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Phase Behaviour of Clusters

tional frequency, its value should be the same for all se-

quences of a particular structural type. Therefore, we used

our most well-characterized sequences to determine a! for

each structural type. This gave a!
icos!0.509 70, a!

deca

!0.519 30, a!
fcc!0.520 20. For other sequences we used the

appropriate a! value, and then fitted the three remaining pa-

rameters.

To construct the melting line, am is assigned the value of

the zero pressure bulk melting temperature77 and the other

three parameters in Eq. "9# are fitted using the melting points
of the first four Mackay icosahedra, which were obtained

from Monte Carlo simulations. For the 309-atom cluster par-

allel tempering proved to be necessary to ensure ergodicity.

For this cluster a low-temperature shoulder was seen in the

heat capacity, which was indicative of a surface

transition.74,78

The structural phase diagram that results from these cal-

culations is shown in Fig. 7. The phase boundaries divide the

plane into regions where the majority of clusters has a par-

ticular equilibrium structure. As the size increases, there is

the expected progression from icosahedral to decahedral to

fcc clusters. The less-strained structures become favored at

larger N as the effect of their lower aE values dominates over

their less favorable surface energies. For the sequences of

Fig. 5"b#, aE
icos!"8.5320, aE

deca!"8.6027, aE
fcc!"8.6101.

Furthermore, the effect of the vibrational entropy can be

clearly seen from the slopes of the phase boundaries in Fig. 7

and from the differences between the crossover sizes at zero

temperature and the melting point "Table II#. At higher tem-
peratures icosahedra and Marks decahedra remain most

stable up to considerably larger sizes than would be expected

from their energetic crossovers. This is because of the rela-

tive values of their vibrational frequencies: a!
icos and a!

deca are

2.06% and 0.19% less than a!
fcc , respectively. Lower values

of a! are associated with structural types with a greater strain

energy; the physical origin of this correlation will be ex-

plored elsewhere.

Interestingly, the effect of entropy is greater for the deca-

hedral to fcc transition, even though the difference in !̄ is

smaller. The larger value of N in the denominator of Eq. "6#
and the much smaller difference in aE more than compensate

for the smaller difference in !̄ . For example, it can be easily
shown that

dTss

dN
"T!0 #!

$aE#2$bE/3N
1/3#$cE/3N

2/3

k% log" !̄A / !̄B#

&
$aE

k% log" !̄A / !̄B#
for large N , "10#

where $aE!aE
B"aE

A , ¯ .

There has been much interest in the phase changes in

clusters as the finite-size analogs of bulk phase transitions.

The finite size, which can lead to unusual features such as

negative heat capacities,79,80 causes any transition to occur

not at a single temperature, but instead both phases can co-

exist over a range of temperature.81 This is illustrated by the

finite width of the peaks in Fig. 2. We can easily estimate this

coexistence range for our examples if we define the upper

and lower limit of this coexistence range, Tss
$ , as the tem-

peratures at which (pA ,pB)!(0.1,0.9) and "0.9, 0.1#. This
gives

Tss
$!

$E

k% log" !̄A / !̄B#% log 9
. "11#

However, as the size at which these transitions occur is large,

the log 9 term does not significantly effect the denominator

and so the coexistence range is very small. When Tss
$ are

plotted on Fig. 7 the lines are indistinguishable from those

for the midpoint of the transition.

The assumption of harmonicity was one of the approxi-

mations used to construct the structural phase diagram of

Fig. 7. It has been previously found that this approximation

leads to an overestimate of roughly 10% in the value of the

melting temperature for small LJ clusters, because the liquid-

like state is significantly more anharmonic.63,68 One would

expect the errors to be less for Tss because the differences in

anharmonicity between two solid forms are likely to be much

less and because the relevant temperatures are often much

lower.

One can introduce the effects of anharmonicity via

temperature-dependent frequencies, i.e., !̄(T)! !̄0(1
"'0/'), where '0 is a measure of the anharmonicity.67,68

This then gives for the transition temperature

1

kTss
anharm!

%! log" !̄A
0 / !̄B

0 ##log! 1"'A
0 /'

1"'B
0 /' " "

$E
. "12#

As the temperature occurs on both sides of this equation, it

would have to be solved self-consistently. Alternatively, an

approximate solution can be obtained by taking the first

terms of the binomial expansion of the second log and then

substituting in the harmonic expression for Tss . This gives

1

kTss
anharm!

