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Solids in solids:
 a really difficult problem
Solids are anisotropic.

Solids are rigid, need to generalize Gibbs-
Thompson relations to include stress. 

The chemical potential is non-uniform.

Atomic rearrangements, defects, vacancies, 
dislocations, etc.

Both ballistic and diffusive trajectories are 
possible.

SOLIDS FAR FROM EQUILIBRIUM, C. GODRECHE, EDS. (CUP, 1992)
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Equilibrium shapes of inclusions.

Instabilities of solid fronts and dendrites.

Importance of stress and compatibility: 
the Eshelby problem.

Microstructure selection, TTT diagrams, 
martensite and ferrite.

Early stage solid solid nucleation process. 
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The Wulff construction
∆G(N) =

∑

i

γiOi

δ∆G(N) =
∑

i

γiδOi = 0

δV (N) = δ
∑

i

hiOi = 0

δ
∑

i

hiOi =
∑

i

Oiδhi +
∑

i

hiδOi

=
∑

i

hiδOi

∑

i

(hi − λγi)δOi = 0

∴ hi = λγi

min
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Facets and roughening
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Roughening transition of metal surfaces 823 

10. Comparison with experiment 

The experimental data of Lapujoulade et a1 (1 983) have been interpreted in terms of Bragg 
peaks. The typical Bragg peak intensity is displayed in figure 4. Conventionally, a Bragg 

peak is a delta function in the intensity as a function of the scattering vector q. Above TR 

the Bragg peaks (in the conventional sense) vanish but the intensity (47) does exhibit sharp 
maxima at the Bragg positions, which are in practice not easily distinguished from 

conventional Bragg peaks. Even below T, the ‘diffuse’ part ( 5 5 )  may be confused with 

conventional Bragg peaks. Thus, a detailed comparison between theory and experiment 

would require a careful analysis of the experimental lineshape. This analysis is not 

available. A more quantitative, numerical theory would also be desirable. 
For these reasons we shall only consider the low-temperature region, when the intensity 

is given by (19). The diffuse part will be ignored and our attention will be focused on the 

Bragg part given by (8). The intensities observed by Lapujoulade et a1 (1983) can be 

expressed as 

I ,  =G e-2WG(T)yG(T) ( 5 6 )  

C u  1117) C u  1117) 

Cu 1113) 

0 2 5 0  500 7 5 0  

T I K )  

Figure 4. Intensity roughening factor ym,,(T) for the diffraction of He by Cu (1 13), ( I  15). 

(117). 3, experimental data. The full curve is a guide to the eye. The dotted and broken 

curves are theoretical results corresponding respectively to the values WO = 3400 K and 

WO = 2300 K. The fitted values of w ,  are given in the text. 

J. Villain, D. R. Grempel, J. Lapujoulade, 
J. Phys.. F: Met. Phys. 15, 809 (1985)

Universal issues: Roughening 
transition in 3D crystals 
mapped onto the KT 
transition in X-Y models.
Chui and Weeks, PRB, 14, 4978 (1976)

Non-universal properties: Still 
need microscopic theory for 
anisotropic surface energies 
at finite temperatures 

For He crystal surfaces see:
S. Balibar et al., Rev. Mod. Phys. 77, 317–370 (2005)
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Dendritic growth
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T (z)

z

TM

T0

lth

THE PLANAR FRONT

∂Tα

∂t
= Dα∇2Tα

Bulk:

n · (KS∇TS −KL∇TL) = LvI · n
Interface:

T 0
L(z) = T0 + (TM − T0) exp(− z

lth
)

lth = Dth/vI · z

THE SOLUTION needs to satisfy the heat 
balance condition i.e.

