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Outline

What is active matter?

Active matter in the cell: Examples

Cell membranes
Cell motility
Cytoskeletal filament dynamics
Molecular motors

Motor-microtubule pattern formation: Motivation

Hydrodynamic theory for motor-microtubule pattern
formation

Motivation for a theory of active gels

Outline of a theory of active gels
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Thinking about Active Matter

Theories to describe the seasonal migration of animal
populations, the collective motion of ants, the swimming of
shoals of fish and groups of bacteria and the flight of flocks of
birds

Individual “agents” which evolve via a set of update rules
while interacting with other agents

Agent-based models (Vicsek). Hydrodynamic equations
(Toner, Tu . . . )

Active fluids: Subset of problems involving agents whose
mechanical behaviour at a scale larger than the individual
agent must be constrained by local conservation laws, such as
the conservation of momentum.

Simha-Ramaswamy (2002), Hatwalne et al(2004). . .
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Active matter is a term which describes a material (either in
the continuum or naturally decomposable into discrete units),
which is driven out of equilibrium through the transduction of

energy derived from an internal energy source into work
performed on the environment.

Such systems, interacting either directly or indirectly via the
medium, are generically capable of emergent behaviour at
large scales.

Different from other classes of driven systems: Energy input
internal to the medium (i.e. located on each unit). Does not
act at the boundaries or via external fields.

Active matter at the cellular and subcellular scale

(IMSc) 6 / 104



10-100 million different species on earth
Parent organism specifies features of progeny: 

HEREDITY
Single CELL is the vehicle of hereditary 
information

Sea urchin 
egg

Mouse
egg

Seaweed Fucus
egg
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The Animal Cell

The Animal Cell

Plant cells similar, contain chloroplasts, tough external cell wall 
made of cellulose
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Cell Membrane and active stuff on it

Cell membrane is fluid

Surface of zero thickness

Surface conformation energy

Weight amount of surface (surface
tension σ); surface curvature (mean
curvature κ).

Gaussian curvature irrelevant if no
topology changes

Membrane can carry “active” protein
molecules

Pumps, channels embedded in the
bilayer

Specific pumps have directionality
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Artificial membranes with
pumps which are kept out of
equilibrium

Light-activated
Bacterio-rhodopsin pumps

Micropipette experiments
measure effective fluctuation
strength

Active system, a
non-equilibrium temperature

Prost, Bruinsma, Manneville,
Bassereau, Ramaswamy, Toner,
Gov, Lacoste . . .

Madan Rao/Jitu Mayor:
Alternative exploration of
consequences of activity
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The Cell Cytoskeleton
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The Cell Cytoskeleton
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The Cell Cytoskeleton: Microtubules

Microtubule structure
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The energy currency 
of the cell is a 

molecule called ATP, 
synthesized in 
mitochondria

Energy required for cellular processes packaged in
nucleoside-triphosphate molecules (NTP) e.g. ATP and GTP.
Microtubules use energy derived from the hydrolysis of GTP
to grow and shrink.
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Microtubules and actin are remarkable polymers

They are fairly stiff - persistence lengths are of order
several microns (actin) and millimetres (microtubules)

They are polar objects, + end and a - end

They polymerize and depolymerize, often rapidly, in
processes that are tightly regulated by proteins which
bind to them

This polymerization and depolymerization, coupled to
the fact that they are polar, lead to interesting physical
phenomena, such as dynamic instability and treadmilling

Cells use polymerization of cytoskeletal filaments to exert
forces
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Ppolymerization of Cytoskeletal Filaments
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Polymerization of the Microtubule

The two ends of the polymer 
can be chemically distinct,  so 
the rates for addition/removal 
of monomers can be different 

at the two ends
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The GTP cap

For microtubules, 
monomers are 

added in the GTP 
form but convert 
into the GDP form
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Dynamic Instability
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Dynamical Instability
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Polymerization Forces
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Polymerization Forces: Actin
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Cell Crawling

Gel-like state of actin filaments near the edges
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Motors

Protein molecules which use energy from ATP hydrolysis to move
cargo along the cell cytoskeleton, exert forces
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Scales involved
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Kinesins, Dyneins and Myosins: Motors

Three motor super families: Kinesins, Dyneins and Myosins

Myosins: muscle action

Motors are directional - kinesins move from - to + on microtubules,
cytoplasmic dyneins move from + to -.

