Few-Body Calculations in Three Dimensions

Ch. Elster

n+d \& p+d scattering

Faddeev Approach
Los Alamos - Iowa
Mainz - Bonn - Dubna
Bochum - Cracow
Lisbon - Hannover

Variational Approach \& HH
Pisa

Challenges in 3N Physics

- Test of nuclear forces in the simplest nuclear environment (over a large energy range!)
- Two-body forces
- Genuine three-body forces
- Reaction mechanisms
- Examples: deuteron breakup, (p, n) charge exchange, exclusive breakup (specific configurations) ...
- Higher Energy: Lorentz vs. Galilean Invariance
- Check commonly used approximations (e.g. Glauber approach)

Total Cross Section for Neutron-Deuteron Scattering

Example: N.B. Ladygina: arXiv:0906.1910

Direct + Rescattering diagrams explicitly calculated.

Relativistic formulation.

Does not appear converged

Three-Body Scattering - General

- Transition operator for elastic scattering

$$
U=P G_{0}^{-1}+P T
$$

- Transition operator for breakup scattering

$$
\begin{aligned}
U_{0} & =(1+P) T \\
T & =t P+t G_{0} P T
\end{aligned}
$$

- Faddeev equation (Multiple Scattering Series)
$T=t P \left\lvert\,+\begin{aligned} & t G_{0} P t P+\cdots \\ & 1^{\text {st }} \text { Order in tP }\end{aligned}\right.$

$\mathrm{t}=\mathrm{v}+\mathrm{vg}_{0} \mathrm{t}=: \mathrm{NN}$ t-matrix
$\mathrm{P}=\mathrm{P}_{12} \mathrm{P}_{23}+\mathrm{P}_{13} \mathrm{P}_{23} \equiv$ Permutation Operator

3-Body Transition Amplitude

$$
T\left|\mathrm{q}_{0} \varphi_{d}\right\rangle=t P\left|\mathrm{q}_{0} \varphi_{d}\right\rangle+t G_{0} P T\left|\mathrm{q}_{0} \varphi_{d}\right\rangle
$$

$$
\begin{aligned}
& \mathrm{p}=\frac{1}{2}\left(\mathrm{k}_{2}-\mathrm{k}_{3}\right) \text { non-relativion } \\
& \mathrm{q}=\frac{2}{3}\left(\mathrm{k}_{1}-\frac{1}{2}\left(\mathrm{k}_{2}+\mathrm{k}_{3}\right)\right)
\end{aligned}
$$

$$
\begin{gathered}
\langle\mathrm{pq}| \hat{T}\left|\mathrm{q}_{0} \varphi_{d}\right\rangle=\varphi_{d}\left(\mathrm{q}+\frac{1}{2} \mathrm{q}_{0}\right) \hat{t_{s}}\left(\mathrm{p}, \frac{1}{2} \mathrm{q}+\mathrm{q}_{0}, E-\frac{3}{4 m} q^{2}\right) \\
+\int d^{3} \mathrm{q}^{\prime \prime} \frac{\hat{t}_{s}\left(\mathrm{p}, \frac{1}{2} \mathrm{q}+\mathrm{q}^{\prime \prime}, E-\frac{3}{4 m} q^{2}\right)}{E-\frac{1}{m}\left(q^{2}+q^{\prime 2}+\mathrm{q} \cdot \mathrm{q}^{\prime \prime}\right)+i \varepsilon} \frac{\left\langle\mathrm{q}+\frac{1}{2} \mathrm{q}^{\prime \prime}, \mathrm{q}^{\prime \prime}\right| \hat{T}\left|\mathrm{q}_{0} \varphi_{d}\right\rangle}{E-\frac{3}{4 m} q^{\prime 2}-E_{d}+i \varepsilon} \\
\hat{t}_{s} \equiv \text { symmetrized 2-body t-matrix }
\end{gathered}
$$

Computational Challenge:

3 N and 4 N systems:

- standard treatment based on pw projected momentum space successful (3N scattering up to $\approx 250 \mathrm{MeV}$) but rather tedious
- $2 \mathrm{~N}: \mathrm{j}_{\max }=5,3 \mathrm{~N}: \mathrm{J}_{\max }=25 / 2 \rightarrow 200$ 'channels'
- Computational maximum :
- $2 \mathrm{~N}: \mathrm{j}_{\max }=7,3 \mathrm{~N}: \mathrm{J}_{\max }=31 / 2$
\Rightarrow Suggested approach:
\Rightarrow NO partial wave decomposition of basis states

Variables for 3D Calculation

3 distinct vectors in the problem: $\mathbf{q}_{0} \mathbf{q} \mathbf{p}$

5 independent variables:

$$
\begin{aligned}
& p=|\mathrm{p}|, q=|\mathrm{q}| \\
& x_{p}=\hat{\mathrm{p}} \cdot \hat{\mathrm{q}}_{0}, x_{q}=\hat{\mathrm{q}} \cdot \hat{\mathrm{q}}_{0} \\
& x_{p q}^{q_{0}}=\left(\mathrm{q}_{0} \times \mathrm{q}\right) \cdot\left(\mathrm{q}_{0} \times \mathrm{p}\right)
\end{aligned}
$$

q system: z || q
q_{0} system : z || $\mathbf{q}_{\mathbf{0}}$

Variables invariant under rotation:
freedom to choose coordinate system for numerical calculation

