Phase Diagram & Experimental Methods

What do we want to know about Phase Diagrams?

- How to construct a phase diagram.
- Spinodal Decomposition & Nucleation and growth.
- How to represent a phase diagram.
- Influence of interaction potential on the phase diagram.
- Examples

- Experimental Techniques
 - Surface Force Apparatus
 Rheology & micro-rheology

Helmholtz free energy $F(T,V,N) = -k_B T \ln \frac{1}{N!} \int e^{-U(\vec{r}_N)/k_B T} d\vec{r}_N + c(T)$

e.g. the van der Waals
$$\left(p + \frac{N^2 a}{V^2}\right)(V - Nb) = Nk_B T$$

$$F(T,V,N) = -NkT\left(1 + \ln\left(\frac{(V-Nb)}{\Lambda^3 N}\right)\right) + \frac{aN^2}{V}$$

excluded volume

attraction

Isotherms of a van der Waals gas

thermodynamic equilibrium demands that the chemical potential

$$\mu = \frac{\partial F}{\partial N}\Big|_{T,V} = const. \ everywhere$$

under the conditions:

P = const. & T = const.

Geometric solution:

double tangent construction on Helmholtz free energy at given T

How to present a phase diagram?

At phase transition lines: co-existing phases!

Effect of different types of interactions.

HARD SPHERE potential W(r)

http://people.umass.edu/dinsmore/Phys850.html

Hard-sphere suspension

Pusey and van Megen Nature 320 340 (1986)

Introducing attraction - Argon

Lennard-Jones Potential

$$W(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right]$$

Very short range attraction

u(r) – interaction pot. $\boldsymbol{\alpha}$ G G+C σ

- Gas-liquid (or liquid-liquid) phases become metastable.
- Often observed in protein systems

Equilibrium phase diagrams

Caution!

Slow dynamics can prevent a system to attain thermodynamic equilibrium.

Sample preparation & history can be very important.

Very short range attraction

NATURE |VOL 416 | 25 APRIL 2002

Very short range (depletion) attraction

The stacking of cells (rouleaux formation):

http://www.owInet.rice.edu/~dhruv/

- facilitates the rate of red cell sedimentation.
- Rouleaux formation is caused by an increase in cathodal proteins, such as immunoglobulins and fibrinogen.
- Frequent causes: acute and chronic infections, connective tissue diseases, and chronic liver disease.

Patchy colloid – model proteins?

M=2 M=3 M=4 M=5

Hard-Core (gray spheres) Short-range Square-Well (gold patchy sites)

Very short range attraction

Very short range attraction

Short range attraction

Limited Coordination (4)

Bond Selectivity

Steric Incompatibilities

gel model (F. Starr and FS, JPCM, 2006)

Single-stranded DNA for specific binding

Experimental Methods

- **Surface Force Apparatus**
- Confocal microscopy (structure)
- Small-Angle X-ray Scattering (structure)
- Rheology & micro-rheology (dynamics...)

Direct surface force measurements

Surface Force Apparatus

Normal surface force measurements

.

SFA - Characteristics

Normal forces: fixed stiffness of spring with $k_1 \approx 70$ N/m

 $F_N(D) = -k_1(\Delta D_0 - \Delta D)$

$$\frac{F_N(D)}{R} = 2\pi E(D)$$

<u>Derjaguine approx.</u>: measured force profiles F(D)/R are related to the surface energy E(D) per unit area between two flat parallel plates:

Shear forces: adjustable spring with $k_{2.min} \approx 100$ N/m

$$F_{||}(D) = -k_2 \Delta x$$

resolution $\delta F \sim \pm 0.1 \ \mu N$

SFA – Distance measurement

Fringes of Equal Chromatic Order

Example: Forces between polymer brushes

Alexander - De Gennes: Interaction force per unit area

For $L_0 = N s_0^{-2/3} a^{5/3}$ and $D < L_0$

Alexander deGennes, Milner ST/ Macromolecules 1991/24/3704

Forces between 2 polymer brushes

Summary: SFA

- SFA allows direct normal force measurements between atomically flat surfaces.
- Advantage over AFM: independent & absolute distance measure.
- Separations are measured to within ± 1 Å
- Although today AFM with colloid as probing surface are also very sensitive.
- Disadvantage only mica surfaces can be used.

Were used to verify DLVO theory.

J. Israelachvili, 'Intermolecular & Surface Forces' 3rd edition

Rheology

Rheology can be used in transient & oscillatory mode to gain inside of the following:

- Viscosity (shear thickening/thinning) transients
- Elastic equilibrium properties oscillatory mode

micro - rheology

Starting point for all mirco-rheology studies is the **generalized Stokes-Einstein relation**

$$D(s) = \frac{kT}{6\pi\eta(s)Rs}$$

D(s) = Laplace transform of the time-dependent diffusion coefficient of a sphere with radius R

 $\eta(s)$ = Laplace transform of the t-dependent viscosity

The LT of the complex shear modulus is

$$G(s) = s\eta(s)$$

Micro-rheology

one bead micro-rheology: the idea

Measure displacement fluctuations: x(t)

$$\langle |x(\omega)|^2 \rangle = \int_{-\infty}^{\infty} \langle x(t)x(0) \rangle e^{i\omega t} dt$$

Micro-rheology

Traditionally: the power spectrum $< |x(\omega)|^2 >$

is related to the imaginary part of the susceptibility $\alpha(\omega)$ while $G(\omega) = \frac{1}{6\pi R\alpha(\omega)}$

Micro-rheology

It is
$$\alpha''(\omega) = \frac{\omega}{4k_BT} \left\langle |x(\omega)|^2 \right\rangle$$

In order to obtain G(ω), we need to know both α' and α".
 α' can be obtained from α" via a Kramers-Kronig transform

$$\begin{aligned} \alpha'(\omega) &= \frac{2}{\pi} P \int_0^\infty \frac{\zeta \alpha''(\zeta)}{\zeta^2 - \omega^2} d\zeta \\ &= \frac{2}{\pi} \int_0^\infty \cos(\omega t) dt \int_0^\infty \alpha''(\zeta) \sin(\zeta t) d(\zeta) \end{aligned}$$

B.Schnurr, F.Gittes, F.C.MacKintosh, C.F.Schmidt, Macromolecules 1997, 30, 7781-7792

One-bead micro-rheology

Finally we can obtain the **storage (G')** and **loss (G'') modulus** of the complex shear modulus via

$$G'(\omega) = \frac{1}{6\pi R} \frac{\alpha'(\omega)}{\alpha'(\omega)^2 + \alpha''(\omega)^2}$$
$$G''(\omega) = \frac{1}{6\pi R} \frac{-\alpha''(\omega)}{\alpha'(\omega)^2 + \alpha''(\omega)^2}$$

Example

Micro-rheology of strongly aging gels

Laponite – a charged disk-like colloid

- Charged disks
- counterions
- o added salt ions

One-bead micro-rheology

S.Jabbari-Farouji et al., Phys. Rev. E, 78, 061402 (2008).

One-bead micro-rheology

0.8 wt % Laponite solution in 6mM NaCl

Conclusion

- Colloids are fascinating model systems
- Giving rise to various phases, each representing different physical properties.
- Because we can tune their interaction potentials they help us understand in simpler terms complex phases of proteins and many other intereting biological macromolecules.
- And they can serve as building blocks for new materials.

Thank you for listening.