% log" !̄A
0 / !̄B

0 #

$E
#

'B
0"'A

0

log" !̄A
0 / !̄B

0 #
. "13#

The second term represents an anharmonic correction to

'ss
harm . To apply this equation, estimates of the size depen-

FIG. 7. Structural phase diagram for LJ clusters. The data points represent

the melting temperatures of the four smallest Mackay icosahedra.
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Section III.E is devoted to the study of selected sys-
tems of special interest.

A. Geometric shells: Structural motifs and general trends
in energetics

In general, the binding energy Eb of a cluster of size N
with a given structure can be written in the form1

Eb = aN + bN2/3 + cN1/3 + d , !4"

where the first term corresponds to a volume contribu-
tion, while the others represent surface contributions
from facets, edges, and vertices. Volume and surface
contributions are in competition. Clusters with low sur-
face energy must have quasispherical shapes !thus opti-
mizing the surface/volume ratio", and close-packed fac-
ets. On the other hand, it is not possible to build up
clusters of spherical shape without internal strain, which
gives a volume contribution.

A useful parameter for comparing the stability of clus-
ters in different size ranges is !!N",

!!N" =
Eb!N" − N"coh

N2/3 , !5"

where "coh is the cohesive energy per particle in the bulk
solid and ! is the excess energy !that is, the energy in
excess with respect to N atoms in a perfect bulk crystal"
divided approximately by the number of surface atoms.
Other indicators of structural stability are the binding
energy per atom, Eb!N" /N, and the first and second dif-
ferences !1!N" and !2!N" in the binding energy,

!1!N" = Eb!N − 1" − Eb!N" ,

!2!N" = Eb!N − 1" + Eb!N + 1" − 2Eb!N" . !6"

!1 and !2 measure the relative stability of clusters of
nearby sizes. Peaks in !2!N" were found to be well cor-
related to peaks in the mass spectra !Clemenger, 1985".

Let us now build up structural motifs by trying to op-
timize either volume or surface energy contributions.
The easiest way to minimize volume contributions is to
cut a piece of bulk matter so that interparticle distances
inside the cluster are automatically optimized. For such
clusters of crystalline structure the parameter a in Eq. !4"
is simply "coh, so that limN→# !=b. As we shall see in the
following, nanoclusters can be also of noncrystalline
structures; for these clusters a is larger than "coh, and !
diverges at large sizes !see Fig. 3".

Consider now fcc crystalline structures. Try to cut a
cluster from a bulk fcc crystal in such a way that its
surface has only close-packed facets. A possible result-
ing shape is the octahedron !see Fig. 4", that is, two
square pyramids that share a basis. Even if the whole
surface of the octahedron is close packed, its shape does
not optimize the surface energy because of its high
surface/volume ratio. Clusters with more spherical
shapes are obtained by cutting the vertices, thus produc-
ing a truncated octahedron. Its surface has eight close-
packed !111" and six square !100" facets; the latter have
a higher surface energy in most materials. A deeper cut

1See, for example, Hill !1964", Northby et al. !1989", Xie et al.
!1989", Cleveland and Landman !1991", Jortner !1992", Uppen-
brink and Wales !1992", Baletto, Ferrando, et al. !2002".

FIG. 3. Qualitative behavior of ! #Eq. !5"$ for crystalline,
icosahedron, and decahedron clusters.

FIG. 4. Face-centered-cubic clusters: !a" octahedron; !b" trun-
cated octadedron; !c" cuboctahedron. Each cluster is shown in
four views. !a" An octahedron is made up of two square pyra-
mids sharing a common basis. Its surface consists of eight tri-
angular close-packed !111" facets, but the structure has a high
surface/volume ratio. Polyhedra with a lower surface/volume
ratio, are obtained by truncating symmetrically the six vertices
of an octahedron, thus obtaining square and hexagonal !or tri-
angular, see below" facets. A truncated octahedron can be
characterized by two indexes: nl is the length of the edges of
the complete octahedron; ncut is the number of layers cut at
each vertex. In the figure, for the octahedron in !a" !nl ,Ncut"
= !7,0", the truncated octahedron in !b" !nl ,Ncut"= !7,2", and
the cuboctahedron in !c" !nl ,Ncut"= !7,3". A perfect truncated
octahedron has thus a number of atoms, NTO!nl ,ncut"= 1