3D Integral Equation in 5 Variables

$$
\begin{aligned}
& \underline{\left\langle p, x_{p}, x_{p q}^{q_{0}}, x_{q}, q\right| \hat{T}\left|q_{0} \varphi_{d}\right\rangle} \quad \underline{\text { Solved by Padé Summation }} \\
& \text { Moving Singularities } \\
& \text { Position depends on } \\
& \text { q, q", x" } \\
& +\int_{0}^{\infty} d q^{\prime \prime} q^{\prime \prime 2} \int_{-1}^{+1} d x^{\prime \prime} \int_{0}^{2 \pi} d \varphi^{\prime \prime} \frac{1}{E-\frac{1}{m}\left(q^{2}+q q^{\prime \prime} x^{\prime \prime}+q^{\prime \prime 2}\right)+i \varepsilon} \\
& \times \hat{t}_{s}\left(p, \sqrt{\frac{1}{4} q^{2}+q^{\prime \prime 2}+q q^{\prime \prime} x^{\prime \prime}}, \frac{\frac{1}{2} q y_{p q}+q^{\prime \prime} y_{p q^{\prime \prime}}}{\sqrt{\frac{1}{4} q^{2}+q^{\prime \prime 2}+q q^{\prime \prime} x^{\prime \prime}}} ; E-\frac{3}{4 m} q^{2}\right) \\
& \frac{\left\langle\sqrt{q^{2}+\frac{1}{4} q^{\prime \prime 2}+q q^{\prime \prime} x^{\prime \prime}}, \frac{q x_{q}+\frac{1}{2} q^{\prime \prime} y_{q_{0} q^{\prime \prime}}}{\sqrt{q^{2}+\frac{1}{4} q^{\prime \prime 2}+q q^{\prime \prime} x^{\prime \prime}}}, \frac{\frac{q x^{\prime \prime}+\frac{1}{q^{\prime \prime}}}{\sqrt{q^{2}+\frac{1}{4} q^{\prime \prime 2}+q q^{\prime \prime} x^{\prime \prime}}}-x_{\pi_{p} x_{\pi_{q}}}^{\sqrt{1-x_{\pi_{p}}^{2}}} \sqrt{1-x_{\pi_{q}}^{2}}}{}, y_{q_{0} q^{\prime \prime}}, q^{\prime \prime}\right| \hat{T}\left|q_{0} \varphi_{d}\right\rangle}{E-\frac{3}{4 m} q^{\prime \prime 2}-E_{d}+i \varepsilon} \\
& \text { Fixed deuteron pole }
\end{aligned}
$$

Singularities of 3N Propagator

("moving" singularities)

New approach for treating propagator singularities :

Elster, Glöckle, Witala, FBS 45, 1 (2009)

PhD thesis H. Liu, OU

Faddeev multiple scattering series

$$
\begin{aligned}
& T=t P+t G_{0} P T \\
& T=t P+t G_{0} P t P+\cdots \\
& 1_{1}{ }^{\text {st }} \text { Order or IA }
\end{aligned}
$$

Convergence of the MS as function of energy?

$\sigma_{\text {el }}{ }^{\text {ND }}$ multiple scattering series

$\sigma_{\mathrm{br}}^{\mathrm{ND}}$ multiple scattering series

Unitarity Relation

$$
\begin{aligned}
& \langle\phi| U\left|\phi^{\prime}\right\rangle^{\prime}-\left\langle\phi^{\prime} U \mid \phi\right\rangle=\int d^{3} \mathrm{q}|\phi| U\left|\phi^{\prime}\right\rangle^{*} 2 \pi i q\left(E-E_{q}\right)\left\langle\phi_{q}\right| U|\phi\rangle \\
& +\frac{1}{3} \int d^{3} \mathrm{p} d^{3} q\left\langle\phi_{0}\right| U_{0}\left|\phi^{\prime}\right\rangle 2 \pi i \vartheta\left(E-E_{p q}\right)\left\langle\phi_{0}\right| U_{0}|\phi\rangle \\
& -(2 \pi)^{3} \frac{4 m}{3 q_{0}} \operatorname{Im}\left\langle q_{0}, 1, \varphi_{d}\right| U\left|q_{0} \varphi_{d}\right\rangle=\sigma_{\text {tot }}=\sigma_{e l}+\sigma_{b r}
\end{aligned}
$$

$$
U=P G_{0}^{-1}+P t G_{0} U
$$

n+d Cross Sections in the GeV Regime

- Original suggestion for calculation
- R.J. Glauber 1955
- Specfic calculations:
- D.R. Harrington, Phys. Rev. 135, B358 (1964)
- V. Franco, R.J. Glauber, Phys. Rev. 142, 1195 (1966)
- F.W. Byron, C.J. Joachain, E.H. Mund, Phys. Rev. D8, 2622 (1973)
- Calculations are
non-relativistic
neglect spin degrees of freedom
use an Cikomal form of the two-body NNV interaction

Unique Opportunity

- Compare the Glauber approximation for 3-body scattering with an exact Faddeev calculation
- Use the same two-body input for both calculations
- Two-body NN interaction of Malfliet-Tjon type
- Solve for the deuteron wave function
- Solve for the two-body t-matrix and scattering amplitude

$$
\begin{aligned}
& f_{s}^{c}\left(p, \theta_{c . m}\right)=-\frac{m}{2}(2 \pi)^{2} t_{s}\left(p, p, x_{c} ; E_{p}\right) \\
& f_{s}^{\prime}\left(k_{l}, \theta_{l a b}\right)=2 \sqrt{\cos \theta_{l}} f_{s}^{c}\left(p, \theta_{c}\left(\theta_{l}\right)\right)
\end{aligned}
$$

