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Example of PANI-CSA m PMMA
Transmission-electron micrographs of extracted PANI-CSA/PMMA

polyblend films containing (a) p=

CSA. It has an ultra-

[ Transport in polyani

Reghu et. al.; Phys. Rev.B, v.50, p.1393

ine networks near

0.005 and (b) p=0.0025 ot PANI-
ow pecolation threshold of p_= 0.003 !!!

he percolation threshold;

| (1994)].
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So. what 1s the main 1dea about TUNNELING?

It helps to cross a barrier (insulating wall between two charges)
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Dieflectric Breakdown _
Spark Discharge

In the air between two clouds, it is
lightning!

Example: a Zener diode gives a
non-zero response only above or a
threshold voltage.

BUT,
systems we consider need not be electrical.

Other systems:

# Fluid flow through narrow porous media
due to capillary/ surface tension forces

(important in off-shore oil recovery)

# Motion of objects on surfaces or inside
sticky fluids (due to friction or viscosity)

# efc. ....




Tunneling mduced ultra-low percolation threshold:

Our Random Resistor cum Tunneling-bond Network (RRTINY Model — Semi-classical
funneling mtroduced only between nearest-neighbour metallic (ohmic) bonds; and no
turther [AKS and'A. Kar Gupta; Lecture Notes in Physics, v.437, p.271 (Springer, Berlin, 1994)].
Standard method w/ fimite-size scaling analysis gives a new percolation threshold for a

maximal RRTN (on a 2D square lattice) to be pet = 0.181 (et for sq. latt. RRIN pe=0.5).
[A. Kar Gupta and AKS: Physica A, v.215, p.1 (1995)].

(a) o-bonds in a p=0.30, L=20 RRN zample
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(b} RRTN based on the RRN beside: o-bond
t-bord ——
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Recapitulation of 5

static reSponse:

Temporal 1N response
18 to the itself,

Also called Boltzmann’s relaxation

time approximation

12 14 16 8 20

Simplest dynamics; possesses a

Lower Linear Regime ( ) single time-scale 7 (

Non Linear Regime () Statistics)
Upper Linear Regime () Obviously of the RRTN

Kar Gupta and Sen, PRB 57, 3375 (1998) (indeed a RRN) follows this dynamics
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of of Fe m tolded heme-

Protems; Parak et al, Physica A201, 332 (1993)




Sputtening of
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Relaxation i the RRTN model; some typical parameters:

for t-
bonds with

Use a graded configuration v;; at cach node

Update the microscopic voltages at each node using the Continuity
Eqn. . 1.€., a lattice Kirchhoff’s dynamics:

Vij (t+1) i ¥ (H) + Ziij} Iij / Z“ﬁiij‘:f* Sij

Check the to obtain the

final 1.€., stop iteration when

| I(1% layer)-I(N™ layer) | < ¢, a pre-assigned
small +ve number (for controlling precision)

Bhattacharya and Sen, Europhys. Lett. 71, 797 (2005) { 2 8 4 5 6 7 8 9 10

Along brass bar



Two early-stage power-laws in RRTN current dynamics
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(appear in most expts.) (somewhat rare in expts.)

S. Bhattacharya and A.K. Sen, Europhys. Lett. 71, 797 (2003)
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Appear, in general, due to a sequence of
<* Re-distribution of clusters/fields in time
crossing over a

% re-distribution of clusters/fields in time

intercrystallite pore
or
intraaglomerate pore

i

#Eventually,

for

? agglomerate

CIrosSsCs OVCOr 1O an

Cynamlc S? *-'T:r-'ﬂliﬂrllim

primary particle

towards a

interagglomerate pore



Belongs

property o:

An exam

0 a . as an outcome of an inherent
 the system having fime-constants
ple: a relaxation function with multiple s,

weighted by a selt-similar probability density function (p.d.1.).

o

where k=1/1

With a proper choice of the p.d.f., one finds two power-law
relaxations; one at a short-time scale and another at an
asymptotically long-time scale
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Two early-stage
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A typical two power-law dynamics (  and
) and final exponential dynamics to an
steady current ( ). The
and are . for some separate
classes of v, (t=0); thus on the

for a p=0.50 RRTN :5:.a:f1.111plc1 ;

- ' 1 .