Transporters, force exerters
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Schematic of Motor Motion
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The role of ATP hydrolysis in motion
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Questions

The cell is a very highly Brownian environment

How does the motor manage to
walk unidirectionally?

Why isn’t it blown off by
thermal fluctuations?
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What singles out a direction?

Motor walks on a periodic track, the filament

This track need not have reflection symmetry, could be polar. (It is!)

This would single out a direction
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Why doesn’t it fly off immediately?

Must be tightly bound to the filament, at least some of the time.

But not all the time, or it wouldn’t move. It would just be stuck
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Signifance of the weakly bound state

In the weakly bound state, motor should be able to move (diffuse) on
the filament

If only weakly bound state, diffusion would not lead to a net current:
thermal equilibrium

If only strongly bound, very little motion and no net current: thermal
equilibrium
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Putting it all together

Need a periodic but asymmetric
potential

Need weakly and strongly bound states

Need to alternate between them

No macroscopic tilt of the potential

Will this work?
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The Brownian (flashing) ratchet

Potential switches on/off via ATP hydrolysis

ATP binding alters the coupling of the motor to the filament

Detailed structure of the motor unimportant
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The Brownian Motor Again

Brownian particle in an
asymmetric potential

Particle diffuses - probability
distribution broadens

Potential is switched on and off

Asymmetric motion of the
particle

Drive against a force, do work
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The inevitability of ratchet-like mechanisms

Ratchet-like mechanisms must underlie almost all
of biology’s machines

Physically, ratchets provide a way of biasing
motion in one way.

Non-equilibrium ensures the rest. This is a very
general idea.

Motors: Ajdari, Prost, Julicher RMP 1997

(IMSc) 38 / 104



Polymerization Ratchet

Idea that a “polymerization ratchet” mechanism is responsible for force
exertion by polymerizing biofilaments (Hill, Oster, Mogilner).
Some problems with questions of principle
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Things to remember for later

All of this is out of thermal equilibrium. Must account
for this in any theoretical description

These systems are multicomponent and complex. Hard
to see how detaile molecular specifications will help.

Polymerization and forces exerted by polymerization are
crucial to mechanical behaviour of the cell. Cytoskeletal
polymers responsible for exerting forces often found in
gel-like states whose fluidity is controlled tightly.

Motors and their tracks collaborate

The role of noise is very important. Sub-cellular
processes must find a way to co-opt noise

(IMSc) 40 / 104



Patterns in Nature
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Fundamental Motivation

Astral (star-like) bipolar structures formed when cells divide
The Mitotic Spindle: Require motors interacting with microtubules
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Pattern Formation Theories

Spatial patterns from coupled
non-linear partial differential

equations (Reaction-Diffusion
equations)

Turing patterns, BZ reactions

Components with different
diffusion constants, Short-ranged

amplification, long ranged
inhibition

Patterns also in driven fluids,
vector degrees of freedom

involved. Fluid velocity field.
Boundary driving. Scales set by

confinement.

Motor-microtubule pattern
formation combines some aspects
of both problems. Intrinsic scales
to patterns, confinement effects

important in some regimes.
Non-equilibrium from internal

driving, not from boundary
conditions.
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Nedelec, Surrey, Maggs, Leibler, Karsenti, [Nature, Science] (1997,2001)

Outside the cell: mix
motors, microtubules and
ATP together

Can you reproduce the
structures seen when a
cell divides?
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Pattern Formation in Motor-Microtubule Mixtures

Nonequilibrium, external energy
input, bounded

Not densities (scalar) of
reactants but orientations
(vectors) Unconventional

Nature of patterns in vitro?
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Microtubules and Motors

Microtubule a polar object
(+/− ends)

Kinesin motors walk on the
microtubule (− → +); motion
coupled to ATP hydrolysis
(non-equilibrium!)

Motors attach and detach,
stabilized by loads

Processive motors: Translocate
through long distances without
detaching

Motor complexes formed by
combining multiple motors
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Motors and Microtubules in Vitro

Surrey, Nedelec, Leibler, Karsenti, Science 292 1167 (2001)

Non-equilibrium patterns in
mixtures of motor complexes
and microtubules: disordered
states, asters, vortices ..