3 !2nl
3

+nl"−2ncut
3 −3ncut

2 −ncut. This equation defines the series of
magic numbers for truncated octahedron structures. The
square facets have a !100" symmetry and edges of ncut+1 at-
oms. The !111" facets are not in general regular hexagons. In
fact, three edges of the hexagons are in common with square
facets, thus having ncut+1 atoms, while the remaining three
edges have nl−2ncut atoms. Regular hexagons are thus possible
if nl=3ncut+1; truncated octahedra with regular hexagonal fac-
ets are referred to as regular truncated octahedra. When nl
=2ncut+1 the hexagonal facets degenerate to triangles and the
cuboctahedron is obtained, which is usually not energetically
favored because of its large !100" facets.

375F. Baletto and R. Ferrando: Structural properties of nanoclusters

Rev. Mod. Phys., Vol. 77, No. 1, January 2005

∆(N) =
Eb(N)−Nεcoh

N2/3
Lennard Jones Clusters

F. Baletto, R. Ferrando, Rev. Mod. Phys., 77, 371 (2005). J. P. K. Doye, F. Calvo,J. Chem. Phys., 116, 8307 (2002). 
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Which structure is nucleated?

Gold:  FCC is the most 
stable structure n > 300

Such a dependence agrees well with the MD data only for large
clusters. In adjusting the liquid shell model (eq 7) to agree with
the plot, the solid-liquid interfacial tension and shell thickness
were considered as unknown parameters. This procedure yielded
the results σsl ) 0.145 ( 0.01 J/m2 and t ) 5.0 ( 0.5 Å. The
thickness of the liquid shell derived is approximately twice the
gold-gold internuclear distances in the metal and, hence, is
not implausible in magnitude. The value of σsl obtained agrees
reasonably well with the value of 0.16 J/m2 implied by
Antonow’s rule44 σsl ) σs - σl, and with those inferred from
several empirical relationships.
Such empirical expressions to estimate the solid-liquid

interfacial free energy include one developed by Tyson and
Miller,45 who proposed that

where R ) 0.15 ( 0.03 for metallic systems. By employing
these relationships, we obtainedσsl in the range 0.11-0.16 J/m2.
Another empirical estimation of σsl, proposed by Turnbull,46
can be written as

where Vh is the molar volume (not originally specified as of solid
or liquid) and NA is Avogadro’s number. Using the reported
value of the proportionality constant kT, namely 0.45 for metal
systems, we obtained a value for σsl of 0.12 J/m2. However
suggestive the above results are, they should be regarded with
some skepticism for two reasons. For one thing, as will be
discussed subsequently, the Pawlow and Sambles models
themselves are based on equivocal assumptions. For another,
the data upon which the empirical relations were calibrated are
difficult to obtain accurately and, at least in some cases,
depended upon inferences incorporating the equivocal assump-
tions just referred to.
Freezing. The final liquid configurations were additionally

equilibrated and, as mentioned above, 12-20 configurations
were generated for the cooling runs. These clusters were cooled
to 750 K and served as starting configurations for freezing.
During the cooling runs a self-diffusion coefficient was calcu-
lated from the slope of the mean-square displacement curver2(t)
according to the Einstein equation

This coefficient is needed for the prefactor of the nucleation
rate equation. Although the surface atoms have a higher
diffusivity than the internal ones, we did not discriminate
between surface and interior atoms in computingD. The results
of our diffusion investigations are presented in Figure 3. Since
the experimental value of the diffusion constant for bulk gold
is not available, we compared our results for clusters with the
data from MD simulations of bulk liquid gold.47 A good
agreement between the two sets of data was observed. The
calculated temperature dependence of the diffusion coefficient
was fitted by the empirical Arrhenius functional form

which yields an activation energy Ea ) 23.88 kJ/mol and a
prefactor D0 ) 27.9 × 10-9 m2/s.
Despite the fact that individual clusters for each size were

