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(a) Introduction

We have discussed problems of phase ordering
Kinetics or domain growth or coarsening.

Modeling:

» Kinetic Ising Models (spin dynamics)

e Coarse-grained or Phenomenological Models
(order parameter fields and velocity fields)

* Molecular-level Models (direct solution of
equations of motion, naturally incorporate
hydrodynamics)

e EftC.



Bulk phase separation

* Microscopic level
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Ising model

+ Kawasaki spin-exchange
Kinetics

 Phenomenological level
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Cahn-Hilliard-Cook (CHC) model or
Model B

Hydrodynamics is incorporated through
velocity field (Model H)



Critical Mixture (50% A and 50% B)
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1) Phase separation is
driven by interfaces
(defects).

2) Composition must be
conserved during
evolution.
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Lifshitz-Slyozov growth law

4) System shows dynamical
scaling. However, there
Is still no complete
understanding of the
correlation function or
structure factor.




* \We now apply these concepts to study
some current and topical problems of
phase-separation kinetics.



(b) Phase Separation and Wetting at Surfaces

« Consider unstable binary mixtures (T<T_c) in contact with a
surface which prefers one of the components.

S. Puri, J. Phys. Condensed Matter 17, R101 (2005).
Phase separation in bulk + wetting at surface
Partially wet (PW) morphology

Completely wet (CW) morphology

« Kinetic interplay of phase separation and wetting =
Surface-directed spinodal decomposition (SDSD)
Experiments:

R.A.L. Jones et al, Phys. Rev. Lett. 66, 1326 (1991);

M. Geoghegan and G. Krausch, Prog. Poly. Sci. 28, 261
(2003).



SDSD in mixtures of PEP and d-PEP

volume fraction dPEP volume froction dPEP

volume fraclion dPEP
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Figure 1. Evolution of laterally averaged profiles for an unstable polymer mixture (PEP and dPEP)
in contact with an open surface which prefers dPEP [16]. The frames show the depth-dependence
of the average density of dPEP at (a) 19 200 =, (b) 64 440 s and (c) 172 800 s after the quench. The
average composition of the mixture is denoted by a dotted line.



Modeling of SDSD

 Model for binary mixtures near surfaces

S. Puri, J. Phys. Condensed Matter 17/,
R101 (2005).



Microscopic level
Semi-infinite Ising model

H = —.J Z S.ifjfj Bulk exchange
(17)€B
—Js; 2 5iS; Surface exchange
(i7)ES

+3V(2)Si, V(z)~2z"

+ Kawasaki spin-exchange kinetics



Phenomenological model
Free-energy functional
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SDSD in Critical Mixtures (50%A and 50%B)
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* We want to understand the kinetics of wetting
and phase separation in the vicinity of the
wetting layer.

S. Puri and K. Binder,
Phys. Rev. Lett. 86, 1797 (2003);
Phys. Rev. E 66, 061602 (2004).
S.K. Das, S. Puri et al.,

Phys. Rev. Lett. 96, 016107 (2007);
Phys. Rev. E 73, "031604 (2008).

Consider the general case of off-critical mixtures
with

minority component wetting

majority component wetting
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Minority component wets (30% A and 70%B)
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Majority component wets (70%A and 30% B)
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Bulk droplets compete with wetting layer for component A



SDSD on Physically Patterned Surfaces
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P.K. Jaiswal and S. Puri (2010)
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SDSD on Chemically Patterned Surfaces

P.K. Jaiswal and S. Puri (2010)



Spinodal Dewetting of Thin Films
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R. Khanna, S. Puri, A. Sharma et al. (2010)



(c) Segregation in Granular Materials

Granular collisions

Restitution coefficient e=1 (elastic)
e<1 (inelastic)

* Density and momentum are conserved during collision.
 Magnitude of normal velocity is reduced for e<1.

Loss of energy (cooling)

Parallelization of velocities (correlations build up)
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dT

Temperature T:zd_E and |2 - _ £ 4, (T)T

Collision frequency

Haff's cooling law |T (t

dt d

o(T) e« ny(n)o T

= a)(To)\/%
T

0

)= [L+ c(T, )t/ 2dT

Collision time () = [dt'o(t)

g

= ﬁIn [1+ £0(T,) t}
2d

T(r)=T, exp(—grj




Event-driven simulations in d=2,3
N=10"6, number fraction=0.2
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S.R. Ahmad and S. Puri, Europhys. Lett. 75, 56 (2006);
Phys. Rev. E 75, 031302 (2008).



 The homogeneous cooling state (HCS) Is
unstable to density fluctuations, due to more
rapid cooling in regions of higher density.

|. Goldhirsch and G. Zanetti, Phys. Rev. Lett. 70,
1619 (1993).

Linear instabilities are due to
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o After a crossover time, the granular gas goes

from the HCS to an inhomogeneous cooling
state (ICS).
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(d) Conclusion

* We have discussed the modeling and
analytical understanding of domain growth
problems.

 We have extended these simple ideas to
study the problem of surface-directed
spinodal decomposition or phase separation
In confined geometries.

 The concepts of phase ordering kinetics are
of wide applicablility. For example, granular
materials undergo segregation due to
collision-induced correlations. This has
many features in common with usual phase
separation.
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