Lattice Polymers : SAW, ISAW, KGW, IGW and BFM

K. P. N. Murthy

School of Physics,

University of Hyderabad

Nucleation, Aggregation and Growth (NAG-2010)

JNCASR, Bengaluru 26 - 30, July 2010

- Thanks Gambo for the invitation
- Thanks Srikanth for the invitation
- Thanks Pomurugan, Sandhya, Bindu, and Narasimhan for wonderful collaboration

Polymer

- A polymer is a macromolecule
- formed by several sub-units of atomic groupings
- each grouping is called a monomer
- monomers are bonded by the same kind of linkages
- these monomers often form into a chain like structures
- the chemical reactions by which a giant molecule is formed from monomers is called polymerization
- number of monomers in a polymer chain is called the degree of polymerization
- A polymer can exist in various conformations
- The conformation has a direct bearing on the physical properties of a polymer

Polymer Conformations

- Number of monomers and physical structure are two important factors that determine the macroscopic properties of a polymer
- the conformational statistics of polymer depend on the solvent
- Good Solvent:
 - Monomers in a segment prefer to be surrounded by the solvent rather than monomers from other segments;
 - there is an effective segment-segment repulsion
 - results in swollen coil conformation
 - called extended phase

Interacting Polymer

Poor Solvent

- induces an effective interaction between two monomers belonging to different segments
- different segments get dragged ... one toward the other ... by excluding the intervening solvent
- results in a compact globular conformation
- called collapsed phase
- quality of solvent is often parameterized by temperature
- Low temperatures correspond to poor solvent
- High temperatures correspond to good solvent
- when temperature decreases there occurs a transition from an extended to a collapsed phase

Coarse grained models

- to study such phase transitions, coarse grained models are useful
- treats a group of chemical units as a bead a monomer
- microscopic degrees of freedom, invariably present within a monomer, are completely ignored
- only basic features common to all polymers of the same chain topology are retained
- we incorporate only features like chain connectivity, excluded volume effect, monomer-monomer interaction etc.
- coarse grained models are suitable for studying universal properties of polymer systems

Variety of Polymers

- depending on the chain connectivity we can have different kinds of polymers
- They are
 - Iinear polymer
 - branched polymer
 - cross-linked polymer
- on the basis of the monomers, polymers are classified as
 - HOMOPOLYMER; monomers are all of the same type
 - HETEROPOLYMER: monomers are of different types
- I shall talk about linear homo polymer

linear homopolymer on a lattice

- Iattice models have been employed in polymer studies for more than six decades
- See C. Vanderzande, Lattice Models of Polymers, Cambridge University Press (1998).
- Iattice models are based on Self Avoiding Walks (SAW)
- A walk that does not visit a site it has already visited
- Self avoidance incorporates in a natural way the excluded volume effect
- SAW is generated by
 - blind ant or
 - non reversing blind ant

Blind Ant

- An ant starts its random walk from a chosen origin on a lattice
- it chooses randomly and with equal probability one of the nearest neighbour sites and steps into that site
- If it finds that it had earlier visited the site it has just stepped into, it terminates its walk and starts all over again from the origin
- otherwise it continues its random walk until the walk gets terminated
- when the ant does not reverse its step, it is called a non-reversing blind ant

- Blind ant algorithm ensures equal a priori probability of polymer conformations
 - Let z be the coordination number of the lattice;
 - z = 4 for a two dimensional square lattice;
 - z = 3 for a two dimensional honeycomb lattice;
 - z = 6 for three dimensional cubic lattice *etc.*
 - Let N + 1 be the number of monomers.
 - Then the probability of a polymer conformation C is
 Blind ant : $P(C) = z^N$
 - Non-reversing blind ant : $P(C) = z \times (z-1)^{N-1}$

Blind \rightarrow **Myopic** ant

- From the lattice polymers generated by the blind ant, we can
 - construct microcanonical ensembles by grouping in terms of energies,
 - estimate canonical ensemble averages by attaching Boltzmann weight based on energy
- a major problem with Blind ant : sample attrition
- Partial remedy : Rosenbluth-Rosenbluth walk based on myopic ant: MN Rosenbluth and AW Rosenbluth, J Chem Phys 23 356 (1955)
 - The ant selects one of the unoccupied nearest neighbour sites randomly and with equal probability.
- Sample attrition is considerably reduced, though not eliminated: Trapping does still occur.