Self-organized structures;
non-equilibrium, requires ATP

Quasi-two-dimensional geometry

Qualitative agreement with
simulations

But simulations have 19
parameters to be fixed
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Self-organization: Confinement

Nédélec, Surrey, Maggs, Leibler, Nature 389 (1997), 305

Initial growth into an aster, distorts into a vortex on elongation

Aster to vortex transformation due to boundaries

Boundary effects important in small systems (∼ 100 µm)
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Patterns in large systems

Nédélec, Surrey, Maggs, Leibler, Nature 389 (1997), 305

Larger system size (∼ 1000 µm). Boundary effects unimportant

Patterns depend on motor concentration

Sequence (Kinesins): disordered/aster-vortex mixture → lattice of
vortices → lattice of asters
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Theoretical Approaches

Hydrodynamic, symmetry
based models (Lee-Kardar,

Sankararaman-Menon-Kumar)

Active Gel Models (Kruse,
Julicher, Prost, Joanny . . . )

Force and moment balance,
polymer based theories
(Liverpool -Marchetti)

Boltzmann equation-type
approaches

(Aranson-Tsimring)

Approaches developed for the study of flocking and active
nematic systems are a general background to the

hydrodynamic approach [Toner, Tu, Ramaswamy and
collaborators]
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The Lee-Kardar (LK) Model

∂tm = D∇2m−A∇ · (mT)
∂tT = T(α− βT 2) + γm∇2T + γ∇m · ∇T

A (polar) field for microtubules

A scalar field for motor molecules

Single equation of motion for the total motor density field.

Lowest-order symmetry allowed terms

Non-equilibrium from convective terms
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Phase Diagram of the LK Model

Phase obtained at large motor densities is always a single vortex. The
y-axis is the “growth rate” for the local T field.
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But experimental sequence is different

Nédélec, Surrey, Maggs, Leibler, Nature 389 (1997), 305

Larger system size (∼ 1000 µm). Boundary effects unimportant

Patterns depend on motor concentration

Sequence (Kinesins): disordered/aster-vortex mixture → lattice of
vortices → lattice of asters
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Equations for motor density fields

Diffusion of free motors, transport of bound motors along T.
Free and bound motors interconvert

∂tmf = D∇2mf − γ′f→bmf + γ′b→fmb

∂tmb = −A∇ · (mbT) + γ′f→bmf − γ′b→fmb

Simplest equations dictated by the physics
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Equation for the tubule field

Microtubule orientation described by a 2-d vector field

∂tT = T(α− β|T |2) + κ′∇2T + γmb∇2T

+ γ′∇mb · ∇T + S′∇mb

Tubules have preferred length

Motor independent stiffness term for tubules. Symmetry allowed
terms describing alignment of the tubules mediated by motors

Last term is allowed by symmetry. Corresponds to a contribution to
splay induced by motors. Only bound motor density field appears in
the tubule equation

Compare to the Lee-Kardar Model
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Putting things together

Diffusion of free motors, transport of bound motors.
Free and bound motors interconvert
Motors orient microtubules

∂tmf = D∇2mf − γ′f→bmf + γ′b→fmb

∂tmb = −A∇.(mbT) + γ′f→bmf − γ′b→fmb

∂tT = T(α− β|T |2) + κ′∇2T + γmb∇2T

+ γ′∇mb · ∇T + S′∇mb

Lowest order terms dictated by symmetry appear here.
Minimal model with predictive power
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The Equations

∂tmf = D∇2mf − γ′f→bmf + γ′b→fmb

∂tmb = −A∇ · (mbT) + γ′f→bmf − γ′b→fmb

∂tT = T(α− β|T |2) + κ′∇2T + γmb∇2T

+ γ′∇mb · ∇T + S ′∇mb

In scaled variables

∂tmf = ∇2mf − γf→bmf + γb→fmb

∂tmb = −∇.(mbT) + γf→bmf − γb→fmb

∂tT = CT(1− T 2) + κ∇2T +

+ mb∇2T + ε∇mb · ∇T + S∇mb
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Surrey et. al. Science (2001)

Disordered states
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Nedelec et. al. Nature (1997)

