Competitive nucleation in nanoparticle clusters.

NAG, Bengaluru, July 2010

Eduardo Mendez-Villuendas, Ivan Saika-Voivod Louis Poon, Cletus Asuquo, Richard Bowles University of Saskatchewan

Overview

Background

Simulation Techniques

Surface Freezing in Gold Nanoparticles

Freezing in Medium Sized Lennard Jones

Another look at gold

Summary

Phase Behaviour of Clusters

F. Baletto, R. Ferrando, Rev. Mod. Phys., 77, 371 (2005).

J. P. K. Doye, F. Calvo, J. Chem. Phys., 116, 8307 (2002).

J. P. K. Doye, webpage

Which structure is nucleated?

Gold: FCC is the most stable structure n > 300

	459- clus	atom sters	1157-atom clusters			3943-atom clusters	
structure	700 K	720 K	700 K	720 K	740 K	720 K	740 K
Ih	18	19	12	13	12	7	7
Dh	1	1	2	1	4	1	4
ТО	1		6	4	3	2	1
HCP				2		1	
???						1	
total	20	20	20	20	19	12	12

TABLE 3: Distributions of Final Configurations Materializing Spontaneously during the Freezing of Gold Nanoclusters

Y. G. Chushak, L. S. Bartell, J. Phys. Chem. B, 105, 11605 (2001)

4

Surface Nucleation

H. S. Nam et al., Phys. Rev. Lett, 89, 275502 (2002)

$$\sigma_{vs} - \sigma_{vl} < \sigma_{ls}$$

condition for partial wetting of crystal by melt

Y. S. Djikaev et al., J. Phys. Chem. A, 106, 10247 (2002)

Surface Effects

Surface Nucleation of Stratospheric Cloud Particles

J. Phys. Chem. A, Vol. 106, No. 43, 2002 10243

Some Questions

Which structures can nucleate from a liquid nanopartcle?

Icosahedra, decahedra, FCC based, but are there others?

How are the different structures formed?

What reaction coordinate describes the reaction? How do non-crystalline structures form?

What is the role of surface phenomena in the freezing process?

Gold clusters freezes from the surface, LJ clusters freeze from the core yet they form similar structures!

Molecular Approach Embryo Criteria

n-sized embryo as reaction coordinate

Free Energy Barrier Calculations

Rare Embryo-Low/Moderate Supercooling

$$J = j(n^*)ZN_n(n^*)$$

$$\langle N_n \rangle = P_n(1) + 2P_n(2) + 3P_n(3) + \dots +$$

$$P_n = P_n(1) + P_n(2) + P_n(3) + \dots +$$

$$N_n \approx P_n = \exp[-W(n)]]$$

Work of forming an embryo within the metastable fluid phase

Simulation Techniques

Parallel Tempering

Overcoming kinetic barriers in the formation of complex structures

$$Q_{extended} = \prod_{i} \prod_{j} Q(N, V, T_i, U_j)$$

Free Energy Barrier Gold Nanoparticle N=456 atoms

Umbrella Sampling and Parallel Tempering

E. Mendez-Villuendas and R.K.B, PRL, 98 185503 (2007).

Core Nucleation Gold Nanoparticle N=456 atoms

Core Nucleation Gold Nanoparticle N=456 atoms

Surface Nucleation Spherical cap model

 $W(n)/kT = n\Delta\mu + A_{lv}\sigma_{lv} + A_{sv}\sigma_{sv} + A_{ls}\sigma_{ls} + l_{slv}\tau$

Surface Nucleation Sphere-in-Sphere model

n

Surface Nucleation Sphere-in-Sphere model

Medium sized Lennard Jones Clusters Identifying Different Structures

Common neighbour Analysis

Inherent structure quench

H. Tsuzuki et al., Comp. Phys. Comm., 2007, 177 518–523

Medium sized Lennard Jones Clusters

Before IS Quench After IS Quench 0.3 0.4 q6 surface 0.2 q6 surface 0.10.2 0.0 Number of atoms in a local FCC Configuration 50 Number of atoms in a local FCC Configuration Number of atoms in a local Number of atoms in a local Ico Configuration Ico Configuration

Equilibrium liquid T*=0.53

Instantaneous T decrease T*=0.44

Qs and Qb Correlations

Gold Clusters

		Po	ly I)eca	ahedral a)	
					a) 586 Diversion of the first o	309
Au ₅₈₆	Ih	Dh	p-Dh	fcc		
$2 \mathrm{K} \mathrm{ns}^{-1}$	6	9	3	6		
$10 {\rm K} {\rm ns}^{-1}$	8	5	5	6		
$50 \mathrm{K} \mathrm{ns}^{-1}$	15	2	3	4		· *
Au ₉₇₆						• • • •
$1 \mathrm{K} \mathrm{ns}^{-1}$	7	8	2	7		
$10 {\rm K} {\rm ns}^{-1}$	10	0	4	10		
$50 {\rm K} {\rm ns}^{-1}$	11	2	6	5		
$100 {\rm K} {\rm ns}^{-1}$	11		9	4	c)	1
Au ₂₀₇₅						
$2 \mathrm{K} \mathrm{ns}^{-1}$	4	3	10	7		
$10 \mathrm{~K~ns^{-1}}$	9	1	5	9	C)	
$50 \mathrm{~K~ns^{-1}}$	7	0	9	7		
100 K ns ⁻¹	5	5	11	3		

G. Rossi, R. Ferrando, Nanotec. 18, 225706 (2007).

Gold Clusters N=459

Gold Clusters N=459

Gold Clusters N=459

Gold Clusters N=459

Summary

Medium Sized Clusters Exhibit New Phases

Tetrahedra formation

Important for phase behaviour Important for nucleation of non-crystalline structures?

Still looking for reaction coordinates

Transition states ensembles and Trajectories

Acknowledgments

Eduardo Mendez-Villuendas Ivan Saika-Voivod Louis Poon Cletus Asuquo

Canada Foundation for Innovation Fondation canadienne pour l'innovation