Rosenbluth-Rosenbluth Walks and Weights

- Major Problem with Myopic ant: The walks generated are not all equally probable. Hence we need
 - RR weights (W) for calculating microcanonical ensemble averages:

$$W_{RR}(N ext{ step RR Walk}) = \left(rac{1}{4}
ight) \left(rac{1}{oldsymbol{z}^{N-1}}
ight) \left(\prod_{i=1}^N n_i
ight)$$

where

- \mathbf{z} is the coordination number of the lattice and
- n_i is the number of unoccupied nearest neighbours available when the myopic ant takes its i-th step.
- RR weights, see above, and Boltzmann weights, see below, for calculating canonical ensemble averages.

$$W_B(N \operatorname{step} \operatorname{RR} \operatorname{walk}) = \exp \left[-\beta E(\operatorname{N} \operatorname{step} \operatorname{RR} \operatorname{walk})\right]$$

where $\beta = 1/[k_B T]$: k_B is Boltzmann constant, T is absolute temperature and E is energy of the SAW, defined as follows.

Interacting Self Avoiding Walk : ISAW

- In a SAW conformation, count the number of non-bonded nearest neighbour contacts, n.
- Energy of the SAW equals $n\epsilon$.
 See e.g. J Mazur and F L McCrackin, J Chem Phys 49 648 (1968)
- If ϵ is negative the interaction is attractive;
- If ϵ is positive, the interaction is repulsive.
- An SAW with well defined energy is called Interacting Self Avoiding Walk (ISAW).
- We take $\epsilon = -1$ without loss of generality: attractive interactions.

PERM, Flat-PERM

- RR weights fluctuate wildly.
- Besides sample attrition is present, though less.
- Long walks are difficult to generate.
- PERM: Pruned and Enriched Rosenbluth Model of Grassberger provides some remedy.
 P Grassberger, Phys. Rev. E 56 3682 (1997)
- PERM algorithm has further been improved to Flat-PERM
- Flat-PERM ensures that the energy histogram of generated conformations is flat.

KGW, IGW and flat IGW

- KGW: If we ignore RR weights *i.e.* if we set RR weight to unity for all the walks, then we get Kinetic Growth Walk (KGW)
- KGW models a polymer that grows faster than it coud relax.
- KGW does not generate equilibrium lattice polymer conformations
- All KGWs are not equally proabable
- A KGW, grown in the forward way, does not have the same probability of then one grown in the reverse way
- A KGW to belongs to the same universality class as SAW

IGW and flat-IGW

- When kinetic growth occurs as per local Boltzmann weights - PERM-B with RR weight set to unity - we get Interacting Growth Walk (IGW), see SL Narasimhan et al, Phys. Rev. E (RC) 65, 10801 (2001)
- IGWs are not equi-probable
- An IGW and its reverse are not necessarily grown with the same probability
- IGW belong to the same universality class as ISAW
- IGW has been improved to Flat-IGW, see M Ponmurugan et al, Comput. Mater. Sci. 44, 36 (2008)
- Sokal provided an alternative to all Growth Walks:
 A D Sokal, in *Monte Carlo and Molecular Dynamics Simulations in Polymer Science*, Ed. K Binder, Oxford University Press (1995)

Sokal algorithm

- Start with a lattice polymer of a given length.
- Make local changes employing pivoting, cranking, rotating in a self avoiding fashion to generate a trial configuration.
- Employ standard Metropolis algorithm to generate a Markov Chain of Polymer conformations.
- Asymptotic part of the Markov Chain corresponds to a canonical ensemble.
- Calculate the desired properties by averaging over the canonical ensemble
- Problem with Sokal algorithm is that local changes are difficult to make and time consuming

