

The world is round yet not symmetric

Colloid as Proxy for Atom

Q: how would such spheres self-assemble?

Hard spheres, etc.

Janus spheres with chemical shape

Colloid as Proxy for Atom

Molecular colloids

Desired:

Directional bonding

Pathways of chemical reactivity

Avogadro's number

The synthesis problem

The detection problem

The scaleup problem

Janus particle fabrication

Scaled up To large amounts

working curve for Au etching

The most precise method Disadvantage: Limited quantity

Cationic, anionic

Zwitterionic.

Hemispheres of matched electric charge

First guess: dipolar strings?

Erik Luijten, Northwestern

No.
Debye length < colloid size.

Energy Landscape at fixed separation:

Directional and short range

All clusters preserve charge asymmetry

Experiment Simulation Charge Distribution

MC simulations by

Erik Luijten and
Angelo Cacciuto
Experiment Simulation Charge Distribution

Dynamic !
Heptamer cluster ($n=7$)

a surface-

Areas of the same size

Hydrophobic

Charged

Possibilities are modulated by salt

Clusters are born and die, reversibly

Heptamer from fusion of smaller clusters

Status report

Same \# of particles **
 Energetically the same
 **
 Entropically -- different

Status report:

Chiral colloids - not unusual

Their structure is selected by kinetics

What we learn

Colloids with directional bonding and chemical-type reactivity (yes, probably)
"aggregation": "crystallization"
(too simple)
Self-limiting structures

Vignette 2

Exploiting optical anisotropy

The Sky in a Microscope

MOONs

Raoul Kopelman

Different optically
Same chemically

Quantifying the rotation of spinning spheres

Data
Calculated angle

Data
Calculated angle

Vignette 3

Crystals, patterns of long range

Summary, opportunities, outlook

Janus colloids - the molecular colloid problem.

MOONS - spheres rotate, too.

2D crystals - static patterns, dynamic patterns.

A playground for new applications and science.

