
The matrix group recognition project; some of the tricks

Charles Leedham-Green, Queen Mary, University of London crlg@maths.qmul.ac.uk
For me, the first moment of enlightenment in the matrix group recognition project

came in 1984, with the publication of Aschbacher’s celebrated analysis of the maximal
subgroups of the classical groups. This theorem, roughly summarised, states that any
subgroup of a classical group is either very close to being simple, or it maps homomorphi-
cally into a ‘better’ group than the original classical group, by virtue of preserving some
geometrical structure. Typically, this ‘better’ group will be a classical group of smaller
rank, or of the same rank, but defined over a smaller field, or it may be a permutation
group of small degree, or perhaps simply a cyclic group. Thus we can hope to analyse the
image of the homomorphism, for example by recursion. Another moment of enlightenment
was seeing how we could find an acceptably small generating set for the kernel of this
homomorphism. Another was the realisation that we could cheaply produce high quality
random elements of a group, as much discussed at this conference. The problems of how
to make Aschbacher’s theorem explicit, and how to deal with the various families of simple
groups, have required numerous insights, and more are still required.

It is a matter of very great satisfaction that some twenty six years after the publication
of Aschbacher’s theorem a working version of the matrix group recognition project is now
available in MAGMA.

This has been the result of a great deal of work by many people. We make explicit
use of the classification of the finite simple groups, and we use a great deal of information
about these groups, some of which has been developed explicitly for our project. This
makes it impossible to give a comprehensive list of collaborators. I have worked with Ea-
monn O’Brien almost from the inception of the project. He has written most of the code,
and produced many of the ideas. Derek Holt has made major contributions, both in the
earliest days of the project, and more recently, as the specification of the algorithm has
been seriously upgraded to produce more useful output, contributing both code and funda-
mental ideas, and my former student Henrik Bäärnhielm is also working on upgrading and
maintaining the overall structure of the code, and Heiko Dietrich is working at Auckland
on the classical groups.

It will not have escaped the attention of those attending this conference that these
ideas have been re-worked by Ákos Seress and Max Neunhöffer in GAP. Of course they
have added valuable ideas of their own, some of which we have adopted; principally the
use of ‘nice generators’.

While trying to get to sleep, and contemplating what to cover in this talk, I tried
counting the number of tricks that we have had to produce to get the code to its current
state. Having got to 150, perhaps having counted some more than once, I finally fell asleep.
I write ‘trick’ because most of the ideas, once one has thought of them, are quite simple. So
rather than trying to discuss the strategic issues, I shall discuss some of the tricks. Some,
such as Trick 1 below, come under the heading of linear algebra, or finite field algorithms.
These are supplied by MAGMA; we have not contributed to their development.

Obviously some of our algorithms run faster than others; but we aspire to be able
to compute with matrices of degree up to about 240, and with fields of order up to 1917.
These limits should not be taken too seriously; experts will be able to construct smaller

1



examples that will defeat us. However, one should imagine an element of such a group,
and consider what one might do with it. This brings me to my first item.

Trick 1. Given g ∈ GL(d, q); find the minimum polynomial of g.

More precisely, an invertible matrix A is constructed so that A−1gA is a sparse matrix
from which the minimal polynomial can be read off. A critical issue is the fact that this
can be done by an algorithm with complexity O(d3) field operations.

Trick 2. Compute the order of g ∈ GL(d, pe).

This trick is the combination of three simple subtricks.
1. Calculate and factorise the minimum polynomial f(x) of g; so f(x) =

∏
i fi(x)ai ,

where the fi(x) are distinct irreducible monic polynomials over GF(pe). The factorisation
of univariate polynomials over a finite field is one of the glories of computer algebra. The
power of p that divides the order of g can be computed precisely from the exponents (ai);
this power being pn, where pn−1 is the least power of p such that pn−1 < ai for all i. In
fact the order of g is pn−1r where r is prime to p, and divides the least common factor of
the integers qi − 1.

2. Let H be any finite group, and let h ∈ H. Calculate the order of h given that this
order divides n for some given n, We write this in pseudo-code.

Order(h, n);
begin

if h is the identity return 1.
if n = pt for some prime p

order := 1;
for i := 1 to t− 2 do

if h is the identity return order;
h := hp;
order := order × p;

end for;
return order;
factorise n into two proper coprime factors, n = n1n2;
h1 := hn1 ;
h2 := hn2 ;
return Order(h1, n2) × Order(h2, n1);

end;
The critical point here is the choice of factorisation of n into coprime factors. Since

n can, for example, be ped − 1, this factorisation may cause problems. It may be that the
factorisation of n is given by the Cunningham project or, the Brent–Montgomery–te Riele
table; but, if n is outside these limits, a difficulty may arise. However, if n is factorised as
n = n1n2, where n1 is a product of small factors, and n2 is a product of large factors, then
h1 = 1, provided that the order of h is a product of small primes; so difficult factorisations
are often avoided. Of course the definition of ‘small’ here is very generous, such is the
power of integer factorisation techniques.