frozen under identical conditions, they froze to different final
structures. One of the clusters with 1157 atoms failed to freeze
at 740 K during the 1 ns simulation run. In Table 3 we
summarize the distributions of final configurations for gold
clusters frozen at different temperatures. Clearly the icosahedral
structure formed preferentially for all cluster sizes, but others
also formed spontaneously. Figure 4 shows typical structures
obtained during the freezing of supercooled clusters. The dark
gray spheres represent gold atoms with an FCC local structure,
and light gray spheres are atoms with an HCP environment. In
the case of Ih or Dh structures HCP atoms are located in the
twin boundary of FCC tetrahedra with (111) faces. Stacking
faults in the FCC planes of TO clusters cause the planes
identified as HCP. Correspondingly, the stacking faults of planes
in the HCP structure lead to the appearance of planes with FCC
local symmetry. Figure 5 presents the time evolutions of the
number of solid atoms with different local environments during
the freezing of 459-atom clusters at 700 K. Only core atoms
(atoms that have 12 or more neighbors) with well-defined local

TABLE 2: Thermodynamic and Physical Properties of Bulk
Gold from EMA Simulations and Experiment

quantity symbol EAM potential exptl

melting temp Tm (K) 109049 133659

mass density
liquid Fl (kg/m3) 17 28048 17 28059

solid Fs (kg/m3) 19 00048 18 40060

molar latent heat L (J/mol) 10 59748 12 36259

surf. tension
liquid σl (J/m2) 0.7448 1.1361

-dσ/dT (mJ/m2 K) 0.1461

solid σs (J/m2) 0.9048 1.4062

-dσ/dT (mJ/m2 K) 0.1462

solid-liquid σsl (J/m2) 0.13-0.15 0.2741

diffusion coeff
(T ) 1500 K)

D (10-9 m2/s) 4.0 (this work)

Figure 3. Arrhenius plot of the diffusion coefficient for normal and
supercooled liquid gold nanoclusters calculated from MD simulations.
Solid circles, solid triangles, and open squares represent runs for 1157-
atom clusters, 3943-atom clusters, and bulk gold particles, respectively.

TABLE 3: Distributions of Final Configurations
Materializing Spontaneously during the Freezing of Gold
Nanoclusters

459-atom
clusters

1157-atom
clusters

3943-atom
clusters

structure 700 K 720 K 700 K 720 K 740 K 720 K 740 K

Ih 18 19 12 13 12 7 7
Dh 1 1 2 1 4 1 4
TO 1 6 4 3 2 1
HCP 2 1
??? 1

total 20 20 20 20 19 12 12

D ) D0 exp(-Ea/RT) (11)

σsl
σs

) R or
σsl
σl

) R
1 - R (8)

σsl ≈
kTL

(Vh2NA)
1/3

(9)

D )
!r2(t)"
6t

(10)

11608 J. Phys. Chem. B, Vol. 105, No. 47, 2001 Chushak and Bartell

Y. G. Chushak, L. S. Bartell, J. Phys. Chem. B, 105, 11605 (2001) 
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Surface Nucleation

σvs − σvl < σls

condition for partial wetting of 
crystal by melt

S

S

L
L

V

liquid-solid transition and the freezing point was esti-
mated as 706 K. In the second case shown by the freezing
curve B in Fig. 1, the liquid-solid transition took place
over tens of degrees of temperature.

Similar MD simulation works of the melting and freez-
ing were reported by Chushak et al. [17] and they also
found the preferential formation of an Ih structure for

various cluster sizes. In spite of the MD simulations, an
understanding as to why the formation of an Ih structure
occurs so frequently is still lacking. For detailed analysis
of the freezing behavior, we looked at cluster configura-
tions corresponding to the three open circles (at 750, 700,
and 650 K, respectively) in freezing curve A in Fig. 1 [see
Figs. 2(a)–2(c)]. Only for the purpose of avoiding vibra-
tional noise effect in the analysis of the cluster structure,
we relaxed the cluster-atomic configurations to the local
energy-minimum structures by using the conjugate gra-
dient minimization technique.We also showed an ideal Ih
structure of a 561-atom cluster for comparison [see
Fig. 2(d)]. At 750 K, which is well above the freezing
temperature, the cluster was in a liquid state. Forming
and dissolving of very small embryos occurred within the
disordered state and the cluster shape was highly fluctu-
ating and approximately spherical. Notably, as the freez-
ing temperature was approached, flat surface segments
such as solid facets started to appear temporarily. The
abrupt decrease of potential energy shown in Fig. 1 in-
dicates that the cluster at 700 K had just frozen. At 700 K,
the cluster showed ordered facets with a fivefold symme-
try, apparently with an Ih shape [see Fig. 2(b)]. As the
cluster was cooled further to 650 K, the interior atoms
rearranged from these surface facets to form an Ih crys-
talline structure [see Fig. 2(c)], which was comparable to
an ideal icosahedron [see Fig. 2(d)].

