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CHIRALITY
NO MIRROR PLANE (KELVIN, 1893)

BETA- QUARTZ: ARAGO, 181 | TARTARIC ACID: LOIS PASTEUR, 1849

SOFT MATTER: BLUE PHASE “LIQUID CRYSTAL’: REINITZER, 1888
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BANDED SPHERULITES
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POLYHYDROXYBUTYRATE SPHERULITES CHIRAL SYMMETRY SPONTANEOUSLY BROKEN.

(UNIV. OF CAMBRIDGE TEACHING AND 5
LEARNING PROGRAMME) 50% LAMELLAE LEFT- (RIGHT- ) HANDED.

BANDS BECAUSE OF REMARKABLY UNIFORM PITCH AND WIDTH.
BIREFRINGENCE. “...A STUBBORN CHALLENGE.”
“MALTESE CROSS” PATTERN REVIEW BY LOTZ ETAL (2005)

PROPOSE A PHENOMENOLOGICAL, EQUILIBRIUM MODEL.
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RESULTS
PHENOMENOLOGICAL THEORY (EQUILIBRIUM).

A NEW MECHANISM FOR CHIRAL SYMMETRY
BREAKING AT A MACROSCOPIC LEVEL.

PITCH OF HELICOIDAL LAMELLAE = 7T WIDTH,

WIDTH = Vkg/o

CLAIM: WIDTHAND PITCH OF LAMELLAE SPONTANEOUSLY
SELECTED IN EQUILIBRIUM.

ROLE OF ELASTICITY, TOPOLOGICAL DEFECTS IN
DETERMINING CRYSTALLITE MORPHOLOGY.




EXPERIMENTS
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DIFFERENT CONDITIONS LEAD TO DIFFERENT WIDTH AND RING PERIOD, BUT

RATIO OF RING PERIOD TO LAMELLAR WIDTH APPROX. |.6.
RING PERIOD IS HALF THE PITCH, POLARISING MICROSCOPE.

T-'-'H]W.*J; TTE: Ei

PROFESSOR A.TODA’S GROUP, HIROSHIMA UNIVERSITY.
PLOTS COURTESY M. MUTHUKUMAR.
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BASIC IDEA

STRESS MITIGATION VIA IMBIBITION OF DEFECTS.

SHOW THAT HOOKIAN STRESS VANISHES IF DEFECT
DENSITY MATCHES GAUSSIAN CURVATURE.

DRIVING MECHANISM: POSITIVITY OF THE COEFFICIENT OF
GAUSSIAN CURVATURE TERM IN THE BENDING ENERGY.

STRATEGY

COMPARE THE ENERGETICS OF TWO SHAPES: PLANAR,AND
HELICOIDAL.

SHOW THAT THE APPARENTLY “DISTORTED” HELICOIDAL SHAPE HAS LOWER ENERGY.
FURTHER, THAT IT IS A STABLE SOLUTION.
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ORIGAMI 101

CUT AWAY AWEDGE FROM A PIECE OF PAPER,

JOINTHE LIPS OF THE CUT.
PAPER BUCKLES INTO A CONE.

POSITIVE GAUSSIAN CURVATURE AT THE APEX, NONZERO MEAN CURVATURE EVERYWHERE.

INSERT THEWEDGE INTO A SLIT CUT IN THE PAPER,
JOIN THE LIPS OF THE SLIT WITH THOSE OF THE WEDGE.

PAPER BUCKLES INTO A SADDLE.

NEGATIVE GAUSSIAN CURVATURE EVERYWHERE, NONZERO MEAN CURVATURE.

HELICOIDS: NEGATIVE GAUSSIAN CURVATURE, ZERO MEAN CURVATURE.
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STRETCHING ELASTICITY OF A RIBBON
(T << w <)

EASY TO STRETCH WITHOUT BENDING,
DIFFICULT TO COMPRESS WITHOUT BENDING.

1
HOOKE'S LAW: 0y = E ugg 655 + p (uij — 5 Uk 0ij)

E AND Lt : EFFECTIVE 2- DIMENSIONAL ELASTIC MODULI.
LINEARISED LAGRANGIAN STRAIN TENSOR:

1
Uij 5(6’2-@7- + 0;u;) U : DISPLACEMENT FIELD

ELASTIC FREE ENERGY: Fpg = /Uz'j U j d*x,

WITH INTEGRATION OVER UNDISTORTED RIBBON.
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DISCLINATIONS
VOLTERRA CONSTRUCTION VOLTERRA (1907)

7{ df) = 7{ 0;0dx; = = MULTIVALUED

2T

1
WHERE 6 ISTHE BOND-ANGLE. 0= 5eijdiu;

ez—j(?ié)jé’ — i(S(X — XO).

27

CAN FORMALLY CONSIDER A CONTINUQOUS
DISTRIBUTION OF DISCLINATIONS.
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BENDING ENERGY OF A RIBBON (I)

IMAGINE AVERY THIN RIBBON; PLANAR IN EQUILIBRIUM.

R = (z,y, h(z,y))

MONGE REPRESENTATION

Ozh, Oyh CONSTANT —==— RIGIDLY ROTATED PLANE

NONZERO SECOND

BENDING DERIVATIVES
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BENDING ENERGY OF A RIBBON (ll)

CURVATURE TENSOR Kii(x,y) = 0;0;h(z,y)
 (1/Ry 0
"= ( 0 1/RQ>
MEAN CURVATURE H = 1( L2 )
2Ry R,

1
- RRs

GAUSSIAN CURVATURE K

aY -
BENDING ENERGY Fp ~ /(§H2 + Re K)dady
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FOPPL -VON KARMAN THEORY (1)

ROTATIONALLY INVARIANT STRAIN TENSOR:
1
U5 = —(aﬂLj -+ (?jui -+ &Luk 6’juk -+ a@h 83h)

1

EFFECTIVE ELASTIC CONSTANTS:

EANDy ~  THICKNESS,

k AND kg ~ (THICKNESS)3 .