- Use the same kinematics - here non-relativistic

Glauber 3N amplitude

$$
\begin{aligned}
F_{3 N}^{G l}(\vec{q})= & 2 S\left(\frac{1}{2} \vec{q}\right) f(\vec{q}) \\
& +\frac{i}{2 \pi k} \int d^{2} q^{\prime} S\left(\vec{q}^{\prime}\right) f\left(\frac{1}{2} \vec{q}+q^{\prime}\right) f\left(\frac{1}{2} \vec{q}-q^{\prime}\right)
\end{aligned}
$$

With Deuteron Form Factor:

$$
\begin{gathered}
S(\vec{q})=\int d^{3} r\left|\varphi_{d}(r)\right|^{2} e^{i \vec{q} \cdot \vec{s}}=\int d^{3} r\left|\varphi_{d}(r)\right|^{2} e^{i \vec{q} \cdot \vec{r}} \\
\text { using } \vec{r}=\vec{s}+\hat{k}(\hat{k} \cdot \vec{r})
\end{gathered}
$$

3N Total Cross Section - $\mathbf{1}^{\text {st }}$ Order

$$
\begin{gathered}
F_{3 N}^{1 s t}(\vec{q})=2 S\left(\frac{1}{2} q\right) f_{s}(\vec{q}) \\
\sigma_{\text {tot }}^{G l(1 s t)}=\frac{4 \pi}{k_{l}} \mathfrak{I} m F_{3 N}^{1 s t}(0) \\
\sigma_{\text {tot }}^{N D, 1 s t}=-(2 \pi)^{3} \frac{4 m}{3 q_{0}} \mathfrak{I} m\left\langle q_{0}, 1, \varphi_{d}\right| U^{1 s t}\left|q_{0} \varphi_{d}\right\rangle
\end{gathered}
$$

Reminder: $\mathrm{U}=\mathrm{PG}_{0}{ }^{-1}+\mathrm{PT}$

3N Total Cross Section - $1^{\text {st }}$ Order

Glauber $3 \mathbf{N}$ amplitude:

$$
\begin{aligned}
F_{3 N}^{G l}(\vec{q})= & 2 S\left(\frac{1}{2} \vec{q}\right) f(\vec{q}) \\
& +\frac{i}{2 \pi k} \int d^{2} q^{\prime} S\left(\vec{q}^{\prime}\right) f\left(\frac{1}{2} \vec{q}+q^{\prime}\right) f\left(\frac{1}{2} \vec{q}-q^{\prime}\right)
\end{aligned}
$$

Correction to total Cross Section explicitly

$$
\delta \sigma=-\frac{4 \pi}{p^{2}} \int_{0}^{q_{\max }} d q^{\prime} q^{\prime} S\left(q^{\prime}\right) \Re e\left[f^{2}\left(p, x=1-\frac{q^{\prime 2}}{2 p^{2}} ; E_{p}\right)\right]
$$

Further Approximation suggested by Franco-Glauber:

$$
\delta \sigma=-\frac{4 \pi}{p^{2}} \Re e\left[f^{2}(p, x=1)\right] \int_{0}^{q_{\max }} d q^{\prime} q^{\prime} S\left(q^{\prime}\right),
$$

Faddeev $2^{\text {nd }}$ Order Correction: $\quad \delta \sigma \propto t_{s} G_{0} P t_{s} P$

$2^{\text {nd }}$ order correction to 3 N total cross section

nd total cross section
Faddeev and 2nd Order Approximations

3N Differential Cross Section - $1^{\text {st }}$ Order

$$
\begin{gathered}
F_{3 N}^{1 s t}(\vec{q})=2 S\left(\frac{1}{2} q\right) f(\vec{q}) \\
\frac{d \sigma_{3 N}^{1 s t}}{d \Omega}=\left|F_{3 N}^{1 s t}(\vec{q})\right|^{2}
\end{gathered}
$$

Position of \mathbf{q} :

(a) In plane perpendicular to $\mathrm{k} \equiv \mathrm{k}_{\text {lab }}$ (Glauber)
(b) In plane perpendicular to $\mathrm{k}+\mathrm{k}$ ’ (D.Harrington, C.Joachain)

Glauber 3N amplitude

$$
\begin{aligned}
F_{3 N}^{G I}(\vec{q})= & 2 S\left(\frac{1}{2} \vec{q}\right) f(\vec{q}) \\
& +\frac{i}{2 \pi k} \int d^{2} q^{\prime} S\left(\vec{q}^{\prime}\right) f\left(\frac{1}{2} \vec{q}+\vec{q}^{\prime}\right) f\left(\frac{1}{2} \vec{q}-\vec{q}^{\prime}\right)
\end{aligned}
$$

$$
\frac{d \sigma_{3 N}^{G l}}{d \Omega}=\left|F_{3 N}(\vec{q})\right|^{2}
$$

Total Cross Sections Total Cross Sections for Breakup Reactions

	Faddeev			Glauber		
$E_{\text {lab }}[\mathrm{MeV}]$	$\sigma_{\text {tot }}^{\mathrm{ND}}\left[\mathrm{fm}^{2}\right]$	$\sigma_{\text {el }}^{\mathrm{ND}}\left[\mathrm{fm}^{2}\right] \sigma_{\text {br }}^{\mathrm{ND}}\left[\mathrm{fm}^{2}\right] \mid$	$\sigma_{\text {tot }}^{\mathrm{Gl}}\left[\mathrm{fm}^{2}\right]$	$\sigma_{\text {br }}^{\mathrm{Gl}}(\mathrm{a})\left[\mathrm{fm}^{2}\right] \sigma_{\text {br }}^{\mathrm{Gl}}(\mathrm{b})\left[\mathrm{fm}^{2}\right]$		
100	34.16	26.53	7.63	29.00	0.76	
200	19.00	15.31	3.69	17.39	2.33	
500	10.30	6.74	3.56	9.49	2.97	
800	7.22	4.32	2.90	6.77	2.58	
1000	6.00	3.46	2.54	5.74	2.33	
1200	5.23	2.96	2.27	5.01	2.53	
1500	4.37	2.41	1.96	4.22	2.13	
2000	3.35	1.76	1.59	3.36	1.89	

