Polymer Crystallization: New Concepts and Implications

(M. Muthukumar)

Nucleation, Aggregation and Growth Bengaluru July 26- July 30, 2010

What distinguishes polymers from small molecules, colloidal particles, and oligomers?

(Is TS negligible?)

Monomeric liquid

Polymeric liquid

Conformational entropy

$\mathbf{F} = \mathbf{E} - \mathbf{T} \mathbf{S}$

Entropic Frustration

Semicrystallinity = equilibrium Semicrystallinity = kinetics

Crystallization of flexible polymers

Lamella

Spherulites

GIGANTIC CHIRALITY in polyethylene crystals (ACHIRAL molecules)

B. Lotz and S.Z.D. Cheng, Polymer, 46, 577 (2005)

H. K. Storks, JACS, 60, 1753 (1938):"..macromolecules are folded back and forth upon themselves.."

G. Strobl, "The Physics of Polymers" (1997):"..is governed by kinetic criteria rather than by equilibrium thermodynamics"

CLASSICAL VIEW

A. Lamellar Thickness: (L = lamellar thickness)

 $F = -(\Delta F) A L + 2 \sigma A$ bulk interface

$$\Delta T = T_m - T_c$$

* First viable state kinetically stabilized

* Eventual extended chain dimension

Central Issues

- 1. Primordial stage of polymer crystallization
- 2. Spontaneous selection of L << extended chain dimension and lamellar thickness ~10⁻² x current equilibrium arguments => "KINETICALLY CONTROLLED"
 Interlude from any stable MESOMORPHIC states?
- 3. Kinetics at growth front

4. Origin of chiral symmetry breaking

5. Composition fluctuations on crystallization kinetics

1. Primordial stage of polymer crystallization

Density fluctuations before crystalline signature

Postulate

Spinodal Decomposition into inter-connected polymer-rich and polymer-poor phases, instead of Nucleation-Growth

Scattered Intensity at Early Times

A.J. Ryan and collaborators (I-PP)

Acknowledgments

I. Langevin Dynamics Simulations

C. Liu, P. Welch, I. Dukovski, J. Zhang

II. Statistical Mechanics

A. Kundagrami, M.K. Mitra, Y. Hatwalne

Free energy

Coarse-grained Hamiltonian

Atomistic Polyethylene

(20 Chains)

Hexagonal Chain Packing Orthorhombic Chain Tilt

(N=12,040)

Crystallization (Vol. Fraction = 0.5)

 $\Delta T = 2$ N=200 75 chains N_t = 15,000

d (t=1000)

e (t=5000)

f (t=10200)

local stiffness versus attraction

Early Stage=Nucleation&Growth

MM and P. Welch, *Polymer* **41**, 8833 (2000)

Simulation Results

Muthukumar, *Eur. Phys. J. E* **2000**, *3*, 199.

A.J. Ryan and collaborators (I-PP)

Early stage of polymer crystallization

Conclusion #1

Early stage of polymer crystallization:

Initial stage of crystallization is **NUCLEATION** with each chain participating in several nuclei. **NOT** spinodal decomposition

Further support from R. Alamo (FTIR) and C. Schick (ultrafast cold crystallization)

2. Spontaneous selection of lamellar thickness (L << extended chain dimension) => "KINETICALLY CONTROLLED"

Interlude from MESOMORPHIC states?

"Quantization of Lamellar Thickness" (Agrees with Keller's experiments)

Simulations

Welch and MM, Phys. Rev. Lett., 87, 218302-1 (2001)

ε₁=chain stiffness energy
 ε₂=interaction energy of non-bonded neighbors
 m=lamellar thickness
 μ=number of stems/chain

$$\frac{F}{k_B T} = f_{bulk}(T = \frac{1}{\varepsilon_2}, \varepsilon = \frac{\varepsilon_1}{\varepsilon_2}, m, \mu, N) + f_{loops}(m, \mu, N) + f_{surface}(\sigma_l, \sigma_f)$$

MM, Phil.Trans.Roy.Soc., 361A, 539 (2003)

THEORY

μ

MM, Phil.Trans.Roy.Soc., 361A, 539 (2003)

(Experimentally confirmed by Ungar, Rastogi, Strobl,...)