FIG. 2 (color). Cluster configurations at different stages corresponding to the open circles in the freezing curve A in Fig. 1: (a) in a
liquid state (at 750 K), (b) just after freezing (at 700 K), (c) after complete rearrangement (at 650 K), and (d) an ideal icosahedron
for comparison. In the upper row, only surface atoms are shown, while in the middle row, all the atoms are shown at a smaller size to
display their inner arrangement. In the lower row, solidlike atoms with a well-defined local symmetry are shown in two-cross-
sectioned views by a ball-and-stick model. Blue, gold, and red balls represent atoms with hcp, fcc, and fivefold local symmetries,
respectively.

FIG. 1. Variation of potential energy with temperature for
gold clusters of 561 atoms with heating and cooling rates of
1011 K=s. The dashed line denotes the melting curve during
heating and the solid line the freezing curve. The different
freezing curves A and B were obtained from different initial
configurations of melted clusters.

VOLUME 89, NUMBER 27 P H Y S I C A L R E V I E W L E T T E R S 30 DECEMBER 2002

275502-2 275502-2

H. S. Nam et al., Phys. Rev. Lett, 89,  275502 (2002) 

Y. S. Djikaev et al., J. Phys. Chem. A, 106,  10247 (2002) 
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Surface Effects 
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Some Questions
Which structures can nucleate from a 

liquid nanopartcle?

How are the different structures formed?

What is the role of surface phenomena in 
the freezing process?

Icosahedra, decahedra, FCC based, but are there others?

What reaction coordinate describes the reaction?
How do non-crystalline structures form?

Gold clusters freezes from the surface, LJ clusters freeze 
from the core yet they form similar structures!
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Classical Nucleation

Surface term:~ σn2/3 

n* n

ΔW
ΔW∗

Volume term: ~  nΔµ

€ 

W = n∆µ + aσn2/3J = j(n∗)ZNn(n∗)
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Molecular Approach
Embryo Criteria

Local Order

qlm(i) =
1

Nb(i)

Nb(i)∑

j=1

Ylm(rij)

q6(i) · q6(j) =
m=6∑

m=−6

q6m(i) · q6m(j)

n-sized embryo as reaction coordinate
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〈Nn〉 = Pn(1) + 2Pn(2) + 3Pn(3) + · · ·+

Pn = Pn(1) + Pn(2) + Pn(3) + · · ·+

Work of forming an embryo within the 
metastable fluid phase

Nn ≈ Pn = exp[−W (n)]]

10

Free Energy Barrier Calculations
Rare Embryo-Low/Moderate Supercooling

J = j(n∗)ZNn(n∗)
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Simulation Techniques
Parallel Tempering  

Overcoming kinetic barriers in the formation of complex structures

T1

T2

T3

Qextended =
∏

i

∏

j

Q(N, V, Ti, Uj)

n0 = 0 n0 = 10 n0 = 20 Configuration Space

Uj
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Free Energy Barrier
Gold Nanoparticle N=456 atoms
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(n

)/
k
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n

T=730K
T=710K
T=690K
T=680K

Nn ≈ Pn = exp(−W/kT )

E. Mendez-Villuendas and R.K.B, PRL, 98 185503 (2007). 

Umbrella Sampling and Parallel Tempering
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Core Nucleation
Gold Nanoparticle N=456 atoms
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Surface Nucleation
Sphere-in-Sphere model
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Surface Nucleation
Sphere-in-Sphere model
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Surface Nucleation
Sphere-in-Sphere model
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Medium sized Lennard Jones Clusters

Identifying Different Structures

H. Tsuzuki et al., Comp. Phys. Comm., 2007, 177 518–523

Common neighbour Analysis Inherent structure quench
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Medium sized Lennard Jones Clusters