Integration over the
Fivefold differential cross section

Via optical theorem

Compare: Faddeev \& Glauber

- Total Cross Sections
- $1^{\text {st }}$ order terms agree from $\approx 250 \mathrm{MeV}$
- $2^{\text {nd }}$ order terms agree from $\approx 700 \mathrm{MeV}$
- At $\approx 700 \mathrm{MeV}$ Faddeev and Glauber agree
- Differential Cross Sections
- $1^{\text {st }}$ order calculations agree for forward angles
- $2^{\text {nd }}$ order correction in Glauber does not fill in $1^{\text {st }}$ minimum
- Total Cross Sections for Elastic Scattering
$-1^{\text {st }}$ order agrees with Faddeev at $\approx 1 \mathrm{GeV}\left(2^{\text {nd }}\right.$ order at 2 GeV$)$
- Total Cross Sections for Breakup Reactions
- Faddeev \& Glauber agree at 2 GeV

$$
\text { Published in PRC 78, } 034002 \text { (2008) }
$$

Similar study for \mathbf{p}^{+11} Be by R. Crespo et al in PRC 76, 014620 (2007)
Platonova \& Kukulin repeated the Glauber study for $\mathbf{p + d}$ with cd-bonn PRC 81, 014004 (2010)

Relativistic Three-Body Problem

- Context: Poincarė Invariant Quantum Mechanics
- Poincarè invariance is exact symmetry, realized by a unitary representation of the Poincare group on a fewparticle Hilbert space
- Instant form
- Faddeev equations same operator form but different ingredients
- Kinematics
- Lorentz transformations between frames
- Dynamics
- Bakamjian-Thomas Scheme: Mass Operator $\mathrm{M}=\mathrm{M}_{0}+\mathrm{V}$ replaces Hamiltonian $\mathrm{H}=\mathrm{H}_{0}+\mathbf{v}$
- Connect Galilean two-body \mathbf{v} with Poincarė two-body v
- Construct V $:=\sqrt{M^{2}+q^{2}}-\sqrt{M_{0}^{2}+q^{2}}$

Kinematic Relativistic Ingredients:

- Lorentz transformation Lab \rightarrow c.m. frame (3-body)
- Phase space factors in cross sections
- Poincaré-Jacobi momenta
- Permutations for identical particles

Kinematics: Poincaré-Jacobi momenta

- Nonrelativistic (Galilei)

$$
\begin{aligned}
& \mathrm{p}=\frac{1}{2}\left(\mathrm{k}_{2}-\mathrm{k}_{3}\right) \\
& \mathrm{q}=\frac{2}{3}\left(\mathrm{k}_{1}-\frac{1}{2}\left(\mathrm{k}_{2}+\mathrm{k}_{3}\right)\right)
\end{aligned}
$$

- Relativistic (Lorentz)
$\mathrm{p}=\frac{1}{2}\left(\mathbf{k}_{2}-\mathbf{k}_{3}\right)+\frac{\mathbf{k}_{2}+\mathbf{k}_{3}}{2 m_{23}}\left(\frac{\left(\mathbf{k}_{2}-\mathbf{k}_{3}\right) \cdot\left(\mathbf{k}_{2}+\mathbf{k}_{3}\right)}{\left(E_{2}+E_{3}\right)+m_{23}}-\left(E_{2}-E_{3}\right)\right)$
$\mathrm{q}=\mathrm{k}_{1}+\frac{\mathrm{K}}{M}\left(\frac{\mathrm{k}_{1} \cdot \mathrm{~K}}{E+M}-E_{1}\right) \quad$ inc.m. frame $K=0$

$$
\left|\mathrm{k}_{1} \mathrm{k}_{2} \mathrm{k}_{3}\right\rangle=\left|\frac{\partial(\mathrm{Kpq})}{\partial\left(\mathrm{k}_{2} \mathrm{k}_{3}\right)}\right|^{1 / 2}|\mathrm{Kpq}\rangle \neq 1
$$

$$
\begin{aligned}
E & =E_{1}+E_{2}+E_{3} \\
\mathrm{~K} & =\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3} \\
M & =\sqrt{E^{2}-\mathrm{K}^{2}} \\
m_{23} & =\sqrt{\left(E_{2}+E_{3}\right)^{2}-\left(\mathbf{k}_{2}+\mathbf{k}_{3}\right)^{2}}
\end{aligned}
$$

Relativistic kinematics
IA ($1^{\text {st }}$ order)

$$
T=t P
$$

- Lorentz transformation Lab \rightarrow c.m. frame) (3-body)
- Phase space factors in cross sections
- Poincarė-Jacobi momenta
- Permutations

Quantum Mechanics

Galilei Invariant: $\quad H=\frac{\mathrm{K}^{2}}{2 M}+h \quad ; h=h_{0}+v_{12}^{N R}+v_{13}^{N R}+v_{23}^{N R}$
Poincaré Invariant: $\quad H=\sqrt{\mathrm{K}^{2}+M^{2}} \quad ; \quad M=M_{0}+V_{12}+V_{23}+V_{31}$

$$
V_{i j}=M_{i j}-M_{0}=\sqrt{\left(m_{0, i j}+v_{i j}\right)^{2}+q_{k}^{2}}-\sqrt{m_{0, i j}^{2}+q_{k}^{2}}
$$