LδV = Cp(TM − T0)δV

TS = TL = TM (1− γκ

ρL
)

lim
z→+∞

T (z) = T0

Boundary 
condns:

The growing front releases latent head, solutes etc. which diffuse 
away from the front. This diffusion is not instantaneous !
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THE MULLIN-SEKKERKA INSTABILITY

Ω(k)

k2π/λ0

ζ(r⊥, t) = ζk eik·r⊥+Ωt

δT (r⊥, z, t) = δTk eik·r⊥+Ωt

Substitute:

Boundary conditions:

lim
z→0

δTk(z) = 0

vI = V + z∂ζ/∂t

Obtain:

Ω ≈ k|V|[1− d0l
2
th(1 +

KS

KL
)k2]

d0 =
γTMCp

ρL2
(capillary length)

λ0 ≈
√

d0lth

λ0 ≈ 1− 10µminstability wavelength

higher temperature gradient
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Complications

Effect of crystalline anisotropy in surface tension 
and  mobilities?

Effect of rigidity?

How valid are these equations at atomic scales?
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Incompatible solids

parent = square 

product = rhombus 

THE ESHELBY 
PROBLEM

K. Bhattacharya, Microstructure of Martensites (OUP, 2003)
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MECHANICAL EQUILIBRIUM

∇ · σ = 0

ST. VENANT’S COMPATIBILITY CONDITIONS
E. Kröner, Continuum Theory of Dislocations and Self-Stresses (Springer-Verlag, Berlin, 1958).

∇× (∇× ε)T = 0

εij =
1
2
( ∂ui

∂xj
+

∂uj

∂xi
+

∂uk

∂xi

∂uk

∂xj

)
e1 = εxx + εyy

e2 = εxx − εyy

e3 = εxy

∇2e1 = Q13
∂2e3

∂x∂y

with σij = Cijklεkl

Obtain:

e3 = e0Θ(a + x)Θ(a− x)
Θ(a + y)Θ(a− y)

e1 =
e0

2

[
log

( (x− a)2 + (y − a)2

(x + a)2 + (y − a)2
× (x + a)2 + (y + a)2

(x− a)2 + (y + a)2
)]

-3 -2 -1  0  1  2  3 -3
-2

-1
 0

 1
 2

 3

-4
-2
 0
 2
 4

Monday 2 August 2010



Monday 2 August 2010



Landau theory
Lookman T et al 2003 Phys. Rev. B 67 024114

F =
∫ ∑

i

[aie
2
i + ci(∇ei)2] + b3e

4
3 + d3e

6
3

L

W

N = 10

F = ∆µLW + 2γ1(L + W ) + Nγ2W + γ3
L2

N
BULK

{
SURFACE ELASTIC

L

N
∼W

1
2Optimum number of twins?

L

N
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Microstructure selection
NON RIGID INTERFACES: WHEN SOLIDS CAN FLOW
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R. Busch, JOM, 52 (7) (2000), pp. 39-42
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Incompatibility ∇× (∇× ε)T #= 0

e1 = eA
1 + eP

1

−ėP
1 =

1
ν

∫ t

−∞
σ1(t′)e−

(t−t′)
τ dt′ + cp∇2eP

1 if |σ1| > σ1c

= cp∇2eP
1 otherwise

NON-AFFINE STRAINS
∇× (∇× ε)T #= 0 = ∇2eP

1

e1P screens elastic interactions by reducing stresses  

for small e1P L/N is still ~ W1/2 but with reduced pre-factor

large e1P destroys twin structure completely

How does non-affineness influence nucleation?

Growth dynamics

A. Paul et al. J. Phys. Condens. Matt. 20, 365211 (2008)
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Consider only N=1 and N=2

Find barrier height in L-W plane

Barrier depends on time through e1P(t)

Mean first passage time obtained by solving 
Kramers equation 

Obtain TTT curve between ferrite (N=1) and 
martensite (N=2) nuclei.   