Bond Fluctuating Model

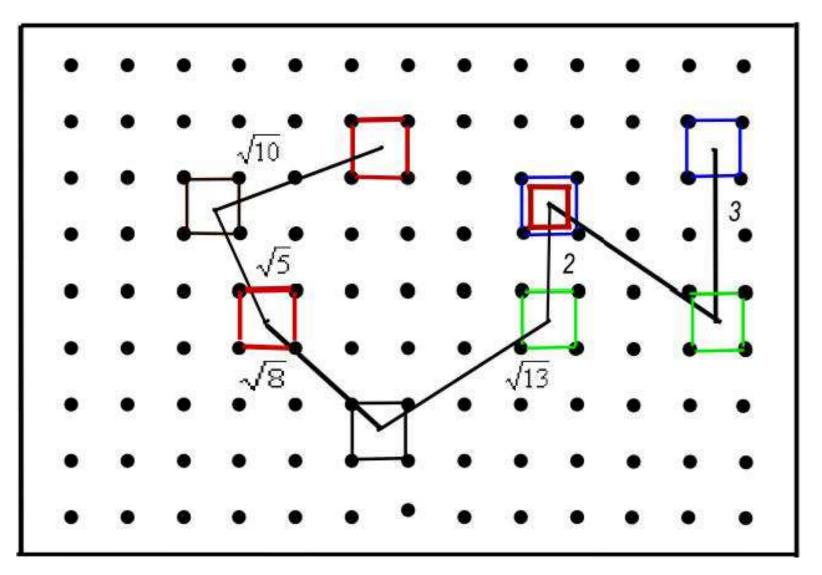
- Bond Fluctuating Model retains the advantages of both the algorithms: L Carmesin and K Kremer, Macromolecules 21 2819 (1988)
 - we start with a conformation like in Sokal's algorithm
 - a randomly selected monomer is moved to it nearest site - like in growth algorithm a monomer is placed at a nearest neighbour site
 - the price we pay is the bond can get stretched when a monomer is moved
- A move is legal only if the following conditions are fullfilled
 - self avoidance
 - no bond crossing during a move
 - no bond stretching beyond a prescribed limit

Bonds in Two Dimensional Square lattice

- We consider bond fluctuating lattice polymer model on a two dimensional square lattice
- Iattice constant is taken as unity
- each monomer occupies four lattice sites of a unit cell
- each lattice site can at best be part of only one monomer - self avoidance condition.
- Let *l* denote length of a bond.
- minimum value of l is 2
- If we take l < 3, then possible bond lengths are 2, $\sqrt{5}$ and $\sqrt{8}$
- If we take l < 4, then possible bond lengths are 2, $\sqrt{5}$, $\sqrt{8}$, 3, $\sqrt{10}$, and $\sqrt{13}$.

A bond fluctuating polymer on a two dimensional square lattice

all bonds of length l < 4 are shown. Coloured squares indicate the monomers that constitute nbNN contacts