Lamellae evolve through several metastable states to reach an **EQUILIBRIUM** thickness much smaller than the extended chain dimension.

2. No stable mesomorphic phase for <u>flexible</u> chains

Multi-Chain Study

Addition to the Growth Front

Welch and Muthukumar, Phys. Rev. Lett., 87, 218302-1 (2001)

Free Energy

"Lamellar growth is chain **ADSORPTION**"

Based on ~4500 Samples

Welch and Muthukumar, *Phys. Rev. Lett.*, **87**, 218302-1 (2001)

Phenomenology

Kinetics at GROWTH FRONT

(Detailed Balance)

$$G \sim \Delta T$$
, $T_c \longrightarrow T_m$

ENTROPIC BARRIER

Entropic Barrier and Jamming Lamella F(r) R(t) = Growth frontB(t) = Edge of boundary layer R(t) B(t) r \mathbf{C}_{in} C_0 С C_s r R(t) B(t)

Kinetics at Growth Front

ln M

A. Kundagrami and MM, *J. Chem. Phys.* 126, 144901 (2007) J. Zhang and MM, *J. Chem. Phys.* 126, 234904 (2007) M.K. Mitra and MM (unpublished)

Conclusion #3

Lamellar growth is chain **ADSORPTION** with cooperative dynamics of **all** chains

Boundary layer controls the crystallization kinetics

Central Issues

- 1. Primordial stage of polymer crystallization
- 2. Spontaneous selection of L << extended chain dimension and lamellar thickness ~10⁻² x current equilibrium arguments => "KINETICALLY CONTROLLED"
 Interlude from any stable MESOMORPHIC states?
- 3. Kinetics at growth front

4. Origin of chiral symmetry breaking

5. Composition fluctuations on crystallization kinetics

Banded Spherulites

GIGANTIC CHIRALITY in polyethylene crystals (ACHIRAL molecules)

(Both right-handed and left-handed spherulites)

Banded Spherulites

Hatwalne-MM DISCLINATIONS

Conclusion #4

Disclinations + Finite size

Spontaneous Chiral Symmetry Breaking (even for ACHIRAL molecules)

Natural selection of ring period and lamellar width:

Ring period =
$$\frac{\pi}{2}$$
 (width)

A. Toda (Hiroshima University):

A. Toda et al. Macromolecules 41, 2484 (2008); Polymer J, 40, 905 (2008)

Central Issues

- 1. Primordial stage of polymer crystallization
- 2. Spontaneous selection of L << extended chain dimension and lamellar thickness ~10⁻² x current equilibrium arguments => "KINETICALLY CONTROLLED"
 Interlude from any stable MESOMORPHIC states?
- 3. Kinetics at growth front

4. Origin of chiral symmetry breaking

5. Composition fluctuations on crystallization kinetics

5. Composition fluctuations on crystallization kinetics

X. Zhang, ..., <u>C.C. Han</u>: *Macromol. Rapid Commun.* **26**, 1285 (2005); *J. Chem. Phys.* **125**, 024907 (2006).

Blend of poly(ethylene-co-hexene) and poly(ethylene-co-butene)

40/60 PEH/PEB, $T_c = 112$ °C for 60s, after LLPS at 135°C

Heterogeneous nucleation rate: $I_0 \sim e^{-\Delta G_c / k_B T}$ Competitive nucleation rate in a domain: $I_d = I_0 e^{-I_0 t / m}$

Maximum number of nuclei in a domain: $m \sim \frac{L^2(t)}{r_c^2 \sin^2 \theta}$ Number of domains: $1/L^3(t)$

Overall nucleation rate:
$$\frac{1}{L^3(t)}e^{-I_0t/m} \sim (\Delta T_s)^{3\delta} t^{-3\gamma} e^{-\left[\frac{1}{(\Delta T_c)^2}(\Delta T_s)^{2\delta} t^{1-2\gamma}\right]}$$

Effect of spinodal T ($T_c = 117^{\circ}C$ for 120s)