A Lattice of vortices
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Nedelec et. al. Nature (1997)

A Lattice of asters
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A Nonequilibrium “Phase Diagram”
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Confinement: Aster

A single aster

Nedelec et. al. PRL (2001)

Asters or vortices depending on boundary conditions in small systems
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Vortex

A single vortex

Nedelec et. al. Nature (1997)

Single vortices generic at large motor densities in confined systems
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Finite systems: Nonzero S

S = 0,0.05,0.5 and 2 from left to right
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Free Motor densities: Nonzero S

S = 0,0.05,0.5 and 2 from left to right
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All of this work is in: Physica Scripta (’03), Physical Review E(’04),
Physica A(’06)

“.. it may be useful to think of mitotic spindle formation as a

pattern formation problem, which can be modelled using contin-

uum hydrodynamical equations in a small number of variables.

The construction of the appropriate set of simplified equations

with spindle-like structures as steady state solutions remains an

outstanding problem.”
Sankararaman, Menon and Kumar, Phys. Scripta (’03)

(IMSc) 66 / 104



Two motors: + and -

∂tm
+ = D+∇2m+ −A+∇ · (m+T)

∂tm
− = D−∇2m− +A−∇ · (m−T)

∂tT = T(α− βT 2) + γ(m+ +m−)∇2T

+ γ∇(m+ +m−) · ∇T

+ −S∇m+ − S′∇m−

Simpler Lee-Kardar model, but
with two motor species

Outward and inward asters
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Two motors: + and -

Many scans
1 Vary relative velocities of both

motors
2 Vary relative strength of the S

term
3 Vary relative number densities

of both motors

Fairly clear that spindle-like
structures can’t be generated
this way

Need new ideas

What are the principle
determinants of coarse-grained
models of spindle structure?
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Determinants of Spindle Structure

Role of ± motor
constructs and other
heterocomplexes

Orient antiparallel
microtubules

Favour nematic order
where density of ±
constructs large

Nematic order described
by a tensor
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Phases of anisotropic molecules I

The Isotropic Phase

No orientational or translational
order

The Nematic Phase

Nematic phase: Orientational
but not translational order

Isotropic-Nematic transition is
weakly first order

Source: Kent State Liquid Crystal Lab
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Phases of anisotropic molecules II

Source: http://www.atom.physics.calpoly.edu/̃jfernsler

Orientational order with Director n description

Order parameter amplitude ∼ 1. Soft orientational degrees of
freedom retained.

Gradient (Frank free energy) cost for variations in n.

Symmetry n↔ −n

Symmetry is tensorial (rank 2 tensor), not scalar or vectorial
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Parametrizing order in the Nematic Phase

Director description n

Order parameter amplitude
∼ 1. Soft orientational
degrees of freedom retained

Ordering tensor Qαβ

Order parameter amplitude
can vary. Complete
tensorial description with
no approximations.

Source: http://www.atom.physics.calpoly.edu/̃jfernsler
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Orientational order through second-rank,
symmetric traceless tensor, Qαβ.

Principal axes specify axis of ordering.

Principal values represent strength of
ordering.

Assuming f(x,u, t) the molecular
orientational distribution function at x, t

Nematic order:

Q(x, t) =
∫
duf(x,u, t) uu ≡ 〈 uu 〉

X : symmetric traceless part of tensor X

Source: http://www.atom.physics.calpoly.edu/̃jfernsler
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Unixiality and Biaxiality I

Principal axes specify the director n, the
codirector m and joint normal p.

If T 6= 0, Biaxial Nematic

Given principal values S and T , the order
parameter is

Qαβ =
3
2
S(nαnβ−

1
3
δαβ)+

1
2
T (mαmβ−pαpβ)

Measure of alignment with −1
3 ≤ S ≤

2
3 ,

0 ≤ T < 3S
S = 2

3 , T = 0 corresponds to uniaxial
nematic. S = 0 is the isotropic phase.