Two-body interaction embedded in the 3-particle Hilbert space

$$
\begin{aligned}
m_{0, i j} & =\sqrt{m_{i}^{2}+p_{i j}^{2}}+\sqrt{m_{j}^{2}+p_{i j}^{2}} \\
M_{0} & =\sqrt{m_{0, i j}^{2}+q_{k}^{2}}+\sqrt{m_{k}^{2}+q_{k}^{2}}
\end{aligned}
$$

$\mathbf{V}_{\mathbf{i j}}$ embedded in the 3-particle Hilbert space

$$
V_{i j}=M_{i j}-M_{0}=\sqrt{\left(m_{0, i j}+v_{i j}\right)^{2}+q_{k}^{2}}-\sqrt{m_{0, i j}^{2}+q_{k}^{2}}
$$

need matrix elements: $\quad\langle\vec{k}| V(\vec{p})\left|\vec{k}^{\prime}\right\rangle$

$$
\begin{aligned}
= & v\left(\vec{k}, \vec{k}^{\prime}\right)+\psi_{b}(\vec{k})\left(\sqrt{M_{b}^{2}+p^{2}}-M_{b}\right) \psi_{b}\left(\vec{k}^{\prime}\right)+\frac{1}{\omega-\omega^{\prime}}\left[\left(\sqrt{\omega^{2}+p^{2}}-\omega\right) \mathfrak{R}\left[t\left(\vec{k}^{\prime}, \vec{k} ; \omega\right)\right]\right. \\
& \left.-\left(\sqrt{\omega^{\prime 2}+p^{2}}-\omega^{\prime}\right) \mathfrak{R}\left[t\left(\vec{k}, \vec{k}^{\prime} ; \omega^{\prime}\right)\right]\right]+\frac{1}{\omega-\omega^{\prime}}\left[\mathcal{P} \int d^{3} k^{\prime \prime} \frac{\left(\sqrt{\omega^{\prime \prime 2}+p^{2}}-\omega^{\prime \prime}\right)}{\omega^{\prime \prime}-\omega} t\left(\vec{k}, \overrightarrow{k^{\prime \prime}} ; \omega^{\prime \prime}\right) t^{*}\left(\vec{k}^{\prime}, \vec{k}^{\prime \prime} ; \omega^{\prime \prime}\right)\right. \\
& \left.-\mathcal{P} \int d^{3} k^{\prime \prime} \frac{\left(\sqrt{\omega^{\prime \prime 2}+p^{2}}-\omega^{\prime \prime}\right)}{\omega^{\prime \prime}-\omega^{\prime}} t\left(\vec{k}, \vec{k}^{\prime \prime} ; \omega^{\prime \prime}\right) t^{*}\left(\vec{k}^{\prime}, \vec{k}^{\prime \prime} ; \omega^{\prime \prime}\right)\right] .
\end{aligned}
$$

H. Kamada, ${ }^{1, *}$ W. Glöckle, ${ }^{2, \dagger}$ J. Golak, ${ }^{2,3, \ddagger}$ and Ch. Elster ${ }^{4, \S}$ PHYSICAL REVIEW C 66, 044010 (2002)

Two-Body Input: T1-operator embedded in 3-body system

$T_{1}\left(\mathrm{p}^{\prime}, \mathrm{p} ; \mathrm{q}\right)=V\left(\mathrm{p}^{\prime}, \mathrm{p} ; \mathrm{q}\right)+\int d^{3} k^{\prime \prime} \frac{V\left(\mathrm{p}^{\prime}, \mathrm{k} " ; ~ \mathrm{q}\right) T_{1}\left(\mathrm{k}^{\prime \prime}, \mathrm{p} ; \mathrm{q}\right)}{\sqrt{\left(2 E\left(p^{\prime}\right)\right)^{2}+q^{2}}-\sqrt{\left(2 E\left(k^{\prime \prime}\right)\right)^{2}+q^{2}}+i \varepsilon}$

Do not solve for 2 :

- Obtain fully off-shell matrix elements $T_{1}\left(k, k^{\prime}, q\right)$ from half shell transition matrix elements by

Solving a $1^{\text {st }}$ resolvent type equation:

$$
T_{1}(q)=T_{1}\left(q^{\prime}\right)+T_{1}(q)\left[g_{0}(q)-g_{0}\left(q^{\prime}\right)\right] T_{1}\left(q^{\prime}\right)
$$

- For every single off-shell momentum point
- Proposed in
- Keister \& Polyzou, PRC 73, 014005 (2006)
- Carried out for the first time in PRC 76, 1014010 (2007) [PhD T. Lin]

Obtain embedded 2 N t-matrix $\mathrm{T}_{1}\left(\mathrm{k}, \mathrm{k}^{\prime}, \mathrm{z}^{\prime}\right)$ halfshell in 2-body c.m. frame first :

$$
\begin{aligned}
\langle\mathbf{k}| T_{1}\left(\mathbf{q} ; z^{\prime}\right)\left|\mathbf{k}^{\prime}\right\rangle & =\langle\mathbf{k}| V(\mathbf{q})\left|\mathbf{k}^{\prime}(-)\right\rangle \\
& =\frac{2\left(E_{k^{\prime}}+E_{k}\right)}{\sqrt{4 E_{k^{\prime}}^{2}+\mathbf{q}^{2}}+\sqrt{4 E_{k}^{2}+\mathbf{q}^{2}}} t\left(\mathbf{k}, \mathbf{k}^{\prime} ; 2 E_{k^{\prime}}\right)
\end{aligned}
$$

$t\left(\mathbf{k}, \mathbf{k}^{\prime} ; 2 E_{k^{\prime}}\right)=v\left(\mathbf{k}, \mathbf{k}^{\prime}\right)+\int d \mathbf{k}^{\prime \prime} \frac{v\left(\mathbf{k}, \mathbf{k}^{\prime \prime}\right) t\left(\mathbf{k}^{\prime \prime}, \mathbf{k}^{\prime} ; 2 E_{k^{\prime}}\right)}{E_{k^{\prime}}-2 \sqrt{m^{2}+k^{\prime 2}}+i \epsilon}$
Solution of the relativistic 2N LS equation with 2-body potential
Two-body Potential?

