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Polymer

A polymer is a macromolecule

formed by several sub-units of atomic groupings

each grouping is called a monomer

monomers are bonded by the same kind of linkages

these monomers often form into a chain like structures

the chemical reactions by which a giant molecule is
formed from monomers is called polymerization

number of monomers in a polymer chain is called the
degree of polymerization

A polymer can exist in various conformations

The conformation has a direct bearing on the physical
properties of a polymer
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Polymer Conformations

Number of monomers and physical structure are two
important factors that determine the macroscopic
properties of a polymer

the conformational statistics of polymer depend on the
solvent

Good Solvent:
Monomers in a segment prefer to be surrounded by
the solvent rather than monomers from other
segments;
there is an effective segment-segment repulsion
results in swollen coil conformation
called extended phase
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Interacting Polymer

Poor Solvent
induces an effective interaction between two
monomers belonging to different segments
different segments get dragged . . . one toward the
other . . . by excluding the intervening solvent
results in a compact globular conformation
called collapsed phase

quality of solvent is often parameterized by temperature

Low temperatures correspond to poor solvent

High temperatures correspond to good solvent

when temperature decreases there occurs a transition
from an extended to a collapsed phase
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Coarse grained models

to study such phase transitions, coarse grained models
are useful

treats a group of chemical units as a bead - a monomer

microscopic degrees of freedom, invariably present
within a monomer, are completely ignored

only basic features common to all polymers of the same
chain topology are retained

we incorporate only features like chain connectivity,
excluded volume effect, monomer-monomer interaction
etc.

coarse grained models are suitable for studying
universal properties of polymer systems
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Variety of Polymers

depending on the chain connectivity we can have
different kinds of polymers

They are
linear polymer
branched polymer
cross-linked polymer

on the basis of the monomers, polymers are classified
as

HOMOPOLYMER; monomers are all of the same
type
HETEROPOLYMER: monomers are of different
types

I shall talk about linear homo polymer
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linear homopolymer on a lattice

lattice models have been employed in polymer studies
for more than six decades

See C. Vanderzande, Lattice Models of Polymers,
Cambridge University Press (1998).

lattice models are based on Self Avoiding Walks (SAW)

A walk that does not visit a site it has already visited

Self avoidance incorporates in a natural way the
excluded volume effect

SAW is generated by
blind ant or
non reversing blind ant
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Blind Ant

An ant starts its random walk from a chosen origin on a
lattice

it chooses randomly and with equal probability one of
the nearest neighbour sites and steps into that site

if it finds that it had earlier visited the site it has just
stepped into, it terminates its walk and starts all over
again from the origin

otherwise it continues its random walk until the walk
gets terminated

when the ant does not reverse its step, it is called a
non-reversing blind ant
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Blind ant algorithm ensures equal a priori probability of
polymer conformations

Let z be the coordination number of the lattice;
z = 4 for a two dimensional square lattice;
z = 3 for a two dimensional honeycomb lattice;
z = 6 for three dimensional cubic lattice
etc.

Let N + 1 be the number of monomers.
Then the probability of a polymer conformation C is

Blind ant : P (C) = zN

Non-reversing blind ant : P (C) = z × (z − 1)N−1
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Blind → Myopic ant

From the lattice polymers generated by the blind ant,
we can

construct microcanonical ensembles by grouping in
terms of energies,
estimate canonical ensemble averages by attaching
Boltzmann weight based on energy

a major problem with Blind ant : sample attrition

Partial remedy : Rosenbluth-Rosenbluth walk based on
myopic ant: M N Rosenbluth and A W Rosenbluth, J Chem Phys 23 356 (1955)

The ant selects one of the unoccupied nearest
neighbour sites randomly and with equal probability.

Sample attrition is considerably reduced, though not
eliminated: Trapping does still occur.
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Rosenbluth-Rosenbluth Walks and Weights

Major Problem with Myopic ant: The walks generated are not all equally probable.
Hence we need

RR weights (W) for calculating microcanonical ensemble averages:

WRR(N step RR Walk) =
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where
z is the coordination number of the lattice and
ni is the number of unoccupied nearest neighbours available when the myopic
ant takes its i-th step.

RR weights, see above, and Boltzmann weights, see below, for calculating
canonical ensemble averages.

WB (N step RR walk) = exp [−βE(N step RR walk)]

where β = 1/[kB T ]: kB is Boltzmann constant, T is absolute temperature and
E is energy of the SAW, defined as follows.
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Interacting Self Avoiding Walk : ISAW

In a SAW conformation, count the number of
non-bonded nearest neighbour contacts, n.

Energy of the SAW equals nǫ.
See e.g. J Mazur and F L McCrackin, J Chem Phys 49 648 (1968)

If ǫ is negative the interaction is attractive;

If ǫ is positive, the interaction is repulsive.

An SAW with well defined energy is called Interacting
Self Avoiding Walk (ISAW).

We take ǫ = −1 without loss of generality: attractive
interactions.
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PERM, Flat-PERM

RR weights fluctuate wildly.

Besides sample attrition is present, though less.

Long walks are difficult to generate.