Source: http://www.atom.physics.calpoly.edu/̃jfernsler

Source: Kent State Liquid Crystal Lab

http://www.imsc.res.in

(IMSc) 74 / 104



Landau-Ginzburg-de Gennes Approach

Landau-Ginsburg functional F from local expansion in rotationally
invariant combinations of Q(x, t),

Fh[Q] =
1
2
ATrQ2 +

1
3
BTrQ3 +

1
4
C(TrQ2)2 + E′(TrQ3)2

C and E′ positive. E′ non-zero for a biaxiality in the bulk

Add non-local terms from rotationally invariant combinations of
order-parameter gradients

Fel[∂Q] =
1
2
L1(∂αQβγ)(∂αQβγ) +

1
2
L2(∂αQαβ)(∂γQβγ)

L1 and L2 are elastic constants

Can add surface terms of the same order in gradients. Omit them
here.

K11 = K33 (splay = bend) at this order. Equals twist if L2 = 0
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Determinants of Spindle Structure

Oriented at the centrosomes

Antiparallel overlap (Think of
this as a nematic region)

A polar-nematic interface

How can this be stabilized by
active processes?

No understanding of
polar-nematic interfaces.

Isotropic-nematic interfaces
(de Gennes, Sluckin,
Popa-Nita . . . ): Can now test
many of these theories

Nedelec, JCB (2003)
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Determinants of Spindle Structure

A ± motor (a complex of a +
and a - motor) or a +X motor
(a + directed and a cross-linking
motor) could act to stabilize
antiparallel alignment

Such motors ineffective in
regions of polar alignment.

++ or −− motor complexes
create regions of local polar
alignment (or asters, with
addition of the S term)

Theory to accomodate nematic
as well as polar order. Also two
species of motor complexes

Nedelec, JCB (2003)
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Thoughts

Anisotropies

Equations: Many possibilities. Test those which are physically most
transparent, intuitive and lowest order in fields and gradients. The
“minimal” model?

Have developed nematic codes in 2 and 3 dimensions.

Can simulate equations like

∂tQij = −δF [Q]
δQij

Simulate the underlying equilibrium nematic, growth on quenching,
nematic-isotropic interface, topological defect identification,
visualization. [Amit Bhattacharjee, Ronojoy Adhikari]

Some illustrative examples
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Where such treatments fit

Long-wavelength treatment,
symmetry based.

“The unreasonable
effectiveness of
hydrodynamics ..”

Few parameters. Must appeal
to more microscopic
approaches to constrain them.

Complementary to other
methods

Simple, intuitive, “right”
variables

Karsenti, Nedelec, Surrey, Nature Cell Biology (2006)
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The Importance of Coarsegraining
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What survives coarsegraining?

Slow variables (hydrodynamic modes) vs. fast variables (atomic
motions)

Slow variables represent modes which decay ever more slowly as their
wavelength increases

Uniform space variations of slow variables cost no energy, relaxation
time is infinite

Conservation Laws and Broken symmetries
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Equations of Motion

∂ε

∂t
= −∇ · jε

∂ρ

∂t
= −∇ · g

∂gi
∂t

= −∇jπij

The current jε is the energy current and πij is the momentum current
tensor, related to the stress tensor.
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Conserved momentum density acts as a current for another conserved
density, the mass (equivalently, number) density
Write currents jε and πij in terms of the hydrodynamic fields ρ, ε and g.

Constitutive relations

Close to thermal equilibrium, rules for constructing such constitutive
relations

Very generally, these rules indicate

∂Φµ(x, t)
∂t

= Vµ(x)− Γµν
δH

δΦν(x)
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Vµ(x) is the non-dissipative or streaming velocity.

Second term induces dissipation.

All neglected microscopic degrees of freedom give rise to the dissipative
terms

Γµν is called the dissipative tensor

Note that Φµ(x, t) can only couple to δH
δΦν(x) if these terms possess

different signs under time-reversal.

Also, (Onsager), Γµν must be a symmetric tensor at zero magnetic field.
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Also, contribution from broken symmetry variables

Conserved fields are always hydrodynamical.

But broken symmetry variables also share the same property that making
very long wavelength distortions in the broken symmetry field cost
vanishingly small energy as the wavelength tends to infinity.

Identifying the broken-symmetry variables not always straightforward (e.g.
superfluids)
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Hydrodynamic description of fluids with internal order must account for
additional modes arising out of the fact that the ordering represents a
broken symmetry.

For small deviations fom equilibrium, derive an equation for entropy
generation and casts it in terms of the product of a flux and a force.