6 h

20 h

LLPS at 135°C

Conclusion #5

5. Effect of composition fluctuations

More heterogeneous nucleation at lesser extent of SD Deeper spinodal quench, less nucleation Deeper crystallization quench, better nucleation

(Consistent with experiments from C. C. Han)

Polymer Crystallization: Entropically Controlled

Shifting Paradigms in Polymer Crystallization

1) Amyloid fibrils

DAEFRHDSGYEVHHQLLVFFAEDVGSNLGAIIGLMVGGVVIA

2) Bacterial walls

MAYQPKSYRKFVATTATAAMVASAVAPVVSAASFTDVAPQYKDAIDFLVST GATKGKTETKFGVYDEITRLDAAVILARVLKLDVDNAKDAGFTDVPKDRAKY VNALVEAGVLNGKAPGKFGAYDPLTRVEMAKIIANRYKLKADDVKLPFTDV NDTWAPYVKALYKYEVTKGKTPTSFGAYQNITRGDFAQFVYRAVNINAVPEI VEVTAVNSTTVKVTFNTQIADVDFTNFAIDNGLTVTKATLSRDKKSVEVVVNK PFTRNQEYTITATGIKNLKGETAKELTGKFVWSVQDAVTVALNNSSLKVGEE SGLTVKDQDGDVVGAKVELTSSNTNIVVVSSGEVSVSAAKVTAVKPGTADV TAKVTLPDGVVLTNTFKVTVTEVPVQVQNQGFTLVDNLSNAPQNTVAFNKA EKVTSMFAGETKTVAMYDTKNGDPETKPVDFKDATVRSLNPIIATAAINGSE LLVTANAGQSGKASFEVTFKDNTKRTFTVDVKKDPVLQDIKVDATSVKLSDE AVGGGEVEGVNQKTIKVSAVDQYGKEIKFGTKGKVTVTTNTEGLVIKNVNSD NTIDFDSGNSATDQFVVVATKDKIVNGKVEVKYFKNASDTTPTSTKTITVNVV NVKADATPVGLDIVAPSEIDVNAPNTASTADVDFINFESVEIYTLDSNGNRLK KVTPTATTLVGTNDYVEVNGNVLQFKGNDELTLLTSSSTVNVDVTADGITKRI PVKYINSASVPASATVATSPVTVKLNSSDNDLTFEELIFGVIDPTQLVKDEDIN EFIAVSKAAKNDGYLYNKPLVTVKDASGKVIPTGANVYGLNHDATNGNIWFD EEQAGLAKKFSDVHFDVDFSLANVVKTGSGTVSSSPSLSDAIQLTNSGDAV SFTLVIKSIYVKGADKDDNNLLAAPVSVNVTVTK

S-layers

3) Viruses

GVGVSTGSYDNQTHYRFLGDGWVEITALATRLVHLNMPLSENYCRIRV HNTTDTSVLGNMALDDAHEQIWTPWSLVDANAWGVWLQPSDWQYIC NTMSQLNLVSLDQEIFNVVLLTVTEQDSGGQAILIYNNDLTACMMVAVD SNNILPYTPAANSMETLGFYPWLPTIASPYRYYFCVDRDLSVTYENQEG TIEHNVMGTPLGMNSQFFTIENTQQITLLRTGDEFATGTYYFDTNPVLLT HTWQTNRQLGQPPLLSTFPEADTDAGTLTAQGSRHGATQMEVNWVSE AIRTRPAQVGFCQPHNDFEASRAGPFAAPLVPADVTQGMDREANGSVR YSYGLQHGENWAAHGPAPERYTWDETNFGSGRDTRDGFIQSAPLVVP PPLNGILTNANPIGTLNDIHFSNVFNSYGPLTTFSHPSPVYPQGQIWDLEL DLEHLPRLHITAPFVCLNNAPGQMLVRLGPNLTDQYDPNGATLSRIVTYG TFFWLGLLTMRALLRANTTWNPVYQVSVEDNGNSYMSVTLWLPTATGN MQSVPLITRPVARNTY

Parovirus[T1]

Why aren't we made of spheres or cubes?

Need candidates where F can be changed dramatically and reversibly at fixed temperature

