 
rotation, parity, time-reversal

Most general expression for any NN potential:

where is a scalar function of  |p'|, |p|, and p'⋅p



Examples:
χEFT LO potential:

χEFT NLO potential:



NN t-matrix: 



Project with wk from the left 
and perform the trace in NN spin space 

All functions are scalar !

NN t-matrix consists of 6 coupled eqs of scalar functions



Structure of some of the  Akj and Bkjj’:

14 non-vanishing

148 non-vanishing



Road  to  Realistic NN Forces 

• Work with operator representation of states
– Operators built from spin & position vectors 
– Allows to carry out spin algebra analytically
– Relative momenta are contained in scalar coefficient functions 

• Deuteron  (Fachruddin, Elster, Glöckle, PRC 63, 054003 (2001)
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3H and 3He : 
Fachruddin, Glöckle, Elster, 
Nogga PRC 69, 064002 (2004)

Apply this  to Faddeev equations 
outlined in 

Glöckle, Elster, Golak, Skibinski
Witala, Kamada, FBS 47, 25 (2010)

Glöckle, Fachruddin, Elster, Golak
Skibinski, Witala, EPJ A43, 339 (2010)
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