PERM: Pruned and Enriched Rosenbluth Model of
Grassberger provides some remedy.
P Grassberger, Phys. Rev. E 56 3682 (1997)

PERM algorithm has further been improved to
Flat-PERM

Flat-PERM ensures that the energy histogram of
generated conformations is flat.
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KGW, IGW and flat IGW

KGW: If we ignore RR weights i.e. if we set RR weight
to unity for all the walks, then we get Kinetic Growth
Walk (KGW)

KGW models a polymer that grows faster than it coud
relax.

KGW does not generate equilibrium lattice polymer
conformations

All KGWs are not equally proabable

A KGW, grown in the forward way, does not have the
same probability of then one grown in the reverse way

A KGW to belongs to the same universality class as
SAW
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IGW and flat-IGW

When kinetic growth occurs as per local Boltzmann
weights - PERM-B with RR weight set to unity - we get
Interacting Growth Walk (IGW), see S L Narasimhan et al, Phys.

Rev. E (RC) 65, 10801 (2001)

IGWs are not equi-probable

An IGW and its reverse are not necessarily grown with
the same probability

IGW belong to the same universality class as ISAW

IGW has been improved to Flat-IGW, see M Ponmurugan et al,

Comput. Mater. Sci. 44, 36 (2008)

Sokal provided an alternative to all Growth Walks:
A D Sokal, in Monte Carlo and Molecular Dynamics Simulations in Polymer Science, Ed. K Binder,

Oxford University Press (1995)
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Sokal algorithm

Start with a lattice polymer of a given length.

Make local changes employing pivoting, cranking,
rotating in a self avoiding fashion to generate a trial
configuration.

Employ standard Metropolis algorithm to generate a
Markov Chain of Polymer conformations.

Asymptotic part of the Markov Chain corresponds to a
canonical ensemble.

Calculate the desired properties by averaging over the
canonical ensemble

Problem with Sokal algorithm is that local changes are
difficult to make and time consuming
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Bond Fluctuating Model

Bond Fluctuating Model retains the advantages of both
the algorithms: L Carmesin and K Kremer, Macromolecules 21 2819 (1988)

we start with a conformation like in Sokal’s algorithm
a randomly selected monomer is moved to it nearest
site - like in growth algorithm a monomer is placed at
a nearest neighbour site
the price we pay is the bond can get stretched when
a monomer is moved

A move is legal only if the following conditions are
fullfilled

self avoidance
no bond crossing during a move
no bond stretching beyond a prescribed limit
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Bonds in Two Dimensional Square lattice

We consider bond fluctuating lattice polymer model on
a two dimensional square lattice

lattice constant is taken as unity

each monomer occupies four lattice sites of a unit cell

each lattice site can at best be part of only one
monomer - self avoidance condition.

Let l denote length of a bond.

minimum value of l is 2

If we take l < 3, then possible bond lengths are 2,
√

5

and
√

8

If we take l < 4, then possible bond lengths are 2,
√

5,√
8, 3,

√
10, and

√
13.
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A bond fluctuating polymer on a two dimensional square lattice

all bonds of length l < 4 are shown. Coloured squares indicate the monomers that

constitute nbNN contacts
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Dynamics in Bond Fluctuating Model

a monomer is selected randomly

it tries to move by a distance of one lattice unit into one
of the four lattice directions chosen randomly

if the move complies with both self avoidance and bond
length restriction it is considered legal

if the attempted move turns out be illegal, select a
monomer randomly and attempt to move it.

and so on

if we restrict l < 4, then bond cuts are avoided
automatically

in our simulation we restrict l < 3

In fact we consider bonds of length 2 and
√

8 by moving
a monomer always by two lattice units.
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A bond fluctuating polymer on a two dimensional square lattice

Moves that are legal and moves that are not legal are shown
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Entropic Sampling

we have simulated Bond Fluctuation model on a two
dimensional square lattice employing entropic sampling

Entropic Sampling
Let C denote a lattice polymer conformation
P (C) ∝ exp[−βE(C)]

P (E) ∝ D(E) exp(−βE)

we sample polymer conformations such that
P (E) ∝ D(E) × g−1(E) where g(E) > 0 ∀E

if g(E) = D(E) then P (E) is same for all E

strategy is to start with an initial guess g(0)(E). e.g.

g(0)(E)dE = dE ∀ E.
iteratively update it
g(0)(E) → g(1)(E) → · · · → g(n)(E) → · · ·
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Acceptance / Rejection in entropic sampling

Let Ct be a trial conformation obtained from the current
conformation Ci employing bond fluctuating model

Let Ei = E(Ci) and Et = E(Ct).

Ci+1 =











Ct with probability p

Ci with probability 1 − p

p = min

(

1,
g(n)(Ei)

g(n)(Et)

)

generate an ensemble of conformations and extract
from it the energy histogram h(E)
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Density of states

when the histogram becomes flat stop the iteration and
update the density of states as follows

g(n+1)(E) =

{

g(n)(E) × h(E) if h(E) 6= 0

g(n)(E) if h(E) = 0

employ g(n+1)(E) in the next stage and iterate

In the limit n → ∞, we get g(n) = g(E) = D(E) over
the energy interval in which the histogram is flat

S(E) = kB ln g(E) up to a constant.