For iseed! ——— .
1seads .
iseed3 --------
iseedd

iseed? -------
iseed8 -———

The steady current 1s subtracted out to treat
all cases under the same footing; also the
final exponential dynamics 1s not shown

further. For different samples (1seeds),

and  vary widely;




Thus, the of various systems of

nature as well as the same 1n the RRTN model, suggests that:

v'The 1st. order D.E. for the relaxation is strongly non-Debye type, and

v'In particular, it should have the empirical form,

[fOllOWing Tsallis, Bemski and Mendes; Phys Lett A257, 93 (1999), and adding a
q=1, 7>> 1 (Boltzmann-Gibbs-Shannon) term explicitly].

v As expected it gives rise to two early power-law relaxations with the

following exponents and for 7>>1

v Eventually for t >> 7, RRTN’s de-response is in the Upper Linear
Regime ( ), and there 1s expnl. relxn. (consistent with )

v of the (ULR regime); due to
in the placements of the 48



N
>
=
)
0
C
I
=
0
J
0
C
0
0
T
e
0
s
0

L —
— =

L am—]
[ s ]
i

10

fime

100 1000 10000 100000
No. of iterations

11
The mitial configuration (both random and non-

random voltage mputs) chosen and the ensuing
(init1al) current through the RRTN itself evolving

may be different by orders of magnitude.

Very many difterent pathways (Kirchoft's dyna-
mics with local continuity), created as a function

of time (mn one lattice-scan, discrete-time units).

But, the final configuration/current 1s UNIQUE.
Very strong MEMORY!! The evolution for 'icl’
18 particularly surprising! Useful for cognitive

processes, learnmg, fault-tolerant coding, etc.

We first look at two possible time-scales m this
problem. The curve 'ic8' looks for it, with the
(Imitial voltage at layer #1 )=V and zero elsewhere.
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Ratio of (Relaxation time/Breakdown time) of two samples p=0.5
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Self-averaging was found to fail in thé88 §6eBiRuTegbS W TgeRbLP e treat

all cases under the same footme: also the

median of the histograms, and their spigadex (oleariy ,,_ﬂ;l}ﬁﬂg@@i@,@ .
reducing fast. So, we study how the ﬁ%‘éﬁ%i tes &%ﬁ_’be@hiﬂ-’i@@ﬁkﬂﬁ‘ﬁ—“lﬂe
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The median value also approaches a

constant value, very fast (within a
system s1ze of about L=200 | Thus,

This has important implications. First,

(Breakdown time/relaxation time)

--> a constant value (V and p-dep.),
1.e., only one time-scale exists (cf. One-para-
meter scalmg theory m Anderson localizn. )
asymptotically.

Second, and more importantly, the result
states that 1f we know the relaxation time
of the underlying RRN, we can predict the
breakdown-time m the large L. limat.
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The steady recognized even for a random

initial configuration. The exponents of the dynamics do depend on the
initial configurationtion. But, the final configuration 1s very ROBUST.
It 15 like the strong memory 1n the protein-folding problem (Leventhal)!!

Their origin 1s , but due to the

nonlinearity and the , in the
, In-built 1n the network (RRTN).

The information content 1s algorithmically compressible. This 1s required!

[See P.C.W. Davies, Why the physical world 1s so comprehensible? In
“Complexity, Entropy and the Physics of Information?” Ed. W.H. Zurek, pp

61-70 (Addison-Wesley, Redwood city CA, 1990]. The information to be
kept between some Bob and an Alice 1s minimal: just the random no.

oenerator and the initial seed. Then V generates the picture'!

One then notes that this property of the network 1s very useful for fault-
tolerant cryptography with public key crypto-syetems.






