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Proportionate Growth

I Animals grow in size, with different parts of body growing at
roughly the same rate.

I Proportionate growth requires regulation, and/or
communication between different parts.

I Most existing models of growth in physics literature
DLA, Eden growth, KPZ growth, Invasion percolation ..
can not model this.

I Same food becomes different tissues in different parts of the
body.

I Mechanism in our model not the same as in biology
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Proportionate Growth

Different body parts in animals grow roughly at the same rate.
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Proportionate growth

Figure: N = (a)4× 104 (b) 2× 105 (c) 4× 105. Color code 0, 1, 2, 3 =
R,B,G,Y

Diameter ∼
√

N.
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Pattern formation

I Growing sandpiles give rise to beautiful complex patterns from
simple local evolution rules

I Complete characterization of the asymptotic pattern in some
cases

I Extra symmetry and robustness

I Effect of perturbations like boundaries and noise
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Figure: Patterns produced by adding 400000 particles at the origin, on a
square lattice ASM, with initial state (a) all 0 (b) all 2.
Color code 0, 1, 2, 3 = R,B,G,Y
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Mathematical motivations

Exact characterization of the pattern involves some interesting
mathematics

Not fully understood

I Eigenfunctions of the Laplacian on discretized Riemann
surface of many sheets

I Connection to tropical polynomials and tropical algebra

I A variational formulation using discrete piece-wise quadratic
approximants?
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Definition of the model

Abelian sandpile model

I Non-negative integer height zi at sites i of a lattice

I Add rule: zi → zi + 1

I Relaxation rule : if zi > zc , topple, and move one grain to
each neighbor.

Complex patterns in sandpile models.
Rule for forming patterns:

Add N particles at one site on a periodic background,
and relax.
Deterministic patterns. This is what we study here.
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Compact growth

The key observation
S. Ostojic (2003).

I Diameter ∼
√

N

I Proportionate growth.

I Periodic height pattern in each patch. [ignoring Transients]

I Reduced coordinates ξ = x/
√

N, η = y/
√

N
coarse-grained density ρ(ξ, η) is constant within a patch.

I Define
φ(ξ, η) = LimN→∞(1/N)[ # of topplings at (ξ, η)]
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Basic lemma

φ is a quadratic function of ξ, η in each patch.

Proof : φ(ξ, η) = LimN→∞
1

N
T (
√

Nξ,
√

Nη)

Taylor expand φ(ξ, η) inside a patch about (ξ0, η0).

φ(ξ0+∆ξ, η0+∆η) = φ(ξ0, η0)+..∆ξ+..∆η+a3∆ξ2+..+K (∆ξ)3+...

In terms of toppling number function T (X ,Y ) this becomes

T (X0 + ∆X ,Y0 + δY ) = T (X0,Y0) + ..∆X + ..∆Y + a3∆X 2+

..+ K (∆X )3/
√

N

Since T is always an integer, it would jump by 1 at separations
N1/6, causing many defect lines. Hence

K = 0

.
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Examples of periodic patterns in patches
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Compact growth: Simpler patterns

The square lattice pattern is not easy to characterize.

The F-Lattice.
Two arrows in and two out at each vertex.
Allowed stable heights are 0 and 1.
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Figure: Pattern produced by adding 105 particles at the origin, on the
F-lattice with initially empty lattice.
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Figure: Pattern produced by adding 2x105 particles at the origin, on the
F-lattice with initial background being checkerboard.
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Characterizing the pattern on the F-lattice
Back-ground density 1/2

I Only two types of patches: densities 1/2 and 1.

I All boundaries are straight lines: slopes 0,±1, or ∞
I Each patch is 3- or 4- sided polygon
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Quantitative characterization of the F-lattice pattern

The exact characterization involves four steps:

I Labelling patches using two integers (m, n). The adjacency
graph is a discretized two-sheeted Riemann surface.

I Parameterize the potental in the (m, n) patch by

φ
P

(ξ, η) =
1

8
(m

P
+1)ξ2+

1

4
n

P
ξη+

1

8
(1−m

P
)η2

P
+d

P
ξ+e

P
η+f

P

I Continuity of φ and derivatives implies that dm,n and em,n

both satisfy the equation

ψm+1,n+1 + ψm+1,n−1 + ψm−1,n+1 + ψm−1,n−1 − 4ψm,n = 0,

I Solve equations numerically on a large grid, to get the exact
boundaries of patches
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A variational formulation of the pattern selection problem

The general principle is called the (lazy man’s)
‘Least Action Principle’:

“Don’t do anything unless you have to”.
The actual pattern minimizes the number of topplings to reach a
stable configuration.