Before IS Quench After IS Quench
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Quenched Configurations
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Quenched Configurations
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Quenched Configurations
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Quenched Configurations
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Molecular Dynamics Simulations

Equilibrium liquid
T*=0.53

Instantaneous T decrease
T*=0.44
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Figure 3. p-Dh particles can have more than two fivefold symmetry
axes and do not resemble the icosahedral morphology. (a) An Au586
cluster frozen at 10 K ns−1 showing three (5, 5, 5) signature axis
forming a triangular shape. (b) An Au2075 cluster frozen at
10 K ns−1, whose fivefold axes compose a perfect tetrahedron. (c)
An Au976 cluster frozen at 100 K ns−1. Here can be seen a decahedral
nucleus, with each surface edge transformed into a fivefold symmetry
axis surrounded by a local decahedral arrangement.

it could be rather difficult to distinguish these clusters from
simple decahedra in experiments.

The complete analysis of the structures resulting from
our freezing simulations shows that bi-decahedral clusters
are indeed a subset of a more general family of poly-
decahedral particles. Their morphology is characterized by the
presence of several fivefold symmetry axes (2, 3 . . . up to 15
according to our results), each of them surrounded by a local
decahedral arrangement. The fivefold axes are often arranged
in symmetric patterns, like triangles, tetrahedra, etc. In figure 3

Figure 4. Low-temperature part of the caloric curves E versus T of
an Au2075 cluster in freezing simulations with a cooling rate of
2 K ns−1 (the inset shows a complete caloric curve, with
solidification at about 620 K). Icosahedral structures, represented by
triangles, are the highest in energy. Crosses refer to p-Dh, full circles
to Dh and full squares to fcc structures.

we show that many fivefold symmetry axes can exist in the
same cluster, without resembling the well-known icosahedral
motif.

Dh and p-Dh structures are by far the most common
structural motif at the slowest freezing rate for all the sizes
considered, covering the 50%, 41% and 54% (for Au586, Au976

and Au2075, respectively) of the whole set of structures. On
the theoretical side, this indeed qualitatively agrees with the
equilibrium structural distribution expected for Au clusters
modelled by the same model potential [28], because the
clusters considered belong to a size range characterized by
a close competition between the fcc and the decahedral
motif. Also Cleveland, using an embedded-atom model, have
stated in [33] that several truncated Marks-Dh exhibit a good
energetic stability in this size range. In figure 4 we report the
caloric curves (cluster energy versus temperature) which show
that p-Dh clusters are not the lowest-energy motif. However,
at least in the cases that we have examined, they have lower
energy than icosahedra, and they are slightly higher than
simple decahedra, while fcc clusters are the lowest ones. This
results indicate that p-Dh structures deserve to be considered
among the candidate structural motifs of clusters frozen from
liquid.

On the experimental side, according to Koga et al [12], Dh
structures are the most common among the small size clusters
frozen after being annealed at a temperature higher than the
melting point of bulk Au. Of course, among Dh-like structures
the role played by p-Dh clusters is not the same in Koga’s [14]
experiment and in our simulations. In the experiment by Koga,
the occurrence of bi-decahedral particles is considered small
but significant, being estimated of the order of 1%. On the
other hand, the set of structures that cannot be assigned to
any well known and expected structural family (Ih, Dh or fcc)
covers up to 10% of the sample. The larger proportion of
bi-Dh and p-Dh structures in our simulations can indeed be
due to the limitations imposed by computational time on the
cooling rate of our simulations: the slower the freezing rate,
the more ordered the final structure should be, resulting in an
increase of the Dh percentage with respect to the p-Dh one.

4
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Table 1. Results of the freezing simulations for Au clusters. The
numbers reported in the table are the total numbers of observations of
the different structures. For example, in the case of Au586 at
2 K ns−1, we performed 24 simulations. Six of them led to Ih
structures, 9 to Dh, 3 to p-Dh and 6 to fcc structures. The detail of
structure classification is given in the text.

