Solid-solid NAG Surajit Sengupta

Indian Association for the Cultivation of Science, Kolkata

Solid-solid NAG Surajit Sengupta

Indian Association for the Cultivation of Science, Kolkata

... GARRY ON THE WORK WITH OUR OWN EFFORTS UNAIDED BY THE GOVERNMENT ... I WANT IT TO BE SOLELY NATIVE AND PURELY NATIONAL ... M.L. SIRCAR (1876)

Solid-solid NAG Surajit Sengupta
 Indian Association for the Cultivation of Science, Kolkata

... CARRY ON THE WORK WITH OUR OWN EFFORTS UNAIDED BY THE GOVERNMENT ... I WANT IT TO BE SOLELY NATIVE AND PURELY NATIONAL ... M.L. SIRCAR (1876)

Solid-solid NAG Surajit Sengupta

Indian Association for the Cultivation of Science, Kolkata

... CARRY ON THE WORK WITH OUR OWN EFFORTS UNAIDED BY THE GOVERNMENT ... I WANT IT TO BE SOLELY NATIVE AND PURELY NATIONAL ... M.L. SIRCAR (1876)

Solid-solid NAG Surajit Sengupta

Indian Association for the Cultivation of Science, Kolkata

... CARRY ON THE WORK WITH OUR OWN EFFORTS UNAIDED BY THE GOVERNMENT ... I WANT IT TO BE SOLELY NATIVE AND PURELY NATIONAL ... M.L. SIRCAR (1876)

Solid-solid NAG Surajit Sengupta

Indian Association for the Cultivation of Science, Kolkata

... GARRY ON THE WORK WITH OUR OWN EFFORTS UNAIDED BY THE GOVERNMENT ... I WANT IT TO BE SOLELY NATIVE AND PURELY NATIONAL ... M.L. SIRGAR (1876)

Solid-solid NAG Surajt Sengupta
Indian Association for the Cultivation of Science, Kolkata

Solids in solids: a really difficult problem

* Solids are anisotropic.
* Solids are rigid, need to generalize GibbsThompson relations to include stress.
* The chemical potential is non-uniform.

粦 Atomic rearrangements, defects, vacancies, dislocations, etc.

* Both ballistic and diffusive trajectories are possible.

SOLIDS FAR FROM EQUILIBRIUM, C. GODRECHE, EDS. (CUP, 1992)

Solids in solids: a really difficult problem

* Solids are anisotropic.

$$
\Delta P=\gamma / R
$$

* Solids are rigid, need to generalize GibbsThompson relations to include stress.
* The chemical potential is non-uniform.

粦 Atomic rearrangements, defects, vacancies, dislocations, etc.

* Both ballistic and diffusive trajectories are possible.

SOLIDS FAR FROM EQUILIBRIUM, C. GODRECHE, EDS. (CUP, 1992)

* Equilibrium shapes of inclusions.
* Instabilities of solid fronts and dendrites.
* Importance of stress and compatibility: the Eshelby problem.
* Microstructure selection, TTT diagrams, martensite and ferrite.
* Early stage solid solid nucleation process.

* Equilibrium shapes of inclusions.
* Instabilities of solid fronts and dendrites.
* Importance of stress and compatibility: the Eshelby problem.
* Microstructure selection, TTT diagrams, martensite and ferrite.
* Early stage solid solid nucleation process.

* Equilibrium shapes of inclusions.
* Instabilities of solid fronts and dendrites.
* Importance of stress and compatibility: the Eshelby problem.
* Microstructure selection, TTT diagrams, martensite and ferrite.
* Early stage solid solid nucleation process.

* Equilibrium shapes of inclusions.
* Instabilities of solid fronts and dendrites.
* Importance of stress and compatibility: the Eshelby problem.
* Microstructure selection, TTT diagrams, martensite and ferrite.
* Early stage solid solid nucleation process.

