

David Reguera

0

0

DEPARTAMENT DE FÍSICA FONAMENTAL

Why is nucleation important?

Nucleation is the first and crucial step in many phase transitions

0

Introduction

0

C

0

C

0

Phase 2 n

Nucleation Kinetics

How good is CNT?

- Predominant theory: CNT
 - Only uses bulk (measurable) thermodynamic parameters
- CNT has serious problems:
 - Wrong T dependence of nucleation rates:
 - J_{CNT} too high at high T
 - J_{CNT} too low at low T
 - It does not account for the spinodal

Outline

Nucleation at extreme supersaturations

• MD Simulations:

- Optimization of system size: Finite-size effects
- A new method to evaluate rates: MFPT
- Kinetic reconstruction of the free-energy landscape
- MD results:
 - Nucleation Rates, critical cluster sizes and barrier heights
 - Comparison with CNT
 - Transition between nucleation and spinodal decomposition
- Conclusions and outlook

MD Simulations of Lennard-Jones Argon Nucleation:

MD "brute force" simulations in the canonical (NVT) ensemble

T = 80.7K (T*=0.67)

Molecular Dynamics Simulation⁴⁾

0

.C C

4) Frenkel and Smit, Understanding Molecular Simulation, 2nd ed. (Academic Press, San Diego, 2002).5) Wonczak, Ph.D. Thesis, Universität zu Köln, Cologne 2001.

finite size effects

Optimization of system size

Nucleation at extreme supersaturations

Q2: How can we analyze the rates???

A new method to analyze rates in simulations of activated processes

How to analyze the rates?

- General problems:
 - Nucleation is a stochastic process: one realization is not enough
 - n* is not known a priori
- Different methods:
 - Time required to have a cluster of a particular size

$$rate = \frac{1}{Vt}$$

Problems:

- arbitrary size
- more than 1 cluster can be formed

- Number of large drops formed per unit time and V

$$J = \frac{1}{V} \frac{dN(t)}{dt}$$

Problems:

- Nucleation/ growth are coupled
- Depletion effects
- Nonstationary rates

New method to analyze rates in MD simulations

- Based on evaluation of Mean First Passage Times
- Advantages:
 - Efficient and easy to implement
 - Allows an accurate evaluation of nucleation rates
 - One can easily see if nucleation and growth are coupled
 - Allows to extract additional useful information:
 - evaluation of the critical cluster size from pure kinetic considerations!

- estimates of the height of the nucleation barrier, the Zeldovich factor and the time lag

Extracting thermodynamic information from the kinetics

J. Wedekind, R. Strey, D.R., J. Chem. Phys.(subm)

Comparison: Analytical Result and Fit

C

Practical implementation

C

Coupling of nucleation and growth

Nucleation at extreme supersaturations

0

0

Kinetic Reconstruction of the free energy landscape

Kinetic Reconstruction of the free energy landscape

• Dynamics of an activated process

$$\frac{\partial f(n,t)}{\partial t} = \frac{\partial}{\partial n} \left(D(n) e^{-\beta \Delta G(n)} \frac{\partial}{\partial n} \left(f(n,t) e^{\beta \Delta G(n)} \right) \right)$$

Ingredients:

0

(

- Steady-state Probability: Pst(n)
- MFPT: τ (n)

Free energy landscape

$$\beta \Delta G(n) = \ln B(n) - \int \frac{1}{B(n')} dn' + C$$

$$B(n) = \frac{1}{P^{st}(n)} \left[\int_0^n P^{st}(n') dn' - \frac{\tau(n)}{\tau(b)} \right]$$

Attachment rate

$$D(n) = \frac{B(n)}{\left(\frac{\partial \tau(n)}{\partial n}\right)}$$

Comparison: Analitic results vs Reconstruction

Kinetic reconstruction in a simulation

MD Simulations of Lennard-Jones Argon Nucleation at extreme supersaturations

O

0

0

RESULTS

T = 80.7 K

Nucleation Rates

Condensation at extreme supersaturations

0

0

Reconstruction of the free energy of cluster formation for the largest cluster

0

C

(

Nucleation Barrier Height: reaction coordinate matters

0

0

The vanishing of the barrier for the largest is **NOT** the signature of the spinodal

System size dependence of the free energy landscape for the largest

0

C

Fixed S

Nucleation Barrier Height: reaction coordinate matters

0

O

C

0

Scaling relations seem to hold

 $\Delta G(n^*) = \Delta G_{CNT}(n^*) + D(T)$

What does the vanishing of the free energy for the largest mean?

• "Equilibrium" probability of having 1 critically-sized cluster:

- The vanishing of the barrier for the largest indicates where the system has probably a critical cluster right at the start
 the limit of kinetic metastability, which is NOT the spinodal
- The kinetic limit of stability of a metastable phase is system size dependent!

Nucleation vs spinodal decomposition

• Nucleation

Nucleation vs spinodal decomposition

• Spinodal decomposition

0

C

From nucleation to spinodal decomposition

(a) S = 119L = 5 nm

0 ps

 $n_{\rm max} = 491, \, \phi_{\rm c} = 0.41$

 $n_{\rm max} = 2700, \ \phi_{\rm c} = 0.64$

0

.C C

(p) = 20.4S 7

5 ps

 $n_{\rm max} = 1, \, \phi_{\rm c} = 0.00$

Critical cluster size approaching the spinodal: No evidence of divergency

0

O

Critical cluster size approaching the spinodal

0

C

0

CNT prediction is surprinsingly good

Putting the pieces back together

C

Timescales: nucleation vs growth

Survival probabilities

0

C

.

C

C

0

$$P_{\rm surv}(t) = \exp\left(-\frac{t-t_0}{\tau_J}\right)$$

Crossover between nucleation and (diffusion-limited) growth

C

Conclusions

- Nucleation at extreme supersaturations using MD simulations
- New simulation techniques:
 - Finite-size effects in simulations of nucleation
 - A new method to analyze simulations of activated processes: Mean First-Passage Times
 - Kinetic Reconstruction of the free-energy landscape
- Main Results:

- Reaction coordinate matters
- The kinetic stability limit of a metastable phase depends on system size and it is different from the spinodal
- Crossover between nucleation and (diffusion-limited) growth of the new phase
- CNT predicts accurately n* but mispredicts ΔG* by a temperature dependent constant

Acknowledgements

UNIVERSITÄT ZU KÖLN

J. Wedekind

0

0

H. Reiss

FUNDING

UNIVERSITÄT ZU KÖLN

- R. Strey
- G. Chkonia
- J. Wölk