Phase Equivalent 2-body t-matrices based on

 Transformation by Coester-Pieper-Serduke (CPS) (PRC11, 1 (1975)) and given in Polyzou PRC 58, 91 (1998))- Add interaction to square of non-interacting mass operator

$$
\begin{aligned}
& M^{2}=M_{0}^{2}+u=4 m h \quad \text { with } h \equiv \frac{k^{2}}{m}+\frac{u}{4 m}+m \\
& u=v^{2}+\left\{M_{0}^{2}, v\right\}
\end{aligned}
$$

- NO need to evaluate v directly, since M, M^{2}, h have the same eigenstates
- Relation between half-shell t-matrices

$$
\left\langle k^{\prime}\right| t_{R}(e(k))|k\rangle=\frac{4 m}{e(k)+e\left(k^{\prime}\right)}\left\langle k^{\prime}\right| t_{N R}\left(k^{2} / m\right)|k\rangle
$$

- Relativistic and nonrelativistic cross sections are identical functions of the invariant momentum k

Total Cross Section for Elastic Scattering: Scalar Interaction

Breakup Scattering

Exclusive: Measure energy \& angles of two ejected particles
V.Punjabi et al. PRC 38, 2728 (1998) - TRIUMF p+d @ 508 MeV

Outgoing protons are measured in the scattering plane

Exclusive Breakup Scattering

(symmetric configuration)

$\mathrm{E}_{\text {lab }}=508 \mathrm{MeV}$
(V.Punjabi et al. PRC 38, 2728 (1998)

Exclusive Breakup Scattering $\quad \mathrm{E}_{\mathrm{lab}}=508 \mathrm{MeV}$

Exclusive Breakup Scattering Space-Star

$\mathrm{E}_{\text {lab }}=508 \mathrm{MeV}$

Poincaré Invariant Faddeev Calculations

- Carried out up to 2 GeV for elastic and breakup scattering for scalar interactions
- Solved Faddeev equation in vector variables = NO partial waves
- Relativistic effects are important at 500 MeV and higher
- Relativistic total elastic cross section increases up to 10\% compared to the non-relativistic
- Relativistic kinematics determines QFS peak positions in inclusive and exclusive breakup
- Breakup: Relativistic effects very large dependent on configuration
- Above 800 MeV projectile energy:
- multiple scattering series converges after ~ 2 iterations
- In breakup QFS conditions $1^{\text {st }}$ order calculations sufficient

Including spin and isospin degrees of Freedom:
 General Form of NN interaction

- Space (e.g. momenta)
- Basis: vector variables

$$
\vec{p}^{\prime}-\vec{p}, \quad \vec{p}+\vec{p}, \quad \vec{p}^{\prime} \times \vec{p}
$$

- Spin-Operators $\quad \vec{\sigma}_{1}$ and $\vec{\sigma}_{2}$
- Isospin-Operators $\quad \vec{\tau}_{1}$ and $\vec{\tau}_{2}$

Idea: form scalar functions with the vector variables handle operators analytically

General Form of NN interaction, cont'd

Allow explicit isospin dependence: $\quad\left\langle t^{\prime} m_{t}^{\prime}\right| V\left|t m_{t}\right\rangle=\delta_{t t^{\prime}} \delta_{m_{t} m_{t}^{\prime}} V^{t m_{t}}$
Spin momentum operator structure invariant under rotation, parity, time-reversal

$$
\begin{aligned}
& w_{1}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right)=1 \\
& w_{2}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right)=\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2} \\
& w_{3}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right)=i\left(\boldsymbol{\sigma}_{1}+\boldsymbol{\sigma}_{2}\right) \cdot\left(\mathbf{p} \times \mathbf{p}^{\prime}\right) \\
& w_{4}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right)=\boldsymbol{\sigma}_{1} \cdot\left(\mathbf{p} \times \mathbf{p}^{\prime}\right) \boldsymbol{\sigma}_{2} \cdot\left(\mathbf{p} \times \mathbf{p}^{\prime}\right) \\
& w_{5}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right)=\boldsymbol{\sigma}_{1} \cdot\left(\mathbf{p}^{\prime}+\mathbf{p}\right) \boldsymbol{\sigma}_{2} \cdot\left(\mathbf{p}^{\prime}+\mathbf{p}\right) \\
& w_{6}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right)=\boldsymbol{\sigma}_{1} \cdot\left(\mathbf{p}^{\prime}-\mathbf{p}\right) \boldsymbol{\sigma}_{2} \cdot\left(\mathbf{p}^{\prime}-\mathbf{p}\right)
\end{aligned}
$$

Most general expression for any NN potential:

$$
V^{t m_{t}} \equiv \sum_{j=1}^{6} v_{j}^{t m_{t}}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) w_{j}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right)
$$

where $v_{j}^{t m_{t}}\left(\mathbf{p}^{\prime}, \mathbf{p}\right)$ is a scalar function of $\left|\mathrm{p}^{\prime}\right|,|\mathrm{p}|$, and $\mathrm{p}^{\prime} \cdot \mathrm{p}$