SEE, FOR EXAMPLE L & L, TE
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STABILITY CONDITIONS

K > 0.

NO RESTRICTION ON THE SIGN OF kgG.
FOR SURFACES WITHOUT HOLES AND EDGES,

KdS + / kodl =0, GAUSS”
/S 55 g BONNET (1848)

WHERE £, : GEODESIC CURVATURE OF THE BOUNDARY.

*“PAUCA, SED MATURA!’: FEW, BUT RIPE.
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FOPPL - VON KARMAN THEORY (II)

AIM: SEEK MECHANICAL EQUILIBRIUM.
BALANCE FORCES AND TORQUES; BULK & BOUNDARY.

STRATEGY: AVOID TENSORS!

STRESS === EQUILIBRIUM MOLECULAR SEPARATION CHANGES.
ELASTICITY THEORY: MACROSCOPIC, RANGE OF
MOLECULAR FORCESVERY SMALL.

VOLUME ELEMENT FORCES ACT ONLY ON THE SURFACE OF THEVOLUME ELEMENT

FORCE DENSITY i = dioi; = 0.

AIRY STRESS FUNCTION Oij = €ik€j10K0IX.  ARY (1862)
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FOPPL - VON KARMAN THEORY (llI)
COMPATIBILITY CONDITIONS:

. NOTOPOLOGICAL DEFECTS: FOPPL (1907), VON KARMAN (1910)

U;45 SHOULD LEAD TO A SINGLE - VALUED DISPLACEMENT FIELD U .

1

2. ALLOW TOPOLOGICAL DEFECTS: SEUNGAND NELSON (1988)

U IS NOT SINGLE-VALUED.

1
v V4X:8—K,

s ISTHE DEFECT DENSITY,

K THE GAUSSIAN CURVATURE.
Y ISYOUNG’S MODULUS, RELATED TO E AND
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FOPPL - VON KARMAN THEORY (IV)

TOTAL ELASTIC ENERGY F.lu, h| = Fylu, h| + Fy|hl.
0 F
HEIGHT EQUATION FOR MINIMAL SURFACES = K;;0;; = 0,
oh
WITH 0ii = €kEj10K01X.
4
COMPATIBILITY CONDITION Vix =Y (s - K).

+ BOUNDARY CONDITIONS

“THESE EQUATIONS AREVERY COMPLICATED, AND CANNOT BE SOLVED EXACTLY
EVEN INVERY SIMPLE CASES.” LAND L, TE.
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OTHER TERMS IN THE FREE ENERGY:

SURFACE TENSION:

FS:O'/dS
FL:’V%dl

GEODESIC CURVATURE OF THE BOUNDARY:

LINE TENSION:

MERELY RENORMALISES
Rg TO Kgq

Foc =k 7{ kydl
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FREE BOUNDARY CONDITIONS

| o;; IN; = 0, CAUCHY (1820)

Nj . OUTWARD NORMAL AT THE RIBBON EDGE.

1. FOR ZERO MEAN CURVATURE,

FORCE BALANCE - BOAL AND RAO (1992)
AT THE EDGE: kglE + kg + 0 =0, CAPOVILLA ETAL (2002)

Y : LINETENSION, O : SURFACE TENSION,

k’g : GEODESIC CURVATURE OF THE RIBBON EDGE.

BOUNDARY CONDITIONS FOR A SURFACEWITH NON-ZERO MEAN
CURVATURE ARE EXTREMELY COMPLICATED.

THE DERIVATION OF FREE BOUNDARY CONDITIONS IN LAND L, TE, IS MISLEADING.
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HELICOIDS

R = (pcos¢, psing, bo), | p|<r,

PITCH p = 2m|b|, WIDTH 27

b >0, RIGHT-HANDED; b< 0, LEFT-HANDED.

H = O7 MEAN CURVATURE
MINIMAL SURFACE

K = —b%/(p® + b*)?, GAUSSIAN CURVATURE

k,=7/(r* +b*),  GEODESIC CURVATURE
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SOLUTION

POSSIBLE BECAUSE

THE HELICOID IS A MINIMAL SURFACE,

USED A CONTINUOUS DISTRIBUTION OF
DISCLINATIONS.

MINIMISED ELASTIC ENERGY OF THE RIBBON.

CHECKED THAT THE LINE TENSION TERM DOES NOT AFFECT THE RESULTS MUCH, EVEN
QUANTITATIVELY.
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OPEN ISSUES:

THE SIGN OF &, .

THE ROLE OF “CILIA”. “HOMOGENEOUS, ISOTROPIC” BODIES CAN'T HAVE THE RIGHT SIGN.
EFFECTIVE ELASTICITY THEORY FOR “ORTHORHOMBIC RIBBONS”.

RESIDUAL STRESS BECAUSE OF DISCRETE NATURE
OF DEFECTS.

BANDED SPHERULITES OF CHIRAL POLYMERS.

TENTS AND CHAIRS, SCROLLS.

TENT- AND CHAIR MORPHOLOGIES
(WITH JAYA KUMAR A, M. MUTHUKUMAR).

THANK MADAN RAO FOR DISCUSSIONS, COMMENTS.
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