Final phase depends on time scale of barrier 
relaxation vs. MFPT

condition !!r; 0" # !u $ n̂n (!u is the geometrical mis-
match at the square-triangle interface proportional to its
length). Note that !u is explicitly zero at the twin inter-
face. The free energy of the grain at time t, E!L;W; t ", is
obtained from Eq. (1), which we minimize with respect
to the interfacial thickness for every L, W, and t. The
barrier energy !E% and size L%; W% of the critical nucleus
at every time t is determined by the saddle point. The
energy of the critical nucleus decreases with time, and so
a crude but easily calculable estimate of the first-passage
time is obtained (apart from unknown prefactors) by a
self-consistent solution of the Kramers’s formula "n #
"&1 exp'!E%!"n"(, where !E% is the !!r; t"-dependent
critical barrier energy. The accuracy of this self-consis-
tent approximation and systematic corrections to this are
analyzed in some detail in [14]. The results of this cal-
culation are represented in a 3D plot (Fig. 4) which
clearly shows that for low a (high temperatures), the
true critical nucleus is a ferrite, while for large a (low
temperatures) it forms a twinned bicrystal (martensite).
Note that the martensite obtains in the regime where
Dv ) 0, implying that the martensitic transformation is
diffusionless. In practice, of course, Dv and a are not
independent; knowing the temperature dependence of
Dv produces a cut in the Dv-a plane and describes the
transformation curves of the solid. As an example (Fig. 4,
inset), an Arrhenius form reproduces the well-known
‘‘0% isothermal transformation curves’’ [1]—the hori-
zontal transformation curve beyond a sharp ‘‘marten-
site-start’’ temperature Ms independent of D1 and a
ferrite nose. Note that, one needs to have a finite amount
of undercooling even at D # 0 in order to obtain the

martensite. Also, by changing parameters such as the
transformation temperature, we may entirely avoid the
ferrite nose, indicating that for such systems the critical
nucleus is always twinned. Admittedly this calculation is
crude; however it does reproduce the qualitative features
of martensitic nucleation. The most important outcome of
this (and the MD) is that the dynamics of the ! field
determines the selection of the critical nucleus.

In conclusion, we believe our work provides useful
insights on the nucleation dynamics of ferrites and mar-
tensites. Fundamental to this understanding is our iden-
tification of the crucial dynamical role played by
nonelastic degrees of freedom in determining the final
microstructure of the product solid. We should however
caution that these conclusions are based on an analysis of
a model solid; similar results are obtained when the
interparticle potentials are altered slightly. However in
other kinds of solids, for instance where the energy cost
for producing such density fluctuations is prohibitively
large, some other mechanism for the selection of the final
microstructure might be operative. A search for possible
selection mechanisms in solid-state nucleation promises
to be a challenging task for the future.

We thank the Isaac Newton Institute for Mathematical
Sciences for support; M. R. thanks DST, India, for a
Swarnajayanthi grant.
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FIG. 4. First-passage time "n versus parameter a and diffu-
sion coefficient Dv. Hatched area is the region in which solid
transformation does not occur. The inset shows the cut across
the 3D plot when Dv # D1 exp!&A=kBT" (D1 # 1014, A # 7,
# # 0:2 and C # 0). Upper dotted line is the equilibrium
transition. At lower a, the single twin nucleates faster (bold
line) than the ferrite (lower dotted line). Arrow (Ms) shows the
value of a below which the twinned nucleus forms.
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dt

(
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− ∂R
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,
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∂u̇

)
=
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∂u
− ∂R
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, L[ei , ep
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∑

r

[m
2

(u̇2
x + u̇2

y )− F [ei(r), eP
i (r)]

]
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∑
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[
γ1ė

2
1(r) + γ2ė

2
2(r) + γ3ė

2
3(r)

]

A. Paul et al. J. Phys. Condens. Matt. 20, 365211 (2008)

Monday 2 August 2010



e3

e2

e1

eP
1

A. Paul et al. J. Phys. Condens. Matt. 20, 365211 (2008)

Monday 2 August 2010



e3

e2

e1

eP
1

A. Paul et al. J. Phys. Condens. Matt. 20, 365211 (2008)

Monday 2 August 2010



ν

γ3

Monday 2 August 2010



ν

γ3

given by local elastic modulus times 
atomic strain threshold 

σ1c
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ν

γ3

is a Deborah number  = 
ν

γ3

Growth velocity
plasticity production rate

given by local elastic modulus times 
atomic strain threshold 

σ1c
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Early time events during 
nucleation in solids