Such fluxes vanish at thermodynamic equilibrium.

Close to equilibrium, it is reasonable to expect that fluxes should have a
smooth expansion in terms of forces.

For example, for the simple fluid without dissipation, we have

g = ρv

πij = pδij + vjgi = −σij + ρvivj

jε = (ε+ p)v =
(
ε0 + p+

ρv2

2

)
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The mass conservation equation is just

∂ρ

∂t
= −∇ · (ρv),

while the momentum conservation equation is

∂gi
∂t

=
∂ρvi
∂t

= −∇jπij = −∇ip−∇j(ρvivj)

This is Eulers equation, usually written as

∂v
∂t

+ (v · ∇)v =
−1
ρ
∇p
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The dissipative contribution to the stress tensor is accounted for by adding
a term σ

′
ij to the stress tensor

πij = pδij + ρvivj − σ
′
ij

Dissipation can only arise from velocity gradients, since any constant term
added to the velocity can be removed via a Galilean transformation.
The dissipative coefficient coupling the stress tensor to the velocity
gradient is a fourth rank tensor

σ
′
ij = ηijkl∇kvl

However, symmetry requires that

σ
′
ij = η(∇ivj +∇jvi −

2
3
δij∇ · v) + ζδij∇ · v
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This gives the Navier-Stokes equations, with incompressibility

∂ρ

∂t
= 0 = −∇ · (ρv) = −∇ · v

Thus

ρ
∂v
∂t

+ ρ(v · ∇)v = −∇p+ η∇2v

along with the constraint ∇ · v = 0.
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For a nematic fluid, need equation of motion for the director n (or for the
Qαβ tensor) in addition to equations for the conservation of matter,
momentum and energy.

Distortions of configurations of the nematic order parameter field also
contribute to stress tensor

Director is aligned with the local molecular field in equilibrium; Distortions
away from molecular field direction must relax to minimize the free energy.
The local molecular field in the equal Frank constant approximation as

hi = K∇2ni

Director does not change under rigid translations at constant velocity.
Leading coupling of n to v must involve gradients of n.

∂ni
∂t
− λijk∇jvk +X

′
i = 0

where X
′

is the dissipative part of the current.
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Dissipative part can be written as

X
′
i = δTij

1
γ
hj

where γ is a dissipative coefficient. Projector isolates components of the
fluctuation in plane perpendicular to the molecular field direction.
Constraint n · ∂n/∂t = 0 implies only two independent components of the
tensor λijk, thus

λijk =
1
2
λ(δTijnk + δTiknj) +

1
2
λ2(δTijnk − δTiknj)

where
δTij = δij − ninj

Under a rigid rotation

∂ni
∂t

= ω × n =
1
2

(∇× v)× n

so coefficient λ2 of the antisymmetric part must be -1.
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Final equation of motion for the director

∂tni + v · ∇ni + ωijnj = δTij

(
λuijnj +

hi
γ

)
The coupling of n to v leads to an additional term in the reactive
(non-dissipative) part of the stress tensor.

σRij = −pδij + λkjihk

where p is the normal fluid pressure and λkji follows from the definitions
above.
All dissipative coefficients tensorial in character. Two thermal conductivity
coefficients

κij = κ‖ninj + κ⊥δ
T
ij

and five viscosities

σ
′
ij = 2ν2Aij + 2(ν3 − ν2)[Aiknknl +Ajknink]

−(ν4 − ν2)δijAkk − 2(ν1 + ν2 − 2ν3)ninjnknlAkl
+(ν5 − ν4 + ν2)[δijnknlAkl + ninjAkk]
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These equations, representing the response close to
equilibrium of the nematic fluid, must be supplemented

with additional terms for the modeling of the active fluid.

How does one construct such terms?

The theory of active gels

Broadly equivalent to theories for active fluids
(Ramaswamy, Simha, Rao, Hatwalne . . . ).

Specifically motivated for sub-cellular elasticity, cell
crawling

Kruse, Julicher, Prost, Joanny. . . )
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Starting point: Cytoskeletal gels are viscoelastic materials. Deform: at
short times get elastic response

σ = Gγ

where σ is the shear stress, G is the shear modulus and γ the strain.
At long times, get fluid or viscous response

σ = ηγ̇

Characteristic time of viscoelastic relaxation is then

τ =
η

G
Maxwell model, spring and dashpot in series

γ̇ =
σ̇

G
+
σ

η

Or
σ + τ σ̇ = ηγ̇

Suppose suddenly shear at constant rate γ̇.