The Wulff construction

$$
\begin{aligned}
& \Delta G(N)=\sum_{i} \gamma_{i} O_{i} \min \\
& \delta \Delta G(N)=\sum_{i} \gamma_{i} \delta O_{i}=0 \\
& \delta V(N)=\delta \sum_{i} h_{i} O_{i}=0 \\
& \delta \sum_{i} h_{i} O_{i}=\sum_{i} O_{i} \delta h_{i}+\sum_{i} h_{i} \delta O_{i} \\
&=\sum_{i} h_{i} \delta O_{i} \\
& \sum_{i}\left(h_{i}-\lambda \gamma_{i}\right) \delta O_{i}=0 \\
& \therefore h_{i}=\lambda \gamma_{i}
\end{aligned}
$$

Universal issues: Roughening transition in 3D crystals mapped onto the KT transition in $\mathrm{X}-\mathrm{Y}$ models. Chui and Weeks, PRB, 14, 4978 (1976)

Non-universal properties: Still need microscopic theory for anisotropic surface energies at finite temperatures

For He crystal surfaces see:

S. Balibar et al., Rev. Mod. Phys. 77, 317-370 (2005)

Dendritic growth

THE PLANAR FRONT

The growing front releases latent head, solutes etc. which diffuse away from the front. This diffusion is not instantaneous !

Bulk:

$$
\frac{\partial T_{\alpha}}{\partial t}=D_{\alpha} \nabla^{2} T_{\alpha}
$$

Interface:
$\mathbf{n} \cdot\left(K_{S} \nabla T_{S}-K_{L} \nabla T_{L}\right)=L \mathbf{v}_{I} \cdot \mathbf{n}$
Boundary $\quad T_{S}=T_{L}=T_{M}\left(1-\frac{\gamma \kappa}{\rho L}\right)$ condns: $\quad \lim _{z \rightarrow+\infty} T(z)=T_{0}$

THE SOLUTION

$$
\begin{aligned}
& T_{L}^{0}(z)=T_{0}+\left(T_{M}-T_{0}\right) \exp \left(-\frac{z}{l_{t h}}\right) \\
& l_{t h}=D_{t h} / \mathbf{v}_{I} \cdot \mathbf{z}
\end{aligned}
$$

needs to satisfy the heat balance condition i.e.
$L \delta V=C_{p}\left(T_{M}-T_{0}\right) \delta V$

THE MULLIN-SEKKERKA INSTABILITY

Substitute:

$\zeta\left(r_{\perp}, t\right)=\zeta_{k} e^{i \mathbf{k} \cdot \mathbf{r}_{\perp}+\Omega t}$
$\delta T\left(r_{\perp}, z, t\right)=\delta T_{k} e^{i \mathbf{k} \cdot \mathbf{r}_{\perp}+\Omega t}$
Boundary conditions:
$\lim _{z \rightarrow 0} \delta T_{k}(z)=0$
$z \rightarrow 0$

$$
\mathbf{v}_{I}=\mathbf{V}+\mathbf{z} \partial \zeta / \partial t
$$

Obtain:

$$
\Omega \approx k|\mathbf{V}|\left[1-d_{0} l_{t h}^{2}\left(1+\frac{K_{S}}{K_{L}}\right) k^{2}\right]
$$

$$
d_{0}=\frac{\gamma T_{M} C_{p}}{\rho L^{2}} \text { (capillary length) }
$$

instability wavelength $\quad \lambda_{0} \approx 1-10 \mu \mathrm{~m}$

higher temperature gradient

FREE DENDRITE GROWTH

Complications

* Effect of crystalline anisotropy in surface tension and mobilities?
* Effect of rigidity?
* How valid are these equations at atomic scales?