 J. Bhattacharya et al.,  J. Phys. Condens. Matt. (2008);

S. Sengupta et al.

(a)

(d)
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2
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 0.1  0.2  0.3  0.4  0.5

 0

 1

 2

 3

T
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(c)

Fig. 1: (a) Phase diagram in T − v3 − α at 〈ρ〉 = 1.05, indicating the equilibrium P4m → P2 (Sqr→Rmb) first order phase
transition (curved surface bounded by solid lines) as well as the dynamical transition between ferrite (F ) and martensite (M)
(shaded surface). Particles interact via an effective (purely repulsive) short range potential - a sum of an anisotropic 2-body
potential (anisotropy parametrized by α) and a 3- body potential, whose strength is parametrized by v3 [18]. The large black
dot on the α axis denotes a tricritical point where the jump in the order parameter e3 vanishes. (b) Snapshots of the growing
F nucleus at temperature T = 0.7 following the quench (Q2, see (a)) to the F -phase at times t = .1, 1, and 5. (c) Snapshots
of the growing twinned nucleus following the quench (Q1, see (a)) to the M -phase at T = 0.1 at comparable values of t . The
colors denote e3 and the nonaffine parameter φ [18], Red → e3 > 0, Blue → e3 < 0, Gold → φ > 0 and Green → φ < 0. (d)
Shape anisotropy A (blue ∗, axis on the left) and the degree of twinning Ψ2 (red +, axis on the right) of the product nucleus,
(for definitions see text) vs. T , shows an abrupt jump across the dynamical transition.

lier MD work on microstructure selection [18], addressed
the issue of dynamical selection from a more mesoscopic
point of view. Though we focus on a model solid-solid
transformation, our conclusions should hold very gener-
ally.

Our MD simulation is carried out on N = 12099 par-
ticles in theNV T ensemble with periodic boundary con-
ditions attached to a Nosé-Hoover thermostat [19].Parti-
cles interact via an effective (purely repulsive) short range
potential – a sum of an anisotropic 2-body V2(rij) =
v2 (σ/rij)

12 {1 + α cos2 2θij} and 3- body V3(ri, rj , rk) =
v3 [fij sin2(4θijk)fjk+fjk sin2(4θjki)fki+fki sin2(4θkij)fij ]
potentials. Particles i and j are separated by a distance
rij , θijk is the bond angle at j between triplets (ijk), and
fij ≡ f(rij) is any short ranged, nonnegative, monotoni-
cally decreasing function. The units of length and energy
are set by σ and v2 respectively, making the unit of time
σ
√

m/v2, where m is the particle mass. The molecular
dynamics time step (MDS) is chosen to be 0.001 corre-
sponding roughly to a real time of 1 fs. In all the figures
we choose 103 MDS as our unit of time and the parameters
of the thermostat is fixed throughout.

A “quench” from the square parent phase across the
structural transition, nucleates rhombic regions ; the