σ(t) = ηγ̇ [1− exp (−t/τ)]
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Passive gel: Viscoelasticity via a Maxwell model

Deviatoric stress σαβ related to the strain rate tensor
vαβ = 1

2 (∂αvβ + ∂βvα) where vα is the velocity field in the gel, via

∂σαβ
∂t

+
σαβ
τ

= 2Evαβ

Add convective term, term representing the effects of local rotation of the
fluid: Convected Maxwell model.
Polar order in active gels described by a free-energy-like expression from
theory of polar nematic liquid crystals.

F =
∫
dr[

K1

2
(∇ · p)2 +

K2

2
(p · (∇× p))2 +

K3

2
(p× (∇× p))2

+ k∇ · p−
h0
‖

2
p2]
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Active gel

Hydrodynamic theory of active gels (Julicher, Kruse, Prost, Joanny ..)
identifies, along classical lines, fluxes and forces.

Hydrodynamic description contains phenomenological parameters, called
Onsager coefficients.

Fluxes are mechanical stress, σαβ rate of change of polar order (the
polarization) Ṗ and the rate of consumption of ATP per unit volume r.

Force conjugate to the ATP consumption rate is the chemical potential
difference ∆µ between ATP and the products of ATP hydrolysis. Force
conjugate to changes in the polarization is the field h.

The force conjugate to the stress tensor is the velocity gradient tensor
∂αuβ. Expand into traceless symmetric, pure trace and antisymmetric
parts.
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Construct equations of motion for the deviatoric stress, using the
convected Maxwell model

Equation must couple mechanical stress and the polarization field. Also
include a term coupling activity to the stress.

2ηuαβ =
(

(1 + τ
D

Dt

)
[σαβ + ζ∆µqαβ + τAαβ

− ν

2
(pαhβ + pβhα −

2
3
hγpγδαβ)]

Co-rotational derivative is

D

Dt
σαβ =

(
∂

∂t
+ vγ

∂

∂rγ

)
σαβ + [ωαγσγβ + ωβγσγα] ,

Tensor Aαβ (geometrical non-linearities): qαβ = 1
2(pαpβ −−1

3p
2δαβ).
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The antisymmetric part of the stress tensor leads to torques on the fluid
and is obtainable from

σaαβ =
1
2

(pαhβ − pβhα)

Viscoelastic relaxation time is τ , ν1 describes the coupling between
mechanical stresses and the polarization field, ζ is the coefficient of active
stress generation, acting to couple activity to the stress.

The second flux, defined from the rate of change of polarization is given by

Ṗ =
DP
Dt

where, as earlier,

D

Dt
pα =

(
∂

∂t
+ vγ

∂

∂rγ

)
pα + ωαβpβ
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The Onsager relation for the polarization is

D

Dt
pα =

1
γ1
hα + λ1pα∆µ− ν1vαβpβ − ν̄1vββpα

Several phenomenological parameters, such as the rotational viscosity γ1

which characterizes dissipation from the rotation of the polarization as well
as the constants ν1 and ν̄1.

Equation for the rate of consumption of ATP. This takes the form

r = Λ∆µ+ ζpαpβvαβ + ζ̄vαα + λ1pαhα
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These are simple but generic equations representing the basic symmetries
of the problem.

Interesting consequences: an active polar gel can exhibit spontaneous
motion as well as defects in the polar ordering which are dynamic in
character

These ideas have been applied to the study of the motion of the cell
lamellipodium and to the organization of microtubules by molecular
motors.

The generality of these equations follow from the fact that they are
motivated principally by symmetry considerations.

But they make a large number of assumptions and there are many
coefficients which appear to be largely undetermined

How can one “derive” such equations?
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The importance of the field of active matter is that it can
suggest ideas for describing the unusual mechanical

properties of living systems, while providing a largely
self-consistent framework for calculations.

Must calculate and benchmark more against experimental
data from biology to understand the limitations and the

power of such approaches.
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