Proof is trivial for abelian models:

If a site is unstable, it will not stablize, until toppled.
Order of toppling does not matter.
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Formulation as an electrostatics problem

We have ∇2φ = +δz − δ(ξ, η)
Positive point charge +1 at origin, and unit negative charge of
areal density 1

Can we distribute the negative charge in such a way that the net
potential is piecewise-quadratic, and exactly zero far away?

The answer, presumably unique, is the observed pattern on the
F-lattice.
Other backgrounds have more choices of charge densities .
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Robustness of the pattern

The arguments only depend on the existence of only two types of
patches, and straight line boundaries.

These can be found ( by trial and error) in other cases also.
Then the asymptotic pattern is identical.
Some examples:
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Figure: F-lattice with background density 5/8
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Figure: Manhattan lattice, with initial density 1/2, and 120, 000 particles
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Robustness.

Figure: (a) 1% noise (b) 10%

Noise in the initial particle distribution.
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Robustness.

Figure: (a) 0.1% noise (b) 1%

Noise in the relaxation rule.

Deepak Dhar Non-compact growth



Fast growing sandpiles

I If the initial background density is low enough everywhere,
Λ ∼ N1/d

I If many sites have large
Λ =∞ for finite N

I For an in-between set of periodic backgrounds
Λ ∼ Nα for 1/d < α ≤ 1

If Λ ∼ Nα, with α > 1/2
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fast-growing sandpiles

The potential function for fast-growing sandpiles φ is piece-wise
linear.
Proof:

φ(ξ, η) = LimN→∞
1

Nα
T (Nαξ,Nαη)

Proof as before.
The slopes are rational numbers.
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Hexagonal Background ` = 1

Figure: Unfilled circles=2 and filled circles=1
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Hexagonal ` = 2
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Patch boundaries
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Triangular background ` = 4
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Patch boundaries
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Graph of Λ vs N
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Pattern on F-lattice showing α = 0.55
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Pattern on F-lattice showing α = 0.725
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Characterizing the triangular non-compact pattern

Analysis is similar to previous case, actually simpler.

The potential function in different patches is given by

φP = ap ξ + bP η + fp

aP and bp are determined by matching slope discontinuity to line
charge densities.

Then, fp satisfies a Laplace’s equation on the adjacency graph.
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Connection to Tropical Mathematics

Define
a⊕b = Max [a, b]

a⊗ b = a + b

Then standard properties of usual addition and multiplication (
commutative, identity, distributive ..) contiue to hold.
Example: 3⊕5⊕2 = 5

3⊗ 4 = 7
Tropical polynomials: a⊗ x ⊗ x ⊕ b ⊗ x ⊕ c
Example: x ⊗ x⊕2⊗ x⊕5 = Max [2x , x + 2, 5].
Fundamental theorem of tropical algebra.

A piecewise -linear convex function can be represented as a
tropical polynomial.
Hence useful for describing the function φ(ξ, η).
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Discrete Analyticity and Discrete Quadratic Approximants

Discrete Analytic Functions
Functions defined only on discrete points in the complex z− plane.

Discrete Cauchy-Riemann conditions:

F (z1)− F (z3)

z1 − z3
=

F (z2)− F (z4)

z2 − z4
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On a square grid :

∆F13 + ∆F35 + ∆F57 + δF71 = 0

is equivalent to

∆F02 + ∆F04 + ∆F06 + ∆F08 = 0

Discrete Laplace Equation.
Sum, but not product, of discrete analytic functions is also DA
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simple discrete analytic functions are constant, z , z2, z3,
z4 − zz̄ , ...
Define DA function F1/2(z), which varies as

√
z for large |z |, and

F (0) = 0
The function d(m, n) + ie(m, n) which characterizes the pattern
for F-lattices is cF1/2(m + in).

Figure: A discretized two sheeted Riemann surface for F1/2(z)
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Discrete Quadratic Approximants

Example of discrete approximants:

f(
x

)

x

Figure: Approximate f (x) by piece-wise linear functions with integer
slopes
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An iterative formulation

I Start with a trial pattern.

I Determine the corresponding φ(ξ, η)

I Determine the “best” piece-wise quadratic approximants to
φ(ξ, η) using the given set of quadratic functions φP .

I The correspond charge density is piece-wise constant. Remove
singularities at boundaries.

I Determine corresponding potential φ(1)(ξ, η).

I Iterate

If the process converges, we get the asymptotic pattern.
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Summary

I We can fully characterize quantitatively patterns with only
two types of patches.

I Additional (8-fold rotational) symmetry, and robustness to
small noise in initial background.

I Pattern in the presence of a lines of sinks

I A large class of patterns with Λ >
√

N.
Quantitative exact characterization in some cases.
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Thank You.
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Figure: z ′ = 1/z2 transform of original figure.
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