Nucleation and growth of hard-sphere colloidal crystals

Dave Weitz Harvard

Eli Sloutskin Peter Lu Toshi Kani Bar Ilan Harvard Yokohama

Urs Gasser Fribourg
Eric Weeks Emory
Peter Pusey Edinburgh

Hard-sphere colloid nucleation
 Nucleation of Yukawa particles

NSF, MRSEC, NASA

http://www.seas.harvard.edu/weitzlab

NAG2010 7/29/10

Colloidal Particles

Stability: Short range repulsion Sometimes a slight charge

Colloid Particles are:

•Big •~ *a* ~ 1 micron •Can "see" them

- Slow
- $\tau \sim a^2/D \sim ms$ to sec
- •Follow individual particle dynamics

Model: Colloid \rightarrow Atom

How do colloidal crystals form?

2.3 μ m diameter PMMA spheres

Nucleation rates of hard-sphere colloidal crystals

Nucleation and Growth

Nucleation rates not predicted correctly

J. Schroers et al., Appl. Phys. Lett. 74, 2806 (1999)

Increasing ϕ

 $\phi = 0.50$ Increasing ϕ

Confocal Microscopy

Brownian Motion (2 μm particles, dilute sample)

Diffusion: dilute samples

Confocal microscopy for 3D pictures

Scan many slices, reconstruct 3D image

Brownian Motion in Real Time

Colloids: crystal nucleation

Nucleation rates much faster than predicted

U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, and D. A. Weitz, Science 292, 258 (2001)

Colloids: crystal nucleation

U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, and D. A. Weitz, Science 292, 258 (2001)

Colloidal suspension

$$\sigma \sim 2.3 \text{ mm}$$

PMMA (polymethylmethacrylate)

PHSA (poly-12-hydroxystearic) "hairs"

Fluorescent

Decalin + tetrachloroethylene

Confirm HS behavior

- Fluid structure
- Phase diagram
- Lattice constant

Fluid structure

Dynamic Light Scattering *φ*=5×10⁻⁴ $\sigma = 2.33 \ \mu m$ σ = 2.36 μ m

Percus-Yevick

Fluid structure

$$\sigma$$
 = 2.36 μ m

Confirm HS behavior

- Fluid structure
- Phase diagram
- Lattice constant

Phase diagram

Phase behavior

Confirm HS behavior

- Fluid structure
- Phase diagram
- Lattice constant

Lattice constant

$(3\sqrt{2} \cdot 0.545 / \pi)^{-1/3} \sigma = 1.11 \sigma$ Experiment: $1.1 \pm 0.01 \sigma$

Confirm HS behavior

- Fluid structure
- Phase diagram
- Lattice constant

Particles are hard spheres

Confocal Microscopy

How to Identify Crystals

2.3 μ m diameter PMMA spheres

Must identify incipient crystal nuclei

Growth of crystalline phase

Measure nucleation rates

Nucleation rates

Auer & Frenkel, Nature 409, 1020 (2001)

Reconstruction

Fluid phase - blue Crystalline phase - red

Weakleastire the loatility toas sonk $\phi = 0.52$ **Shrink** 1.0 Probability 0.5 0.0 **10¹** 10^{2} 10^{3} 10⁴ Μ Grow M_c

Stepwise formation of an overcritical nucleus

Compare growing and shrinking nuclei

Distribution of colloidal crystal nuclei

$$\langle \mathsf{R}_{g}(\mathsf{M}) \rangle = \frac{\sum_{i} \mathsf{R}_{g}^{(i)} \exp[-2AG(\mathsf{M}_{B}\mathsf{A}]] \wedge \mathsf{K}_{B}^{\mathsf{M}} \mathsf{T}_{g}^{\mathsf{T}}]}{\sum_{i} \exp[-2AG(\mathsf{M}_{B}\mathsf{A}]] \wedge \mathsf{K}_{B}^{\mathsf{M}} \mathsf{T}_{g}^{\mathsf{T}}]}$$

$$\Delta G = \gamma \mathsf{A}_{i} - \Delta \mu \mathsf{M}$$

$$\left\langle \mathsf{R}_{g}(\mathsf{M}) \right\rangle = \frac{\sum_{i} \mathsf{R}_{g}^{(i)} \exp(-\gamma \mathsf{A}_{i}/\mathsf{k}_{\mathsf{B}}\mathsf{T})}{\sum_{i} \exp(-\gamma \mathsf{A}_{i}/\mathsf{k}_{\mathsf{B}}\mathsf{T})}$$

Nuclei adopt different morphologies

Morphology of nuclei: Charged colloids

U. Gasser et al., Science 292, 258 (2001)

Classical free energy: measure γ and $\Delta \mu$

$$\Delta \mu = \frac{2\pi}{3} \sigma^2 \gamma M_c^{-1/3} \cdot 0.545^{-2/3}$$

Size distribution of nuclei

Eddington, Kiang, Stauffer & Walker, PRL 26, 820 (1971)

Test predicted nucleation rates

$$\Delta G = \gamma A - \Delta \mu \rho V$$

Test predicted nucleation rates $\Delta G = \gamma A - \Delta \mu \rho V$ $\Delta G = \gamma A - \Delta \mu \rho V + k_B T \ln M$

Morphology of nuclei in *atomic* materials

Solid-Liquid Tensions

 γ (Hard) ~ 0.5 kT/σ^2

 $\gamma(Ga) \sim 0.5 \ kT/\sigma^2$ $\gamma(Hg) \sim 0.3 \ kT/\sigma^2$ $\gamma(Cu) \sim 0.3 \ kT/\sigma^2$

$$\gamma$$
(Au) ~ 0.2 *kT*/ σ^2

$$\gamma$$
(Al) ~ 0.2 kT/σ^2

 γ (Charged) ~ 0.1 *kT*/ σ^2

B. Vinet et al., J. Coll. Interf. Sci 255, 363 (2002)

Simulation of nucleation of Cu crystals

Power-law distribution

Fit with free energy using crystal entropy

Conclusions

Colloidal crystal nuclei are disorderedAdded entropic contribution to free energy

Thank you for your attention

Fast crystal nucleation