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What is nucleation?

Nucleation is the first and crucial step in many phase transitions

melting

freezing

vaporization

condensation



Phase transitions and metastability
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Why is nucleation important?

Nucleation is an activated process that controls most phase transitions



Introduction: phase transitions in a van 
der Waals fluid

• Supersaturation: S=p/peq

• Nucleation Barrier: G*

• Critical size: n*

• Nucleatíon Rate: J
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Simplest example of a nucleation process: 
condensation of a vapor

n

G

Nucleation barrier

Surface term

Volume term

• Nucleation: Initial mechanism that explains  the formation 
of the first embryos of the new phase

GCNT(n)= - n + A(n)

G*

n*
n

• Work of cluster formation

• Classification:

– Homogeneous

– Heterogeneous



Nucleation Kinetics

• Growth of clusters is modeled as a series of chemical reactions

α

i

f(i,t)= concentration of clusters containing i molecules at time t

• Assumptions:

• Clusters grow/decay by the addition of individual molecules

• No memory

• Isothermal conditions

• Master equation of the evolution of clusters:

= rate of detachment of individual molecules from a cluster of size i

= rate of attachment of individual molecules to a cluster of size i
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Nucleation kinetics (2)

J= steady state nucleation rate

Master equation:

Current:

Steady state nucleation rate J:

J  does not depend on time and is the same for all sizes

i i+1



Kinetic theory of nucleation

• Condensation rate can be evaluated from kinetic theory

• … but the evaporation rate not!

To circunvent this problem, one resorts to the so-called constrained

equilibrium hypothesis
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“Constrained” equilibrium
N(i)= constrained equilibrium distribution, that satisfies:
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Using N(i) one gets:
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Kinetics of nucleation (4)
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So now it is a matter of calculating the work of formation of a cluster of i molecules

Summing up over all cluster sizes:

Boundary conditions:



Nucleation rate
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Continuous approx.:



Continuous approximation to the master
equation
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Simplified thermodynamics of cluster
formation

• Quick review of thermodynamics a la Callen:

Gibbs-Duhem eq.

Thermodynamic potentials:

Abraham’s book

+



CNT assumptions
• The (drastic) assumptions of CNT are:

– Thermodynamics can be applied to

unstable objects of molecular 

dimensions

– Homogenous phases up to the interface

– The interface is perfectly sharp

– The densities are the same as in the bulk

phases

– The surface tension is the same

as the bulk flat interface

– Spherical drop

– Ideal vapor

– Incompressible liquid



A hypothetical vapor+drop system

Total number of particles and energy:

Surface quantities are defined as “excesses”:

For each phase:

where:



Generalized Laplace equation

• Critical nucleus= drop at (unstable) equilibrium with the

vapor

For the “surface of  tension”

n

G

G*

n*

Equilibrium conditions:



Generalized Kelvin equation
• At equilibrium:

satp

p
S 

)()( satvsatl pp  

0 NdVdpSdT

Ideal gas:
Incompressible fluid:

dp
p

Tk
d B

v 
dpvd ll 

 satllsatlll ppvpp  )()( 

)()( vvll pp  

For the “surface of  tension”

Gibbs-Duhem eq:



Work of cluster formation

Equimolar:

Work of formation= 

difference between the

free energy of 

drop+vapor and that of

a pure vapor at the same

conditions

In general, it depends on

the constraints. At cte

N,p,T

Incompressible drop:



Work of cluster formation in CNT

• Assumptions:

– Spherical drop

– Incompressibility

– Sharp interface

– Same surface tension as the bulk flat liquid
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• Critical cluster size:

• Height of the nucleation barrier:

Nucleation barrier and critical cluster size
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CNT for condensation of an ideal vapor

• Gibbs-Duhem equation
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Bubble nucleation
• Work of formation of a bubble

• Assumptions:

– Vapor in the bubble is in thermodynamic equilibrium.