Incompatible solids

THE ESHELBY PROBLEM

K. Bhattacharya, Microstructure of Martensites (OUP, 2003)

ST. VENANT'S COMPATIBILITY CONDITIONS

E. Kröner, Continuum Theory of Dislocations and Self-Stresses (Springer-Verlag, Berlin, 1958).

$$
\begin{array}{ll}
\epsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}+\frac{\partial u_{k}}{\partial x_{i}} \frac{\partial u_{k}}{\partial x_{j}}\right) & \begin{array}{l}
e_{1}=\epsilon_{x x}+\epsilon_{y y} \\
e_{2}=\epsilon_{x x} \epsilon_{y y} \\
e_{3}=\epsilon_{x y}
\end{array} \\
\nabla \times(\nabla \times \epsilon)^{T}=0 &
\end{array}
$$

MECHANICAL EQULLIBRIUM

$$
\nabla \cdot \sigma=0 \text { with } \sigma_{i j}=C_{i j k l} \epsilon_{k l}
$$

Obtain:

$$
\nabla^{2} e_{1}=Q_{13} \frac{\partial^{2} e_{3}}{\partial x \partial y}
$$

$$
e_{3}=e_{0} \Theta(a+x) \Theta(a-x)
$$

$$
\Theta(a+y) \Theta(a-y)
$$

$$
e_{1}=\frac{e_{0}}{2}\left[\log \left(\frac{(x-a)^{2}+(y-a)^{2}}{(x+a)^{2}+(y-a)^{2}} \times \frac{(x+a)^{2}+(y+a)^{2}}{(x-a)^{2}+(y+a)^{2}}\right)\right]
$$

Landau theory

Lookman T et al 2003 Phys. Rev.B 67024114

$$
\begin{aligned}
& \mathcal{F}=\int \sum_{i}\left[a_{i} e_{i}^{2}+c_{i}\left(\nabla e_{i}\right)^{2}\right]+b_{3} e_{3}^{4}+d_{3} e_{3}^{6} \\
& N=10 \\
& \mathcal{F}=\Delta \mu L W+2 \gamma_{1}(L+\underbrace{W}_{\text {SURFACE }}+N \gamma_{2} W+\gamma_{3} \frac{L^{2}}{N} \\
& \text { BULK } \\
& \text { ELASTIC }
\end{aligned}
$$

Optimum number of twins? $\frac{L}{N} \sim W^{\frac{1}{2}}$

Microstructure selection

 NON RIGID INTERFACES: WHEN SOLIDS CAN FLOW

TIME

Incompatibility $\nabla \times(\nabla \times \epsilon)^{T} \neq 0$

NON-AFFINE STRAINS

$$
\begin{aligned}
& e_{1}= e_{1}^{A}+e_{1}^{P} \\
& \left.\begin{aligned}
\dot{e}_{1}^{P} & =-\frac{1}{\nu} \int_{-\infty}^{t} \sigma_{1}\left(t^{\prime}\right) e^{-\frac{\left(t-t^{\prime}\right)}{\tau}} d t^{\prime}+c_{p} \nabla^{2} e_{1}^{P} \\
& =c_{p} \nabla^{2} e_{1}^{P} \\
& \text { A. Paul et al. J. Phys. Condens. Matt. 20, } 365211 \text { (2008) }
\end{aligned} \sigma_{1} \right\rvert\,>
\end{aligned}
$$

粦 e_{1}^{P} screens elastic interactions by reducing stresses

* for small $e_{P}{ }^{P} \mathrm{~L} / \mathrm{N}$ is still $\sim \mathrm{W}^{1 / 2}$ but with reduced pre-factor
* large $e_{1}{ }^{P}$ destroys twin structure completely
* How does non-affineness influence nucleation?
* Growth dynamics
M. Rao and SS, PRL. 91, 045502, (2003)
* Consider only $\mathrm{N}=1$ and $\mathrm{N}=2$
* Find barrier height in L-W plane
 * Barrier depends on time through $e_{1}{ }^{P}(t)$
* Mean first passage time obtained by solving Kramers equation $\tau=\Gamma^{-1} \exp (-\beta \Delta E(\tau))$
* Obtain TTT curve between ferrite ($\mathrm{N}=1$) and martensite ($\mathrm{N}=2$) nuclei.
* Final phase depends on time scale of barrier relaxation vs. MFPT

