Solid-Solid NAG Surajit Sengupta

Solid-Solid NAG Surajit Sengupta

Solid-Solid NAG Surajit Sengupta

Solids in solids: a really difficult problem

* Solids are anisotropic.

- * Solids are rigid, need to generalize Gibbs-Thompson relations to include stress.
- * The chemical potential is non-uniform.
- * Atomic rearrangements, defects, vacancies, dislocations, etc.

* Both ballistic and diffusive trajectories are possible.

SOLIDS FAR FROM EQUILIBRIUM, C. GODRECHE, EDS. (CUP, 1992)

Solids in solids: a really difficult problem

* Solids are anisotropic.

- $\Delta P = \gamma/R \left($
- Solids are rigid, need to generalize Gibbs-Thompson relations to include stress.
- * The chemical potential is non-uniform.
- * Atomic rearrangements, defects, vacancies, dislocations, etc.
- * Both ballistic and diffusive trajectories are possible.

SOLIDS FAR FROM EQUILIBRIUM, C. GODRECHE, EDS. (CUP, 1992)

Equilibrium shapes of inclusions.

- * Instabilities of solid fronts and dendrites.
- * Importance of stress and compatibility: the Eshelby problem.
- * Microstructure selection, TTT diagrams, martensite and ferrite.
- * Early stage solid solid nucleation process.

- # Equilibrium shapes of inclusions.
- * Instabilities of solid fronts and dendrites.
- Importance of stress and compatibility: the Eshelby problem.
- * Microstructure selection, TTT diagrams, martensite and ferrite.
- # Early stage solid solid nucleation process.

Equilibrium shapes of inclusions.

- * Instabilities of solid fronts and dendrites.
- Importance of stress and compatibility: the Eshelby problem.
- * Microstructure selection, TTT diagrams, martensite and ferrite.
- * Early stage solid solid nucleation process.

- # Equilibrium shapes of inclusions.
- * Instabilities of solid fronts and dendrites.
- Importance of stress and compatibility: the Eshelby problem.
- * Microstructure selection, TTT diagrams, martensite and ferrite.
- * Early stage solid solid nucleation process.

The Wulff construction

 $\Delta G(N) = \sum \gamma_i O_i \min$ $\delta \Delta G(N) = \sum \gamma_i \delta O_i = 0$ $\delta V(N) = \delta \sum h_i O_i = 0$ $\delta \sum h_i O_i = \sum O_i \delta h_i + \sum h_i \delta O_i$ $=\sum_{i}h_{i}\delta O_{i}$ $\sum (h_i - \lambda \gamma_i) \delta O_i = 0$ $\therefore h_i = \lambda \gamma_i$

Universal issues: Roughening transition in 3D crystals mapped onto the KT transition in X-Y models. Chui and Weeks, PRB, 14, 4978 (1976)

Non-universal properties: Still need microscopic theory for anisotropic surface energies at finite temperatures

For He crystal surfaces see:

S. Balibar et al., Rev. Mod. Phys. 77, 317–370 (2005)

Dendritic growth

THE PLANAR FRONT

The growing front releases latent head, solutes etc. which diffuse away from the front. This diffusion is *not* instantaneous !

$$\frac{\partial T_{\alpha}}{\partial t} = D_{\alpha} \nabla^2 T_{\alpha}$$

Interface:

 $\mathbf{n} \cdot (K_S \nabla T_S - K_L \nabla T_L) = L \mathbf{v}_I \cdot \mathbf{n}$

Boundary condns:

$$T_S = T_L = T_M (1 - \frac{\gamma \kappa}{\rho L})$$
$$\lim_{z \to +\infty} T(z) = T_0$$

THE SOLUTION $T_L^0(z) = T_0 + (T_M - T_0) \exp(-\frac{z}{l_{th}})$ $l_{th} = D_{th}/\mathbf{v}_I \cdot \mathbf{z}$ needs to satisfy the heat balance condition i.e. $L\delta V = C_p(T_M - T_0)\delta V$

T(z)

 l_{th}

 T_0

 \mathcal{Z}

 T_M

THE MULLIN-SEKKERKA INSTABILITY

Substitute: $\zeta(r_{\perp},t) = \zeta_k \, e^{i\mathbf{k}\cdot\mathbf{r}_{\perp} + \Omega t}$ $\delta T(r_{\perp}, z, t) = \delta T_k \, e^{i\mathbf{k}\cdot\mathbf{r}_{\perp} + \Omega t}$ **Boundary conditions:** $\lim_{z \to 0} \delta T_k(z) = 0$ $\mathbf{v}_I = \mathbf{V} + \mathbf{z} \partial \zeta / \partial t$ **Obtain:** $\Omega \approx k |\mathbf{V}| [1 - d_0 l_{th}^2 (1 + \frac{K_S}{K_T}) k^2]$ $d_0 = \frac{\gamma T_M C_p}{\rho L^2}$ (capillary length) instability wavelength $\lambda_0 \approx 1 - 10 \mu m$

higher temperature gradient

FREE DENDRITE GROWTH

Complications

* Effect of crystalline anisotropy in surface tension and mobilities?

* Effect of rigidity?

* How valid are these equations at atomic scales?