– And mechanic equilibrium
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Nucleation in condensed phases
• Crystal nucleation in undercooled liquids
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Nucleation in supersaturated solutions
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Classical Nucleation Theory of Viral Capsid Self-
Assembly

• Free energy of formation of a partially formed capsid

∆G

∆G*

n*
n

∆µ: chemical potential difference

σ: line or rim tension

n

R
l

Intermediates supressed by rim tension!

Zandi  et al, Biophys. J 90, 1939 (2006)



Heterogeneous nucleation
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Nucleation Theorem
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Experimental importance:

It allows the evaluation of the critical cluster size directly from

experiments

Independent of the theory!

et al



Nucleation theorem in action

• Water condensation experiments in an expansion chamber

(Viisanen et al. 1993)



Nucleation theorem in action (2)
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Kashchiev, J. Chem. Phys. 76, 5098 (1982).

R.K. Bowles et al. J.Chem. Phys. 115, 1853 (2001).

Nucleation Theorem



Comparison with condensation experiments

• CNT has serious 

problems:

– Wrong T dependence of 

nucleation rates:

• JCNT too high at high T

• JCNT too low at low T

– Discrepancies reach  

several orders of 

magnitude !!!



Comparison between CNT, simulation and 
experiment for argon condensation

Wedekind et al, JCP (2007)



Nucleation Barrier Height: only wrong by a constat!
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Critical cluster size OK!
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Pros/Cons of CNT
• Positive points:

– Uses bulk thermodynamic measurable quantities

– Simple numerical predictions

– Predicts critical cluster sizes welll

– Seems to mispredict the barrier just by a T-dependent

constant

• Disadvantages:

– No spinodal

(the nucleation barrier is always

finite)

– Capillarity approximation

– Ignores all contributions beyond surface and volume

– Bad predictions compared to experiments and simulation



Recent theoretical developments
• Phenomenological theories

– Aim to correct the nucleation barrier

• Kinetic theories

– Focus on evaluating α(i)

• Molecular theories (Reiss et al…)

– Rigorous molecular description of cluster using statistical

mechanics–linked to simulations

• Density functional and field theories

– Overcome the capillarity approximation



Phenomenological theories
• Fisher’s droplet

– Aims to correct the nucleation barrier by accounting for more 

terms beyond surface and volume

– Dillmann&Meyer

• Self-consistent theories

– Impose (somewhat artificially) that ΔG(n=1)=0
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Translational and rotational contributions

• Another mesoscopic aspect:

– Translational-Rotational paradox
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Phenomenological theories (2)
• Scaling relations: n* well

predicted by CNT+ Nucleat. 

theorem

• EMLD-DNT:

– A physical cluster that

incorporates fluctuations and 

translation

– Accounts for the spinodal and 

seem to correct the wrong T-

dependence



Kinetic theories
• Aim at calculating α(i)

– General drawback: rates are extremely sensitive to the

details of the potential and to an accurate evaluation of α(i) 

• Ruckenstein & coworkers

– α(i) obtained as the MFPT of escape of a monomer from the

effective potential generated by all cluster’s molecules

• Dynamical nucleation theory

– Uses VTST to obtain α(i) considering the evaporation event

as a chemical reaction



Bn+1 Bn  +  B1

+

Reaction surface

•DNT: Evaporation as a reaction

VTST and DNT

•VTST: V that minimizes the reaction

(evaporation) rate 

(Schenter,Kathmann,Garrett PRL’99)

•DNT: nice idea but very requires expensive

simulations…



Density functional theory
• Free energy of a drop is assumed to be a functional of the

density profile ρ(r)

– Disadvantages:

• No info about kinetics

• Results depend on the functional used

• The square gradient approximation predicts n* →∞ at the

spinodal

– Advantages:

• Results qualitatively good

• Removes capillarity approximation

• Cahn&Hilliard :



Density functional theory (2)

• Oxtoby& coworkers



Summary
• Nucleation is a very fundamental problem still not fully

understood

• CNT is still the most widely used theory despite its

limitations and the fact that mispredicts the nucleation

rates by several orders of magnitude

• CNT seems to predict n* correctly, but mispredicts ΔG* by

a (temperature-dependent) constant

• More work is necessary to be able to predict accurately

nucleation rates!