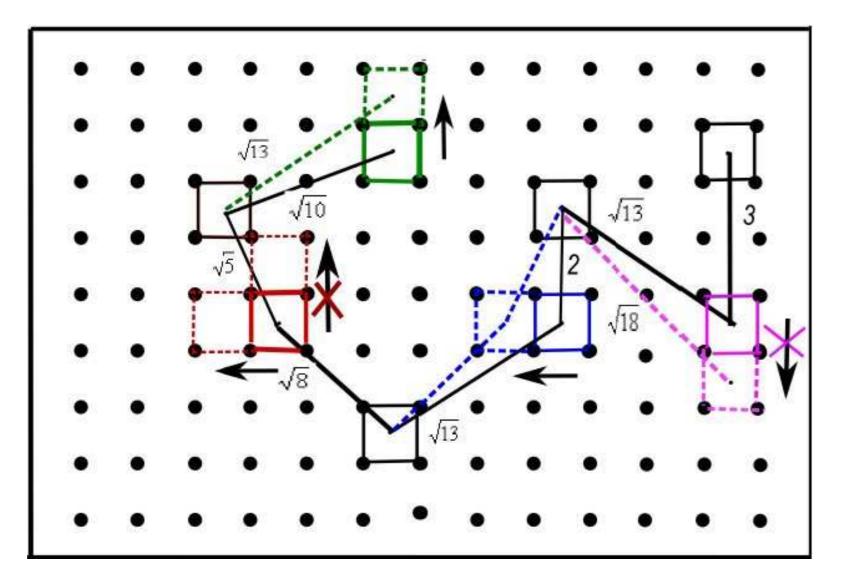


Dynamics in Bond Fluctuating Model

- a monomer is selected randomly
- it tries to move by a distance of one lattice unit into one of the four lattice directions chosen randomly
- if the move complies with both self avoidance and bond length restriction it is considered legal
- if the attempted move turns out be illegal, select a monomer randomly and attempt to move it.
- and so on
- if we restrict l < 4, then bond cuts are avoided automatically
- in our simulation we restrict l < 3
- In fact we consider bonds of length 2 and $\sqrt{8}$ by moving a monomer always by two lattice units.

A bond fluctuating polymer on a two dimensional square lattice

Moves that are legal and moves that are not legal are shown



Entropic Sampling

- we have simulated Bond Fluctuation model on a two dimensional square lattice employing entropic sampling
- Entropic Sampling
 - ▲ Let C denote a lattice polymer conformation
 - $P(C) \propto \exp[-\beta E(C)]$
 - $P(E) \propto D(E) \exp(-\beta E)$
 - we sample polymer conformations such that $P(E) \propto D(E) imes g^{-1}(E)$ where $g(E) \ > \ 0 \ orall E$
 - if g(E) = D(E) then P(E) is same for all E
 - strategy is to start with an initial guess $g^{(0)}(E)$. e.g. $g^{(0)}(E)dE = dE \ \forall \ E$.
 - iteratively update it $g^{(0)}(E) o g^{(1)}(E) o \cdots o g^{(n)}(E) o \cdots$

Acceptance / Rejection in entropic sampling

• Let C_t be a trial conformation obtained from the current conformation C_i employing bond fluctuating model

• Let
$$E_i = E(C_i)$$
 and $E_t = E(C_t)$.

$$p \;=\; \min\left(1,\; rac{g^{(n)}(E_i)}{g^{(n)}(E_t)}
ight)$$

generate an ensemble of conformations and extract from it the energy histogram h(E)

Density of states

when the histogram becomes flat stop the iteration and update the density of states as follows

$$g^{(n+1)}(E) = \left\{egin{array}{cc} g^{(n)}(E) imes h(E) & ext{if} & h(E)
eq 0 \ g^{(n)}(E) & ext{if} & h(E) = 0 \end{array}
ight.$$

• employ $g^{(n+1)}(E)$ in the next stage and iterate

- In the limit $n \to \infty$, we get $g^{(n)} = g(E) = D(E)$ over the energy interval in which the histogram is flat
- $S(E) = k_B \ln g(E)$ up to a constant.
- From the microcanonical entropy we can get other properties employing standard thermodynamic machinery