Examples:

χ EFT LO potential:

$$
V_{L O}=-\frac{1}{(2 \pi)^{3}} \frac{g_{A}^{2}}{4 F_{\pi}^{2}} \frac{\sigma_{1} \cdot \mathrm{q} \sigma_{2} \cdot \mathrm{q}}{\mathrm{q}^{2}+M_{\pi}^{2}} \tau_{1} \cdot \tau_{2}+\frac{C_{S}}{(2 \pi)^{3}}+\frac{C_{T}}{(2 \pi)^{3}} \sigma_{1} \cdot \sigma_{2},
$$

$$
\mathrm{q}=\mathrm{p}^{\prime}-\mathrm{p}
$$

χ EFT NLO potential:

$$
\begin{align*}
& V_{N L O}=-\frac{1}{(2 \pi)^{3}} \frac{\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}}{384 \pi^{2} F_{\pi}^{4}} L^{\tilde{\Lambda}}(q)\left[4 m_{\pi}^{2}\left(5 g_{A}^{4}-4 g_{A}^{2}-1\right)+\mathrm{q}^{2}\left(23 g_{A}^{4}-10 g_{A}^{2}-1\right)+\frac{48 g_{A}^{4} m_{\pi}^{4}}{4 m_{\pi}^{2}+\mathrm{q}^{2}}\right] \\
&-\frac{1}{(2 \pi)^{3}} \frac{3 g_{A}^{4}}{64 \pi^{2} F_{\pi}^{4}} L^{\tilde{\Lambda}}(q)\left(\sigma_{1} \cdot \mathrm{q} \sigma_{2} \cdot \mathrm{q}-\sigma_{1} \cdot \sigma_{2} \mathrm{q}^{2}\right) \\
&+\frac{C_{1}}{(2 \pi)^{3}} \mathrm{q}^{2}+\frac{C_{2}}{(2 \pi)^{3}} \mathrm{k}^{2}+\left(\frac{C_{3}}{(2 \pi)^{3}} \mathrm{q}^{2}+\frac{C_{4}}{(2 \pi)^{3}} \mathrm{k}^{2}\right) \sigma_{1} \cdot \sigma_{2} \\
&+\frac{C_{5}}{(2 \pi)^{3}} \frac{i}{2}\left(\sigma_{1}+\sigma_{2}\right) \cdot \mathrm{q} \times \mathrm{k}+\frac{C_{6}}{(2 \pi)^{3}} \mathrm{q} \cdot \sigma_{1} \mathrm{q} \cdot \sigma_{2}+\frac{C_{7}}{(2 \pi)^{3}} \mathrm{k} \cdot \sigma_{1} \mathbf{k} \cdot \sigma_{2}, \tag{C2}\\
& \quad \mathbf{k}=\frac{1}{2}\left(\mathbf{p}^{\prime}+\mathbf{p}\right)
\end{align*}
$$

NN t-matrix:

$$
t^{t m_{t}}=V^{t m_{t}}+V^{t m_{t}} G_{0} t^{t m_{t}}
$$

$$
\begin{aligned}
& t^{t m_{t}} \equiv \sum_{j=1}^{6} t_{j}^{t m_{t}}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) w_{j}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right) \\
& \qquad V^{t m_{t}} \equiv \sum_{j=1}^{6} v_{j}^{t m_{t}}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) w_{j}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right)
\end{aligned}
$$

$$
\begin{aligned}
\sum_{j=1}^{6} t_{j}^{t m_{t}}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) \mathrm{w}_{j}\left(\mathbf{p}^{\prime}, \mathbf{p}\right)= & \sum_{j=1}^{6} v_{j}^{t m_{t}}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) \mathrm{w}_{j}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) \\
& +2 \mu \lim _{\epsilon \rightarrow 0} \sum_{k, j=1}^{6} \int d \mathbf{p}^{\prime \prime} \frac{v_{k}^{t m_{t}}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}\right) \mathrm{w}_{k}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}\right) t_{j}^{t_{m} t}\left(\mathbf{p}^{\prime \prime}, \mathbf{p}\right) \mathrm{w}_{j}\left(\mathbf{p}^{\prime \prime}, \mathbf{p}\right)}{p^{2}+i \epsilon-p^{\prime \prime 2}}
\end{aligned}
$$

Project with w_{k} from the left

 and perform the trace in NN spin space$$
\begin{aligned}
\sum_{j} A_{k j}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) t_{j}^{t m_{t}}\left(\mathbf{p}^{\prime}, \mathbf{p}\right)= & \sum_{j} A_{k j}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) v_{j}^{t m_{t}}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) \\
& +\int d^{3} p^{\prime \prime} \sum_{j j^{\prime}} v_{j}^{t m_{t}}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}\right) G_{0}\left(p^{\prime \prime}\right) t_{j^{\prime}}^{t m_{t}}\left(\mathbf{p}^{\prime \prime}, \mathbf{p}\right) B_{k j j^{\prime}}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}, \mathbf{p}\right)
\end{aligned}
$$

dtll functions are scalar!

$$
\begin{gathered}
A_{k j}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) \equiv \operatorname{Tr}\left(w_{k}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right) w_{j}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right)\right) \\
B_{k j j^{\prime}}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}, \mathbf{p}\right) \equiv \operatorname{Tr}\left(w_{k}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right) w_{j}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}\right) w_{j^{\prime}}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime \prime}, \mathbf{p}\right)\right)
\end{gathered}
$$