$$
\begin{array}{cc}
e_{3} & e_{1} \\
e_{2} & e_{1}^{P}
\end{array}
$$

A. Paul et al. J. Phys. Condens. Matt. 20, 365211 (2008)

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\mathbf{u}}}\right)=\frac{\partial L}{\partial \mathbf{u}}-\frac{\partial R}{\partial \dot{\mathbf{u}}}
$$

A. Paul et al. J. Phys. Condens. Matt. 20, 365211 (2008)

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\mathbf{u}}}\right)=\frac{\partial L}{\partial \mathbf{u}}-\frac{\partial R}{\partial \dot{\mathbf{u}}},
$$

$$
L\left[e_{i}, e_{i}^{p}, \dot{u}_{x}, \dot{u}_{y}\right]=\sum_{\mathbf{r}}\left[\frac{m}{2}\left(\dot{u}_{x}^{2}+\dot{u}_{y}^{2}\right)-F\left[e_{i}(\mathbf{r}), e_{i}^{P}(\mathbf{r})\right]\right]
$$

A. Paul et al. J. Phys. Condens. Matt. 20, 365211 (2008)

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\mathbf{u}}}\right)=\frac{\partial L}{\partial \mathbf{u}}-\frac{\partial R}{\partial \dot{\mathbf{u}}}
$$

$$
L\left[e_{i}, e_{i}^{p}, \dot{u}_{x}, \dot{u}_{y}\right]=\sum_{\mathbf{r}}\left[\frac{m}{2}\left(\dot{u}_{x}^{2}+\dot{u}_{y}^{2}\right)-F\left[e_{i}(\mathbf{r}), e_{i}^{P}(\mathbf{r})\right]\right]
$$

$$
R\left[e_{i}\right]=\frac{1}{2} \sum_{\mathbf{r}}\left[\gamma_{1} \dot{e}_{1}^{2}(\mathbf{r})+\gamma_{2} \dot{e}_{2}^{2}(\mathbf{r})+\gamma_{3} \dot{e}_{3}^{2}(\mathbf{r})\right]
$$

A. Paul et al. J. Phys. Condens. Matt. 20, 365211 (2008)
e_{3}
e_{1}
e_{2}
e_{1}^{P}
A. Paul et al. J. Phys. Condens. Matt. 20, 365211 (2008)

A. Paul et al. J. Phys. Condens. Matt. 20, 365211 (2008)

$\sigma_{1 c}$
given by local elastic modulus times atomic strain threshold

$\frac{\nu}{\gamma_{3}}$ is a Deborah number $=$
$\sigma_{1 c}$
given by local elastic modulus times atomic strain threshold

Growth velocity
plasticity production rate

Early time events during nucleation in solids

J. Bhattacharya et al., J. Phys. Condens. Matt. (2008);

Early time events during nucleation in solids

Early time events during nucleation in solids

SS, J. Bhattacharya, M. Rao, arXiv: (20I0)

- nucleation not a smooth process
- active - inactive transitions.
- active particles flow within channels in the free energy topography shaped by inactive particles.
- low temps - few channels - confining potential evolves very slowly - ballistic trajectory $\Rightarrow \mathrm{M}$
- high temps - many intersecting channels - no confining potential or potential evolves fast diffusive trajectories $\Rightarrow F$

- nucleation not a smooth process
- active - inactive transitions.
- active particles flow within channels in the free energy topography shaped by inactive particles.
- low temps - few channels - confining potential evolves very slowly - ballistic trajectory $\Rightarrow M$
- high temps - many intersecting channels - no confining potential or potential evolves fast diffusive trajectories $\Rightarrow F$
"The mountains flowed before the Lord" Deborah (Judges 5:5).