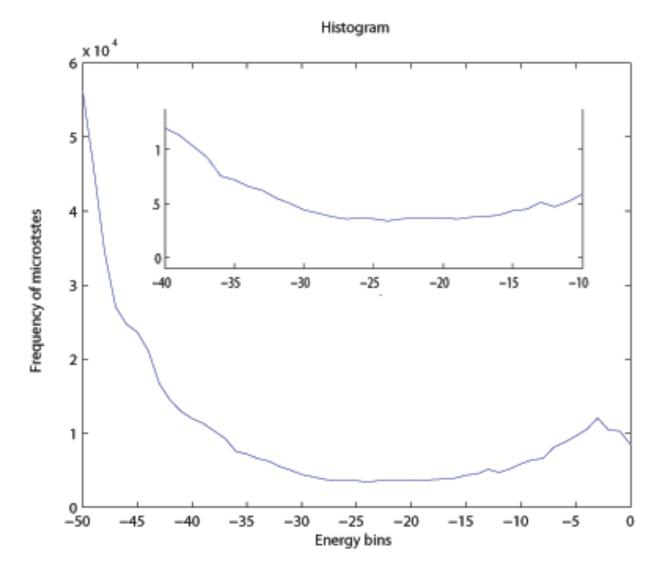
Entropic Ensemble

- alternately generate an entropic ensemble employing g(E).
- Calculate un-weighting-cum-re-weighting factors for each conformation of the entropic ensemble. It is given by $W(C) = g(E(C)) \exp[-\beta E(C)]$.
- Use this weight and obtain canonical ensemble average of desired properties from the entropic ensemble

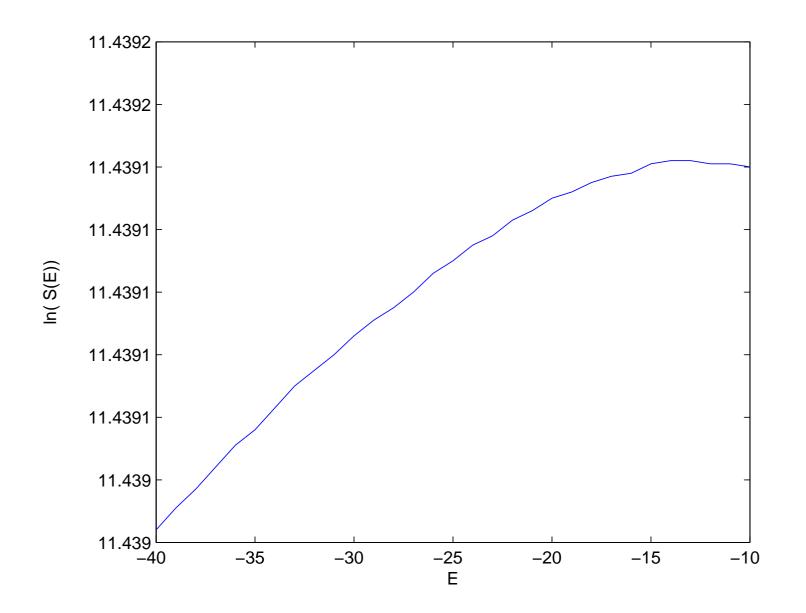
$$\langle \eta(eta)
angle = rac{\sum_C \eta(C) W(C)}{\sum_C W(C)}$$

The sum runs over all the conformations of the entropic ensemble

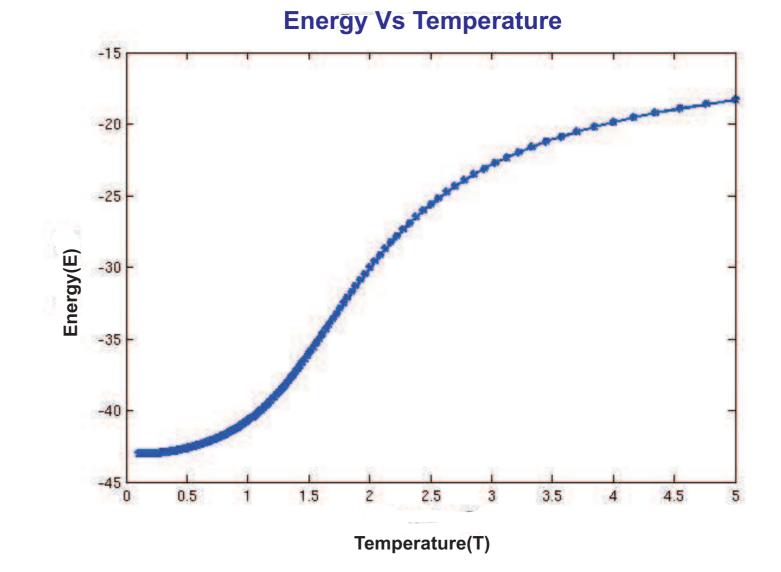
h(E) versus E. Histogram is not flat over the entire range of energy. Inset shows histogram for $-40 \leq E \leq -10$. In this range the histogram is reasonably flat. All subsequent calculations are carried out with polymer conformations belonging to this range of energy



