Competitive nucleation in nanoparticle clusters.

NAG, Bengaluru, July 2010

Eduardo Mendez-Villuendas, Ivan Saika-Voivod Louis Poon, Cletus Asuquo,

Richard Bowles
University of Saskatchewan

Overview

Background

Simulation Techniques

Surface Freezing in Gold Nanoparticles

Freezing in Medium Sized Lennard Jones

Another look at gold

Summary

Phase Behaviour of Clusters

$$
\Delta(N)=\frac{E_{b}(N)-N \epsilon_{c o h}}{N^{2 / 3}}
$$

F. Baletto, R. Ferrando, Rev. Mod. Phys., 77, 371 (2005).

Cuboctahedral
(foc)

Icosahedral

Decahedral

(b)

J. P. K. Doye, webpage

Which structure is nucleated?

Gold: FCC is the most stable structure $\mathrm{n}>300$

TABLE 3: Distributions of Final Configurations Materializing Spontaneously during the Freezing of Gold Nanoclusters

structure	$\begin{aligned} & \text { 459-atom } \\ & \text { clusters } \end{aligned}$		1157-atom clusters			3943-atom clusters	
	700 K	720 K	700 K	720 K	740 K	720 K	740 K
Ih	18	19	12	13	12	7	7
Dh	1	1	2	1	4	1	4
TO	1		6	4	3	2	1
HCP				2		1	
???						1	
total	20	20	20	20	19	12	12

Y. G. Chushak, L. S. Bartell, J. Phys. Chem. B, 105, 11605 (2001)

Surface Nucleation

H. S. Nam et al., Phys. Rev. Lett, 89, 275502 (2002)

$$
\sigma_{v s}-\sigma_{v l}<\sigma_{l s}
$$

condition for partial wetting of crystal by melt
Y. S. Djikaev et al., J. Phys. Chem. A, 106, 10247 (2002)

Surface Effects

Surface Nucleation of Stratospheric Cloud Particles

J. Phys. Chem. A, Vol. 106, No. 43, 200210243

Some Questions

Which structures can nucleate from a liquid nanopartcle?

Icosahedra, decahedra, FCC based, but are there others?

How are the different structures formed?

What reaction coordinate describes the reaction?
How do non-crystalline structures form?

What is the role of surface phenomena in the freezing process?
Gold clusters freezes from the surface, LJ clusters freeze from the core yet they form similar structures!

Classical Nucleation

$$
J=j\left(n^{*}\right) Z N_{n}\left(n^{*}\right) \quad W=n \Delta \mu+a \sigma n^{2 / 3}
$$

Molecular Approach
 Embryo Criteria

n-sized embryo as reaction coordinate

Local Order

$$
\begin{gathered}
q_{l m}(i)=\frac{1}{N_{b}(i)} \sum_{j=1}^{N_{b}(i)} Y_{l m}\left(\mathbf{r}_{i j}\right) \\
\mathbf{q}_{6}(i) \cdot \mathbf{q}_{6}(j)=\sum_{m=-6}^{m=6} q_{6 m}(i) \cdot q_{6 m}(j)
\end{gathered}
$$

Free Energy Barrier Calculations Rare Embryo-Low/Moderate Supercooling

$$
\begin{gathered}
J=j\left(n^{*}\right) Z N_{n}\left(n^{*}\right) \\
\left\langle N_{n}\right\rangle=P_{n}(1)+2 P_{n}(2)+3 P_{n}(3)+\cdots+ \\
P_{n}=P_{n}(1)+P_{n}(2)+P_{n}(3)+\cdots+ \\
\left.N_{n} \approx P_{n}=\exp [-W(n)]\right]
\end{gathered}
$$

Work of forming an embryo within the metastable fluid phase

Simulation Techniques

Parallel Tempering

Overcoming kinetic barriers in the formation of complex structures

Free Energy Barrier

Gold Nanoparticle N=456 atoms

$N_{n} \approx P_{n}=\exp (-W / k T)$

Umbrella Sampling and Parallel Tempering

Core Nucleation

Gold Nanoparticle $\mathrm{N}=456$ atoms

Core Nucleation

Gold Nanoparticle $\mathbf{N}=456$ atoms

Surface Nucleation
 Spherical cap model

$$
W(n) / k T=n \Delta \mu+A_{l v} \sigma_{l v}+A_{s v} \sigma_{s v}+A_{l s} \sigma_{l s}+l_{s l v} \tau
$$

Surface Nucleation

Sphere-in-Sphere model

Medium sized Lennard Jones Clusters

Identifying Different Structures

Common neighbour Analysis
Inherent structure quench

H. Tsuzuki et al., Comp. Phys. Comm., 2007, 177 518-523

Medium sized Lennard Jones Clusters

After IS Quench

Free Energy Surface LJ N=600

Free Energy Surface LJ N=600

Free Energy Surface LJ N=600

Free Energy Surface LJ N=600

$\mathrm{T}=0.485$

Quenched Configurations

Quenched Configurations

Quenched Configurations

Quenched Configurations

Molecular Dynamics Simulations

Equilibrium liquid T * $=0.53$

Instantaneous T decrease $\mathrm{T}^{*}=0.44$

Molecular Dynamics Simulations

Qs and Qb Correlations

Trajectories

Qsurf
Icos

Trajectories

Trajectories

Trajectories

Gold Clusters

Poly Decahedral

Gold Clusters $\mathbf{N}=459$

Gold Clusters $\mathrm{N}=459$

Gold Clusters $\mathbf{N}=459$

Gold Clusters $\mathbf{N}=459$

Summary

Medium Sized Clusters Exhibit New Phases

Tetrahedra formation
Important for phase behaviour
Important for nucleation of non-crystalline structures?

Still looking for reaction coordinates

Transition states ensembles and Trajectories

Acknowledgments

Eduardo Mendez-Villuendas
Ivan Saika-Voivod
Louis Poon
Cletus Asuquo