Au586 Ih Dh p-Dh fcc

2 K ns−1 6 9 3 6
10 K ns−1 8 5 5 6
50 K ns−1 15 2 3 4

Au976

1K ns−1 7 8 2 7
10 K ns−1 10 0 4 10
50 K ns−1 11 2 6 5

100 K ns−1 11 — 9 4

Au2075

2 K ns−1 4 3 10 7
10 K ns−1 9 1 5 9
50 K ns−1 7 0 9 7

100 K ns−1 5 5 11 3

thus able to single out all local fivefold axes. Perfect decahedra
have a single fivefold symmetry axis, that is the edge shared
by the five tetrahedra that constitute the structure. The pairs
of nn atoms belonging to their twinned planes have the (4, 2,
2) signatures, while the remaining volume nn pairs have the
(4, 2, 1) signature. Perfect icosahedra have six fivefold axes,
each connecting two of the twelve vertexes, and meeting at the
cluster centre. Clusters missing any fivefold symmetry (that
is, any (5, 5, 5) signatures) are candidate crystalline structures:
volume pairs of nn atoms in fcc structures are characterized
by the (4, 2, 1) signature. It is worth noting that the volume
nn atoms in hcp structures get the (4, 2, 2) signature, so that
the presence of both (4, 2, 2) and (4, 2, 1) signatures can
be associated to local fcc domains connected by hcp stacking
faults.

For all the sizes considered, icosahedral structures are
likely to be found at faster freezing rates. This is in
good agreement with the results of previous simulation
studies [23–27]. Shim [25], Chushak [23] and Kuo [26] have
frozen liquid Au droplets (using embedded-atom models) at
cooling rates of 500, 300 and 200 K ns−1, respectively, and
all registered an overwhelming predominance of Ih structures
among the frozen particles. These cooling rates are indeed
several orders of magnitude larger than the experimental ones,
as estimated in [9, 14]. The picture arising from high-
cooling-rate simulations, therefore, does not agree well with
the structural distribution registered by Koga et al [12] after
annealing clusters at high temperatures.

Another general trend can be singled out looking at table 1.
The number of fcc clusters (often exhibiting one or more
stacking faults) decreases as the cooling rate increases. The
percentage of fcc structures at the slower cooling rates appears
to be in contrast with the population statistics registered in [12],
where the fcc ordering is almost absent at the small sizes.
Nevertheless, the presence of such fcc clusters in simulations
can be explained as follows. First of all, according to the model
potential used here and in [28], fcc structures are the lowest in
energy (even if in close competition with the Dh motif) in this

Figure 2. Clusters from freezing simulations. (a) A decahedral Au976
cluster frozen at 1 K ns−1 (its structure can be compared to that of the
perfect decahedron in figure 1). Here the presence of a single fivefold
axis is highlighted, and in the zoom region the hexagonal symmetry
of a surface (1, 1, 1) facet can be observed. (b) An example of
parallel-axis bi-Dh particle formed by the freezing of a Au2075 cluster
at 2 K ns−1. It is worth noting that the presence of a fivefold axis
almost at the border of the structure makes the experimental structure
classification quite hard to be achieved. (c) A bi-Dh particle resulting
from the freezing of a Au976 cluster at the 1 K ns−1 rate. The same
cluster is shown from three different perspectives. The two fivefold
axes meet at a point. This structure closely resembles the bi-Dh
particles observed in [14].

size range. Second, the presence of several fcc structures in the
simulations with slow cooling rate could be partly induced by
the choice of TO magic sizes.

Among the whole set of 264 frozen clusters analysed, 35
structures exhibiting a single fivefold axis (see figure 2) have
been classified as decahedral after the CNA analysis. In such
decahedral structures, the axis is not necessarily placed at the
centre of the cluster, and we often observe the Marks truncated
morphology that is expected to be favourable for Au [28, 29].
Another typical feature of the decahedral clusters resulting
from freezing is the presence of hcp islands on the (111)-like
facets of the decahedra, similar to those predicted for silver
in [30], and observed recently in experiments and simulations
about AuPd and Ni nanoparticles [31, 32]. Clusters with more
than one fivefold axis, each surrounded by a local decahedral
arrangement, have also been found. Twenty of them exhibit
two fivefold symmetry axes and have been thus classified as
bi-decahedral (see figure 2). In these clusters, fivefold axes
can also be parallel, but more commonly they originate from
a common vertex. The latter bi-Dh structural motif well
resembles the morphology recently sketched by Koga [14]. On
the other hand, in bi-Dh clusters with parallel axes, one of the
axes is usually very close to the periphery of the cluster, so that
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