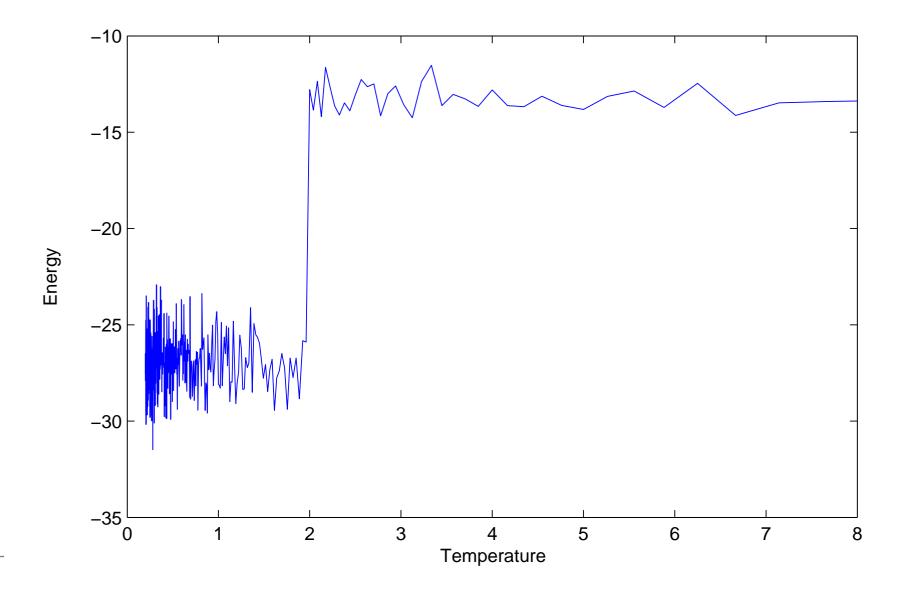
lnS(E) versus E



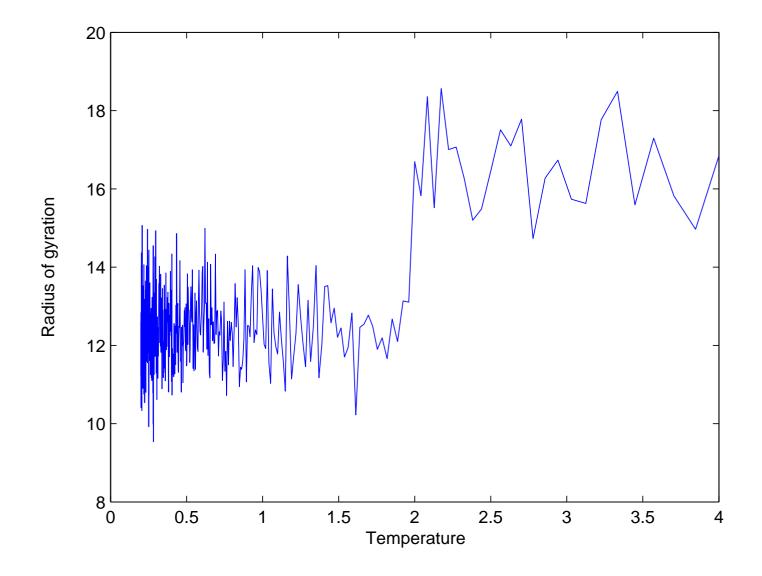
$$\langle E
angle = rac{\int \, dE \; E \; g(E) \; \exp(-eta E)}{\int \, dE \; g(E) \; \exp(-eta E)}.$$