NN t-matrix consists of 6 coupled eqs of scalar functions

Structure of some of the $A_{k j}$ and $B_{k j j}$:

$$
\begin{array}{rlr}
A_{26}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) & =4\left(\mathbf{p}^{\prime}-\mathbf{p}\right)^{2} \\
A_{33}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) & =-8\left(\mathbf{p} \times \mathbf{p}^{\prime}\right)^{2} \quad \text { 14 non-vanishing } \\
A_{56}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) & =4\left(p^{\prime 2}-p^{2}\right)^{2} \\
B_{261}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}, \mathbf{p}\right) & =4\left(\mathbf{p}^{\prime}-\mathbf{p}^{\prime \prime}\right)^{2} \\
B_{612}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}, \mathbf{p}\right) & =4\left(\mathbf{p}^{\prime}-\mathbf{p}\right)^{2} \\
B_{133}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}, \mathbf{p}\right) & =-8\left(\mathbf{p}^{\prime \prime} \times \mathbf{p}^{\prime}\right) \cdot\left(\mathbf{p} \times \mathbf{p}^{\prime \prime}\right) \quad \\
B_{331}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}, \mathbf{p}\right) & =-8\left(\mathbf{p} \times \mathbf{p}^{\prime}\right) \cdot\left(\mathbf{p}^{\prime \prime} \times \mathbf{p}^{\prime}\right) & \\
B_{313}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}, \mathbf{p}\right) & =-8\left(\mathbf{p} \times \mathbf{p}^{\prime}\right) \cdot\left(\mathbf{p} \times \mathbf{p}^{\prime \prime}\right) \\
B_{145}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}, \mathbf{p}\right) & =4\left\{\left(\mathbf{p} \times \mathbf{p}^{\prime}\right) \cdot \mathbf{p}^{\prime \prime}\right\}^{2} \\
B_{155}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}, \mathbf{p}\right) & =4\left\{\left(\mathbf{p}^{\prime}+\mathbf{p}^{\prime \prime}\right) \cdot\left(\mathbf{p}^{\prime \prime}+\mathbf{p}\right)\right\}^{2} \\
B_{551}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}, \mathbf{p}\right) & =4\left\{\left(\mathbf{p}^{\prime}+\mathbf{p}\right) \cdot\left(\mathbf{p}^{\prime}+\mathbf{p}^{\prime \prime}\right)\right\}^{2}
\end{array}
$$

Road to Realistic NN Forces

- Work with operator representation of states
- Operators built from spin \& position vectors
- Allows to carry out spin algebra analytically
- Relative momenta are contained in scalar coefficient functions
- Deuteron (Fachruddin, Elster, Glöckle, PRC 63, 054003 (2001)

$$
\begin{aligned}
\Psi_{m_{d}} & =\left[\phi_{1}(p)+\left(\sigma_{(2)} \cdot p \sigma_{(3)} \cdot p-\frac{1}{3} p^{2}\right) \phi_{2}(p)\right]\left|1 m_{d}\right\rangle \\
& \text { with } \phi_{1}=\frac{1}{\sqrt{4 \pi}} u(q) \text { and } \phi_{2}=\frac{3}{4 q^{2}} \frac{1}{\sqrt{2 \pi}} d(q) \\
& \text { and }\left|\Psi_{m d}\right|^{2}=\int_{0}^{\infty} d q q^{2}\left(u^{2}(q)+d^{2}(q)\right)
\end{aligned}
$$

Fachruddin, Glöckle, Elster, Nogga PRC 69, 064002 (2004)

$$
\begin{array}{rlrl}
\psi_{t T}(\boldsymbol{p}, \boldsymbol{q}) & =\sum_{i=1}^{8} \phi_{t T}^{(i)}(\boldsymbol{p}, \boldsymbol{q}) O_{i}\left|\chi^{m}\right\rangle & & \\
\left|\chi^{m}\right\rangle & =\left|\left(0 \frac{1}{2}\right) \frac{1}{2} m\right\rangle & O_{1} & =1 \\
O_{2} & =\boldsymbol{\sigma}(23) \cdot \boldsymbol{\sigma}_{(1)} \\
O_{3} & =\boldsymbol{\sigma}_{(1)} \cdot(\hat{p} \times \hat{q})
\end{array}
$$

Apply this to Faddeev equations $O_{4}=\boldsymbol{\sigma}(23) \cdot \hat{p} \times \hat{q}$ outlinedín

$$
O_{5}=\boldsymbol{\sigma}(23) \cdot \hat{q} \boldsymbol{\sigma}_{(1)} \cdot \hat{p}
$$

Glöckle, Elster, Golak, Skibinski
Witala, Kamada, FBS 47, 25 (2010)
$O_{6}=\boldsymbol{\sigma}(23) \cdot \hat{p} \boldsymbol{\sigma}_{(1)} \cdot \hat{q}$
$O_{7}=\boldsymbol{\sigma}(23) \cdot \hat{p} \boldsymbol{\sigma}_{(1)} \cdot \hat{p}$
Glöckle, Fachruddin, Elster, Golak Skibinski, Witala, EPJ A43, 339 (2010)

Isospin states : $\left|\left(0 \frac{1}{2}\right) \frac{1}{2}\right\rangle,\left|\left(1 \frac{1}{2}\right) \frac{1}{2}\right\rangle,\left|\left(1 \frac{1}{2}\right) \frac{3}{2}\right\rangle \quad \sigma(23) \equiv \frac{1}{2}\left(\sigma_{(2)}-\sigma_{(3)}\right)$