ST. VENANT'S COMPATIBILITY CONDITIONS

E. Kröner, Continuum Theory of Dislocations and Self-Stresses (Springer-Verlag, Berlin, 1958).

$$\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} + \frac{\partial u_k}{\partial x_i} \frac{\partial u_k}{\partial x_j} \right)$$
$$\nabla \times (\nabla \times \epsilon)^T = 0$$

$$\begin{vmatrix} e_1 &= \epsilon_{xx} + \epsilon_{yy} \\ e_2 &= \epsilon_{xx} - \epsilon_{yy} \\ e_3 &= \epsilon_{xy} \end{vmatrix}$$

MECHANICAL EQUILIBRIUM

$$\nabla \cdot \sigma = 0$$
 with $\sigma_{ij} = C_{ijkl} \epsilon_{kl}$

Obtain:

$$\nabla^2 e_1 = Q_{13} \frac{\partial^2 e_3}{\partial x \partial y}$$

$$e_3 = e_0 \Theta(a+x) \Theta(a-x)$$

 $\Theta(a+y) \Theta(a-y)$

$$e_1 = \frac{e_0}{2} \left[\log \left(\frac{(x-a)^2 + (y-a)^2}{(x+a)^2 + (y-a)^2} \times \frac{(x+a)^2 + (y+a)^2}{(x-a)^2 + (y+a)^2} \right) \right]$$

Landau theory

Lookman T et al 2003 Phys. Rev. B 67 024114

Microstructure selection NON RIGID INTERFACES: WHEN SOLIDS CAN FLOW

Incompatibility $\nabla \times (\nabla \times \epsilon)^T \neq 0$

 O_{1c}

NON-AFFINE STRAINS

$$e_{1} = e_{1}^{A} + e_{1}^{P} \qquad \nabla \times (\nabla \times \epsilon)^{T} \neq 0 = \nabla^{2} e_{1}^{P}$$

$$\dot{e}_{1}^{P} = -\frac{1}{\nu} \int_{-\infty}^{t} \sigma_{1}(t') e^{-\frac{(t-t')}{\tau}} dt' + c_{p} \nabla^{2} e_{1}^{P} \qquad \text{if } |\sigma_{1}| > \sigma_{1}$$

$$= c_{p} \nabla^{2} e_{1}^{P} \qquad \text{otherwise}$$

A. Paul et al. J. Phys. Condens. Matt. 20, 365211 (2008)

- # e1^P screens elastic interactions by reducing stresses
- # for small e₁^P L/N is still ~ W^{1/2} but with reduced pre-factor
- # large e1^P destroys twin structure completely
- How does non-affineness influence nucleation?

Growth dynamics

M. Rao and SS, *PRL.* **91**, 045502, (2003) *** Consider only N=1 and N=2**

* Find barrier height in L-W plane

- * Barrier depends on time through e¹P(t)
- * Mean first passage time obtained by solving Kramers equation $\tau = \Gamma^{-1} \exp(-\beta \Delta E(\tau))$
- * Obtain TTT curve between ferrite (N=1) and martensite (N=2) nuclei.
- * Final phase depends on time scale of barrier relaxation vs. MFPT

 e_1 e_3 e_1^P e_2 A. Paul et al. J. Phys. Condens. Matt. 20, 365211 (2008)

 $rac{\partial R}{\partial \dot{\mathbf{u}}},$ $\frac{\partial L}{\partial \mathbf{u}}$ $\frac{d}{dt}$ ∂L = $\overline{\partial \dot{\mathbf{u}}}$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\mathbf{u}}}\right) = \frac{\partial L}{\partial \mathbf{u}} - \frac{\partial R}{\partial \dot{\mathbf{u}}}, \qquad L[e_i, e_i^p, \dot{u}_x, \dot{u}_y] = \sum_{\mathbf{r}} \left[\frac{m}{2}(\dot{u}_x^2 + \dot{u}_y^2) - F[e_i(\mathbf{r}), e_i^P(\mathbf{r})]\right]$$

$$e_3$$

$$e_3$$

$$e_3$$

$$e_4$$

$$e_2$$

$$e_2$$

$$e_4$$

$$e_2$$

$$e_3$$

$$e_4$$

$$e_4$$

$$e_5$$

$$e_5$$

$$e_6$$

A. Paul et al. J. Phys. Condens. Matt. 20, 365211 (2008)

Early time events during nucleation in solids

J. Bhattacharya et al., J. Phys. Condens. Matt. (2008);

Early time events during nucleation in solids

Early time events during nucleation in solids

Single par

0

- nucleation not a smooth process
- active inactive transitions
- active particles flow within channels in the free energy topography shaped by inactive particles.
- low temps few channels confining potential evolves very slowly - ballistic trajectory => M
- high temps many intersecting channels no confining potential or potential evolves fast diffusive trajectories ⇒ F

20 µm

- nucleation not a smooth process
- active inactive transitions
- active particles flow within channels in the free energy topography shaped by inactive particles.
- low temps few channels confining potential evolves very slowly - ballistic trajectory => M
- high temps many intersecting channels no confining potential or potential evolves fast diffusive trajectories ⇒ F

"The mountains flowed before the Lord" Deborah (Judges 5:5) 20 µm

20 µm

Acknowledgements:

Madan Rao (RRI, NCBS) Jayee Bhattacharya (SNBNCBS) Arya Paul (SNBNCBS)