shapes, microstructure, and nucleation dynamics of prod-
uct nuclei depend on the ‘depth-of-quench’ (Fig.1a). A
quench into region F (ferrite), results in a critical nu-
cleus which is isotropic, untwinned and with a rhombic
microstructure separated by grain boundaries (Fig.1b).
The order parameter strain is obtained by fitting an affine
transformation to the neighborhood of a particle with the
untransformed square crystal as reference [9, 18]. The
non-affine parameter φ = χ2 × sgn(∆ρ) where χ2 is the
error of the fit and ∆ρ is the change in local density.
Note that in the F phase the large non-affine contribution
masks the order parameter strain (Fig. 1 b). In contrast,
a quench into region M (martensite), nucleates a ‘needle-
like’ region – the critical nucleus is highly anistropic, with
the long axis lying along one of the axes of the parent
square lattice (Fig.1c). The microstructure is twinned —
a plot of the shear strain e3 reveals that it changes sign
across a twin interface between two degenerate product
variants which lies along one of the square axes. In ad-
dition, the shape anisotropy of the nucleus is defined as
A = (λ> − λ<)/(λ> + λ<), where λ> and λ< are the
eigenvalues of the moment of inertia tensor of the growing
nucleus. The degree of twinning can in principle be mea-
sured by the amplitude of the appropriate Fourier compo-
nent of the equal time e3. However, we find it convenient

p-2
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lier MD work on microstructure selection [18], addressed
the issue of dynamical selection from a more mesoscopic
point of view. Though we focus on a model solid-solid
transformation, our conclusions should hold very gener-
ally.

Our MD simulation is carried out on N = 12099 par-
ticles in theNV T ensemble with periodic boundary con-
ditions attached to a Nosé-Hoover thermostat [19].Parti-
cles interact via an effective (purely repulsive) short range
potential – a sum of an anisotropic 2-body V2(rij) =
v2 (σ/rij)

12 {1 + α cos2 2θij} and 3- body V3(ri, rj , rk) =
v3 [fij sin2(4θijk)fjk+fjk sin2(4θjki)fki+fki sin2(4θkij)fij ]
potentials. Particles i and j are separated by a distance
rij , θijk is the bond angle at j between triplets (ijk), and
fij ≡ f(rij) is any short ranged, nonnegative, monotoni-
cally decreasing function. The units of length and energy
are set by σ and v2 respectively, making the unit of time
σ
√

m/v2, where m is the particle mass. The molecular
dynamics time step (MDS) is chosen to be 0.001 corre-
sponding roughly to a real time of 1 fs. In all the figures
we choose 103 MDS as our unit of time and the parameters
of the thermostat is fixed throughout.

A “quench” from the square parent phase across the
structural transition, nucleates rhombic regions ; the

shapes, microstructure, and nucleation dynamics of prod-
uct nuclei depend on the ‘depth-of-quench’ (Fig.1a). A
quench into region F (ferrite), results in a critical nu-
cleus which is isotropic, untwinned and with a rhombic
microstructure separated by grain boundaries (Fig.1b).
The order parameter strain is obtained by fitting an affine
transformation to the neighborhood of a particle with the
untransformed square crystal as reference [9, 18]. The
non-affine parameter φ = χ2 × sgn(∆ρ) where χ2 is the
error of the fit and ∆ρ is the change in local density.
Note that in the F phase the large non-affine contribution
masks the order parameter strain (Fig. 1 b). In contrast,
a quench into region M (martensite), nucleates a ‘needle-
like’ region – the critical nucleus is highly anistropic, with
the long axis lying along one of the axes of the parent
square lattice (Fig.1c). The microstructure is twinned —
a plot of the shear strain e3 reveals that it changes sign
across a twin interface between two degenerate product
variants which lies along one of the square axes. In ad-
dition, the shape anisotropy of the nucleus is defined as
A = (λ> − λ<)/(λ> + λ<), where λ> and λ< are the
eigenvalues of the moment of inertia tensor of the growing
nucleus. The degree of twinning can in principle be mea-
sured by the amplitude of the appropriate Fourier compo-
nent of the equal time e3. However, we find it convenient
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• nucleation not a smooth process

• active - inactive transitions.

• active particles flow within channels in the free 
energy topography shaped by inactive particles. 

• low temps - few channels - confining potential 
evolves very slowly - ballistic trajectory ⇒ M

• high temps - many intersecting channels - no 
confining potential or potential evolves fast - 
diffusive trajectories ⇒ F
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"The mountains flowed before the Lord" 
Deborah (Judges 5:5).
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