3. It will be seen that subtrick 2 involves many multiplications in H. If the usual
algorithm for computing hn is used, the number of multiplications required can approach

2



2 log2 n. So if n approximates to ped the number of multiplications approaches 2de log2(p).
If H is GL(d, q) this will make the algorithm too slow. However, r in subtrick 1 is the
multiplicative order of t in the ring GF(pe)[t]/(

∏
i fi(t)), and multiplication in polynomial

rings is very fast.

Trick 3. Compute gn where g ∈ GL(d, pe).

The problem here is that n may be of order approaching qd; and we do not wish to
carry out log n group multiplications. In fact we aim for a complexity that is no worse (up
to a small constant) than the cost of a single matrix multiplication.

The solution is as follows. Find a matrix A, as in trick 1, so that h = A−1gA is sparse,
and the minimal polynomial f(x) of g can be read off. Now, as with trick 2, compute xn in
GF(pe)[x]/(f(x)); say xn =

∑d−1
i=0 aix

i. Now hn =
∑d−1

i=0 aih
i. To evaluate this expression

requires d − 2 matrix multiplications; but the multiplications are by a sparse matrix, so
the complexity of each multiplication is O(d2). Finally, gn = AhnA−1.

The greatest effort in the project has been expended in dealing with simple groups,
or more precisely with almost simple groups; that is to say, we have a group G with
S ≤ G ≤ Aut(S). Then given g ∈ G one may need to decide whether g ∈ S, or more
precisely to determine the order of g modulo S. The following very simple trick attempts
to answer this question.

Trick 4. Given X, where G = 〈X〉 satisfies S ≤ G ≤ Aut(S) for some simple group S,
and given g ∈ G, estimate the order of g modulo S.

Construct random elements g1, g2, . . . , gm of G′, and return the least common multiple
l of the orders of the m products gig.

This could hardly be simpler. The question of how to construct random elements of
G has been much discussed in this conference, and variations on this theme give random
elements of G′. A more serious issue is to decide whether the algorithm gives the correct
answer. Clearly l is a multiple of the required answer, In particular, if l = 1 then certainly
g ∈ G′. If l > 1 then one needs to consider the probability that the correct answer is a
proper factor of l. Clearly this probability tends to zero as m tends to infinity. To analyse
the rate of convergence one has to consider, among other things, the structure of the outer
automorphism group of G; but to determine the probability that l will be greater than 1
when in fact g ∈ S then, of course, one needs only to consider the distribution of elements
of various orders within S.

The expectation that the matrix group project would come to a happy conclusion rose
slowly from a base very close to zero over the years. One of the more confident predictions
of failure was the following. Suppose that we are given a generating set X for G = SL(2, pe),
find an element of G of order p as a word (or better as a straight line program) in X. The
difficulty arises when pe is big. The proportion of elements of SL(2, pe) of order a multiple
of p is approximately 2/pe, so a random search is inadequate for large pe. The expectation
was that a random search was the best strategy; but this proved to be false.

To appreciate the solution to the problem one has to understand the discrete logarithm
problem. In the form that is needed here, this is as follows. One is given a primitive element

3



a of a finite field GF(pe), and another non-zero element of b, the problem is to solve for
n the equation b = an. The field GF(pe), and the element a, are defined by giving the
minimum polynomial of a over GF(p). The element b is given as a polynomial in a. The
solution of the discete log problem is a central issue in computer algebra. If pe is less than
220 then MAGMA operates in terms of Zech logarithms, so that discrete logarithms are
determined by lookup. But in general, although no polynomial time algorithm is known,
discrete logarithms can be computed rapidly enough for our purposes.

The problem of finding an element of order p needs to be solved for all representations
of SL(2, pe). It is solved by reducing to the natural representation, and then solving the
problem in this case. I shall only discuss the natural representation. The significance of
the problem is that, once it has been solved, we can easily write any element of SL(2, pe)
as a straight line program in X.

Trick 5. Given a generating set X for G = SL(2, pe), find an element of G of order p as
a straight line program in X.

The elements of G of order p are the transvections. To find a transvection it suffices to
find two non-commuting elements of G that share an eigenvector. Then their commutator
will be a transvection. The first step is to find, by random search, an element h of order
q − 1. By a change of basis, h is diagonalised, with eigenvalues a and a−1, where a is
a primitive element of GF(pe). Now take a random element g ∈ G (as a straight line
program on X), The condition that, for some λ ∈ GF(pe), gk shares an eigenvector with
h, where k has eigenvalues λ and λ−1, gives rise to a quadratic equation in λ. There is an
approximately even chance that this equation has a solution in GF(pe). If it does not, one
tries again with a different choice of g. If the equation does have a solution, then solving
this equation for λ, and using discrete logarithms to express λ as a power of a, gives rise
to a solution to the problem.

The chairman of the session refused the speaker time to discuss the remaining 145
tricks, so this concludes the account of my lecture. To give even a modest bibliogra-
phy, and appropriate credit, would double the length of this article; so I refer the reader
to the bibliography of ‘Constructive recognition of classical groups in odd characteristic’
by C.R. Leedham-Green and E.A. O’Brien, Journal of Algebra, 2009, where appropriate
references for the above tricks are given.

4