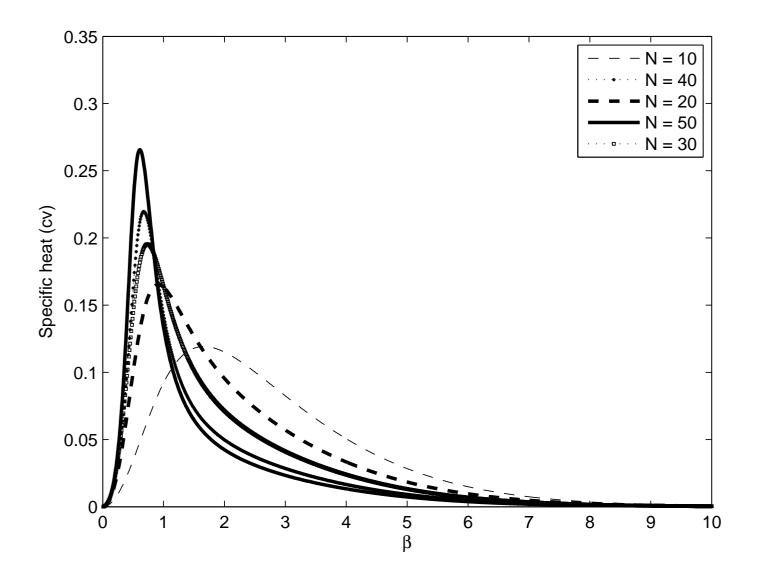


Energy *versus* temperature calculated from a small entropic ensemble generated in the production run with converged density of states



Radius of gyration *versus* temperature calculated from a small entropic ensemble generated in the production run with converged density of states





Free Enegy: Thermodynamics : Closed System

- Closed System:
- Natural variable for free energy is T.
- We start with $U \equiv U(S, \cdot)$ where $\{\cdot\}$ stands for other thermodynamic variables relevant for the description of the system under study. For example
 - $\{\cdot\}$ stands for V, N for a simple fluid.
 - $\{\cdot\}$ stands for M, N for a magnetic system.
 - etc.
- Legendre transform: $S \to T$ and $U \to F$.

$$egin{array}{rll} F(T, \cdot) &=& U(S, \cdot) - T(S, \cdot)S \ T(S, \cdot) &=& \left(rac{\partial U}{\partial S}
ight)_{\{\cdot\}} \end{array}$$

Free Energy: Thermodynamics : Isolated System

- Isolated System:
- Microcanonical Free energy:

$$F\equiv F(U,\cdot)$$

- Start with $S \equiv S(U, \cdot)$. For example
 - Entropic sampling gives us an estimate of entropy as a function of energy up to an additive constant.
- Microcanonical Free Energy is then given by

$$egin{array}{rll} F(U,\cdot) &=& U-T(U,\cdot)S(U,\cdot) \ rac{1}{T(U,\cdot)} &=& \left(rac{\partial S}{\partial U}
ight)_{\{\cdot\}} \end{array}$$

Free Energy : Statistical Mechanics

Free energy for a closed system is related to canonical partition function as follows

$$egin{array}{rll} F(T, \cdot) &=& -k_BT\ln Q(T, \cdot) \ Q(T, \cdot) &=& \displaystyle\sum_C \exp[-eta E(C)] \end{array}$$

where the sum extends over all microstates C belonging to the closed system at temperature $T = 1/[k_B\beta]$

The energy of the closed system is given by

$$U(T, \cdot) = \langle E
angle = rac{1}{Q(T, \cdot)} \sum_C E(C) \exp[-eta E(C)]$$

Free Energy is not all that free !

