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(a) Introduction
Evolution of a disordered system which has 
been made thermodynamically unstable by a 
rapid change of parameters, e.g., temperature, 
pressure, etc.
= Phase ordering kinetics, domain growth, 
coarsening.

Problems in this area arise from diverse fields 
ranging from atmospheric physics to materials 
science and metallurgy to cosmology and 
astrophysics.



Phase diagram of a fluid



• Example 1: Ordering of a magnet
Rapid cooling at time t=0 from T>T_c to T<T_c
produces far-from-equilibrium system.
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1) Domain growth is driven 
by interfaces or domain 
boundaries (defects).

2) 

Allen-Cahn equation

3) System shows dynamical 
scaling

Ohta-Jasnow-Kawasaki 
function (with Porod tail)
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• Example 2: Ordering of a super-conductor 
or super-fluid from normal state
Rapid cooling at time t=0 from T>T_c to 
T<T_c, where the system prefers to be in 
its super-state.



exp( )iθΨ = Ψ

1) Super-state is described 
by a macroscopic 
quantum-mechanical 
wave-function.

2) Domain growth is driven
by annihilation of vortices
and anti-vortices (defects).

3)

4) System shows dynamical
scaling

Bray-Puri function (with 
generalized Porod tail)
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• Bulk binary mixture, 
e.g., oil-water, 
polymer blends, 
binary alloys, etc.

• Rapid quench from 
homogeneous region 
to segregated region 
results in far-from-
equilibrium evolution.

• Example 3: Phase separation of a binary 
mixture after a quench below the 
miscibility gap



1) Phase separation is 
driven by interfaces 
(defects).

2) Composition must be 
conserved during 
evolution.

3) 

Lifshitz-Slyozov growth law

4) System shows dynamical 
scaling. However, there 
is still no complete 
understanding of the 
correlation function or 
structure factor.

Critical Mixture (50% A and 50% B)
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Critical Mixture (50% A and 50% B)
Domain Growth Law



Critical Mixture (50% A and 50% B)
Dynamical Scaling



Off-critical Mixture (30% A and 70% B)



(b) Nonconserved Dynamics: Glauber
Spin-Flip Ising Model

• Ising model gives the phase diagrams of 
ferromagnets and binary mixtures.

• The Ising model has no intrinsic kinetics. We 
associate stochastic kinetics by placing the 
system in contact with a heat bath.
Glauber spin-flip kinetics corresponds to flipping 
a randomly-chosen spin (            ).i iS S= −



• We can use a master-equation approach to 
derive the equivalent coarse-grained model, 
the time-dependent Ginzburg-Landau (TDGL) 
equation or Model A.

Order parameter (magnetization)
Mean-field critical temperature
Lattice spacing
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(c) Conserved Dynamics: Kawasaki
Spin-Exchange Ising Model

• For conserved dynamics, we use the 
Ising model

+ Kawasaki spin-exchange kinetics (       ), 
where i and j are usually nearest-
neighbors.

i jS S↔



• We can use the master-equation approach to 
obtain the analogous coarse-grained model, 
the Cahn-Hilliard-Cook (CHC) equation or 
Model B.

Order parameter (density difference of A and B)

• In this case, the integral of the order parameter is 
conserved.
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(d) Phenomenological Models of
Phase Ordering Systems

• The TDGL equation models the dissipative (over-
damped) relaxation of a ferromagnetic system to 
its free-energy minimum.
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• Dimensionless form of TDGL equation for T<T_c

• Static kink or defect solutions

The ordering dynamics is
understood via the motion of
these defects.

3 2( , ) ( , )r t r t
t
ψ ψ ψ ψ θ∂

= − +∇ +
∂

2
3

2

0

0

( )( ) tanh
2

s
s s

s

d
dz

z zz

ψψ ψ

ψ

= − +

−⎡ ⎤= ±⎢ ⎥⎣ ⎦



• The CHC equation is obtained from the continuity 
equation.

• Dimensionless version has the same kink 
solutions as the TDGL equation. In this case, the 
motion of the defects is strongly correlated.
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(e) Conclusion
• We have focused on two examples of 

the kinetics of phase transitions:
dynamics of ordering
dynamics of phase separation

• Our analytic understanding of pattern 
formation relies on the dynamics of 
“defects” in the system, e.g., interfaces, 
vortices, monopoles, etc. They may be 
thought of as “elementary particles” in 
this context.
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