From the microcanonical entropy we can get other
properties employing standard thermodynamic
machinery
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Entropic Ensemble

alternately generate an entropic ensemble employing
g(E).

Calculate un-weighting-cum-re-weighting factors for
each conformation of the entropic ensemble. It is given
by W (C) = g(E(C)) exp[−βE(C)].

Use this weight and obtain canonical ensemble average
of desired properties from the entropic ensemble

〈η(β)〉 =

∑

C η(C)W (C)
∑

C W (C)

The sum runs over all the conformations of the entropic
ensemble
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h(E) versus E. Histogram is not flat over the entire range of energy. Inset shows histogram

for −40 ≤ E ≤ −10. In this range the histogram is reasonably flat. All subsequent

calculations are carried out with polymer conformations belonging to this range of energy
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lnS(E) versus E
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〈E〉 =

R

dE E g(E) exp(−βE)
R

dE g(E) exp(−βE)
.

Energy Vs Temperature
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Energy versus temperature calculated from a small entropic ensemble generated in the

production run with converged density of states
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Radius of gyration versus temperature calculated from a small entropic ensemble generated

in the production run with converged density of states
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Specific Heat versus β for different polymerization
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Free Enegy: Thermodynamics : Closed System

Closed System:

Natural variable for free energy is T .

We start with U ≡ U(S, ·) where {·} stands for other
thermodynamic variables relevant for the description of
the system under study. For example

{·} stands for V, N for a simple fluid.
{·} stands for M, N for a magnetic system.
etc.

Legendre transform: S → T and U → F .

F (T, ·) = U(S, ·) − T (S, ·)S

T (S, ·) =

(

∂U

∂S

)

{·}
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Free Energy: Thermodynamics : Isolated System

Isolated System:

Microcanonical Free energy:

F ≡ F (U, ·)

Start with S ≡ S(U, ·). For example
Entropic sampling gives us an estimate of entropy as
a function of energy up to an additive constant.

Microcanonical Free Energy is then given by

F (U, ·) = U − T (U, ·)S(U, ·)
1

T (U, ·) =

(

∂S

∂U

)

{·}

. – p.34/42



Free Energy : Statistical Mechanics

Free energy for a closed system is related to canonical
partition function as follows

F (T, ·) = −kBT ln Q(T, ·)
Q(T, ·) =

∑

C

exp[−βE(C)]

where the sum extends over all microstates C
belonging to the closed system at temperature
T = 1/[kBβ]

The energy of the closed system is given by

U(T, ·) = 〈E〉 =
1

Q(T, ·)
∑

C

E(C) exp[−βE(C)]
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Free Energy is not all that free !

F is either a function of Energy (for an isolated equilibrium

system) or
a function of Temperature (for a closed equilibrium system)

For any equilibrium system, isolated or closed, F can
not be simultaneously a function of both Energy and
Temperature.

This is because,
An isolated system with fixed Energy has a unique
Temperature
A closed system at a given Temperature has a
unique Energy

Can we define a phenomenological free energy,
denoted by FL, as a function of both Energy and
Temperature ?
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Phenomenological Free Energy

Let us call FL as phenomenological free energy. It
resembles

Landau Free Energy (originally proposed to describe
continuous phase transition) or
Ginzburg-Landau free energy (proposed in the
context of superconductivity) or
Landau-de-Gennes free energy (in the context of
liquid crystals)

Question: Why are we interested in defining such a free
energy ?

Answer: We want to estimate the price, in terms of
excess free energy, we need to pay if want to keep a
closed system in a (non-equilibrium ?) state with an
energy, different from equilibrium energy.
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FL(E, T )

The function FL(E, T ) should have the following
property:

FL(E, T ) ≥ F (T ) ∀ E

In the above equality obtains when
E = 〈E〉 = U(T ) (〈·〉 denotes an average over a canonical ensemble

at temperature T .

Thus the system has to incur a free energy penalty, if it wants to be in a macroscopic

state with an energy different from equilibrium energy; the penalty is given by,

∆F = FL(E 6= U(T )) − FL(T )

How does one calculate FL(E, T ) ?

In thermodynamics, start with S(U) and calculate
FL(U, T ) = U − TS(U), assuming U and T to be
independent of each other !
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FL(E, T ): Statistical Mechanics

In statistical mechanics we define F(T) as

F (T ) = −kBT ln
∑

C

exp[−βE(C)]

Where the sum is taken over all microstates (denoted by C) of the closed system.

However, for a given temperature T , the contribution to the partition sum comes

predominantly from conformations having energy E = 〈E〉 = U(T). Hence we can

express free energy as

F (T ) = −kBT ln
∑

C

δ(E(C) − U(T )) exp[−βE(C)]

In the above if we replace U(T) by E, we get Landau free energy,

FL(E, T ) = −kBT
∑

C

δ(E(C) − E) exp[−βE(C)]
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FL versus E. N = 50. T = 1.639 < Tc . T = 1.695 = Tc . T = 1.724 > Tc
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FL versus Rg . Tc = 4.255. Larger than the one from FL versus E curve.
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