- F is either a function of Energy (for an isolated equilibrium system) or a function of Temperature (for a closed equilibrium system)
- For any equilibrium system, isolated or closed, F can not be simultaneously a function of both Energy and Temperature.
- This is because,
 - An isolated system with fixed Energy has a unique Temperature
 - A closed system at a given Temperature has a unique Energy
- Can we define a phenomenological free energy, denoted by F_L , as a function of both Energy and Temperature ?

Phenomenological Free Energy

- Let us call F_L as phenomenological free energy. It resembles
 - Landau Free Energy (originally proposed to describe continuous phase transition) or
 - Ginzburg-Landau free energy (proposed in the context of superconductivity) or
 - Landau-de-Gennes free energy (in the context of liquid crystals)
- Question: Why are we interested in defining such a free energy ?
- Answer: We want to estimate the price, in terms of excess free energy, we need to pay if want to keep a closed system in a (non-equilibrium ?) state with an energy, different from equilibrium energy.

$F_L(E,T)$

- The function $F_L(E,T)$ should have the following property:
 - $F_L(E,T) \geq F(T) \ orall \ E$

• In the above equality obtains when $E = \langle E
angle = U(T)$ ((\cdot) denotes an average over a canonical ensemble at temperature T.

Thus the system has to incur a free energy penalty, if it wants to be in a macroscopic state with an energy different from equilibrium energy; the penalty is given by,

$$\Delta F = F_L(E
eq U(T)) - F_L(T)$$

- How does one calculate $F_L(E,T)$?
- In thermodynamics, start with S(U) and calculate $F_L(U,T) = U TS(U)$, assuming U and T to be independent of each other !

$F_L(E,T)$: Statistical Mechanics

In statistical mechanics we define F(T) as

$$F(T) = -k_BT\ln\sum_C \exp[-eta E(C)]$$

Where the sum is taken over all microstates (denoted by C) of the closed system.

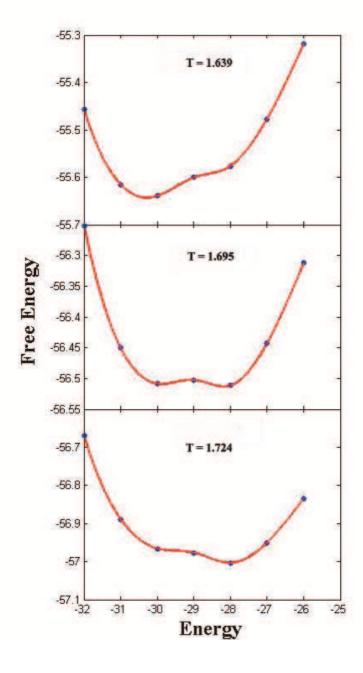
However, for a given temperature T, the contribution to the partition sum comes predominantly from conformations having energy $E = \langle E \rangle = U(T)$. Hence we can express free energy as

$$F(T) = -k_BT\ln\sum_C \delta(E(C)-U(T))\exp[-eta E(C)]$$

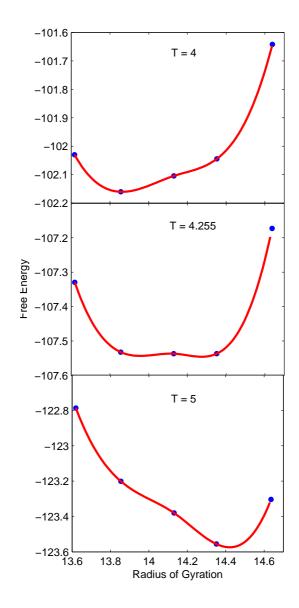
In the above if we replace U(T) by E, we get Landau free energy,

$$F_L(E,T) = -k_BT\sum_C \delta(E(C)-E)\exp[-eta E(C)]$$

 F_L versus $E.~N=50.~T~=1.639~<~T_c.~T=1.695=T_c.~T=1.724~>~T_c$



 F_L versus R_g . $T_c = 4.255$. Larger than the one from F_L versus E curve.



THANKS