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1 Origins

In this lecture, considering the emphasis of this confer-
ence, I�ll review some of my combinatorial and compu-
tational experimentations in group theory, in�uenced by
Coxeter groups. My earliest group computer calculations,
or better said, �ddling with groups, go back to the early
1970�s when I used a stand-alone Todd-Coxeter program
furnished by John Cannon.

Contents of the lecture.

� Commutativity and Finiteness.

A nonsimplicity criterion; Weak Permutability and a
�niteness criterion; Computations using GAP;Weakly
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2 Commutativity and Finiteness

Commutativity in a group can be depicted by a graph
having for vertices the elements of the group where two
vertices are joined by an edge if and only if the corre-
sponding elements commute. This graph has been useful
in a number of instances. We refer to this graph for the
purpose of visualization only.

2.1 A nonsimplicity criterion

It is an elementary, yet fundamental fact that �nite p-
groups are nilpotent. It follows easily that an automor-
phism of order a power of p of a non-trivial �nite p-group
has a nontrivial centralizer.

Consider the following combinatorial variant:



Question. Suppose a �nite group G contains a non-
trivial elementary abelian p-subgroup A = Ap;k of rank
k such that every element of order p in G centralizes
some nontrivial element in A. Does it follow that G
contains a non-trivial normal p-subgroup?

Precursors. Suppose p = 2. Then, A \ O2(G) 6= feg
when (i) k = 2 (Shult 1970, Alperin 1972); (ii) k = 3

(Sidki, 1976).

Modern. In 2007, by making signi�cant use of the
classi�cation theory of �nite simple groups, Aschbacher-
Guralnick-Segev proved A\O2(G) 6= feg for p = 2 and
all k,

2.2 Weak Permutability and a Finiteness

Criterion

In the above context, what are the possibilities forW =<

A;Ag >? Suppose the weak commutation is determined



by a bijection. Is it then possible to say something about
the order of W ? Is W a p-group?

The interaction between the two copies of A may be
viewed more generally as a weak form of permutablity
between two groups H;K, in the sense that HK \KH
contains a set of the same size as H.

Theorem (1980) Let H;K be �nite groups having equal
orders n and let f : H ! K be a bijection which �xes
the identity. Then for any two maps a : H ! K; b :

H ! H, the group

G (H;K; f; a; b) =
D
H;K j hhf = hahb for all h 2 H

E
is �nite of order at most n exp(n� 1).

So, here HK \ KH contains the set
n
hhf j h 2 H

o
.

The essential idea of the proof already occurs in Sanov�s
�niteness of Burnside groups of exponent 4:



let h 2 H, k; k0 2 K be non-trivial elements. Then

khk0 = k(hhf)(
�
hf
��1

k0)

= k(hahb )(
�
hf
��1

k0)

= (kha)hb (
�
hf
��1

k0) 2 KHK;

note that the end elements k0,
�
hf
��1

k0 are di¤erent.
As the word gets longer, we produce more equivalent
forms with di¤erent end elements.

Let t : H ! K be an isomorphism and write K = Ht.
The exponential upper bound is justi�ed by the group

G =< H;Ht j
�
hht

�2
= e for all h 2 H > .

This group G is the semidirect product of the augmen-
tation ideal of the group algebra Z2[H] by H, under the
natural action; therefore its order is 2n�1n.

Questions. Is 2n�1n in the theorem the real upper
bound? What groups have orders exponential in n?



The �niteness criterion holds more generally under the
following conditions: let H;K be two �nite groups of
orders n � m, respectively, and let f : H ! K be a
surjection such that

(i) f(e) = e; f�1(e) = feg,

(ii) for all subsets S of K and all h 2 H���f(f�1(S)h)��� � jSj
This allows pairs (n;m) such that m� 1 divides n� 1.

Problem. Study the dynamics of such functions f .

� An example of a group with polynomial upper bound
is G = PSL(2; p) where p is an odd prime. The
following

< a; b j ap = bp = e;
�
aibj

�2
= e for all ij � 1 mod p >



is a presentation of PSL(2; p); where a!
 
1 0
1 1

!

and b!
 
1 �2
0 1

!
. A substantial reduction in the

relations is possible: i = 1; 2; 4 are su¢ cient.

� Another example: let H;K be (not necessarily �-
nite) groups isomorphic via t and de�ne

� (H) =< H;K j
h
h; ht

i
= e for all h 2 H > .

We studied this group in great generality. It has a
section isomorphic to the Schur Multiplier of H and
notably its subgroups [H;Ht]; [H; t] commute. Fur-
ther works were done by Rocco and by Gupta-Rocco-
Sidki. Subsequently, it was observed that this group
was related to the so called noncommutative tensor
square of groups, originating in homotopy theory.



2.3 Computations using GAP

Let A;B be isomorphic to Ap;m, elementary abelian p-
group of rank m, f : A ! B be a bijection �xing e,
not necessarily an isomorphism. Denote the correspond-
ing group G by G (Ap;m; f). Then f can be seen as
a permutation of A �xing e and this permutation may
be chosen as a representative of a double coset from
SL(m; p)nSym (pm � 1) =SL(m; p).

We give evidence to the conjecture that G (Ap;m; f) is
again a �nite p-group in

Oliveira-Sidki, On Commutativity and Finiteness in Groups,
Bull. Braz. Math. Soc. (2009).

The following computational data is obtained using a
double coset program by Alexander Hulpke in GAP:



let c denote the nilpotency class and d the solvability
degree of G;
(i) for A2;3

SL(3; 2)nSym (7) =SL(3; 2) has 4 double cosets

which produce 4 non-isomorphic groups and

f
���G �A2;3; f���� c d

() 210 3 2

(6; 7) 210 3 2

(6; 7; 8) 28 2 2

(5; 6; 7; 8) 28 2 2

.

(ii) for A2;4,

SL(4; 2)nSym (15) =SL(4; 2) has 3374 double cosets.

which produce groups having orders

29; 210; 211; 212; 213; 215; 219.

There are 5 representatives f for which the groups have
maximum order. The corresponding groups are non-isomorphic



and

f
���G �A2;4; f���� c d

() 219 4 2

(15; 16) 219 3 3

(11; 14)(15; 16) 219 5 3

(9; 11)(10; 13)(12; 14) 219 5 3

(9; 12)(10; 13)(11; 14) 219 4 2

.

(iii) for A3;3, we consider instead permutations of the
cyclic subgroups of A. Then

PGL (3; 3) nSym (13) =PGL (3; 3) has 252 double cosets

The corresponding groups have orders 36; 37; 38; 39, all
have class at most 2.

Here, we see clearly a basic di¤erence between p = 2 and
p odd.



2.4 Weakly commuting n copies of a group

We go back to

� (H) =
D
H;Ht j hht = hth for all h 2 H

E
were t can be thought of having order 2.

� Let H = A2;2. The following groupD
H; t j t3 = 1;

h
h; ht

i
= 1 for all h 2 H

E
is in�nite, an extension of Z4 by a �nite group of
order 213:3.

In � (H), the two subgroups [H;Ht]; [H; t] commute.
We de�ne the groups

�(H;n) =

* H; t j tn = 1; hh; htii = 1;h
[H;t

i
Ht

j
]; [H; tk]

i
= 1

for 1 � i; j; k � n� 1

+
,

�(H;n) =
�
Ht

i
j i = 1; :::; n� 1

�
.



The group �(H;n) preserves �niteness, and other
group theoretic properties such as �nitely gen-
erated.

3 Linear groups in characteristic 2

We will construct another group generated by a set of
mutually weakly permutable groups.

Recall that when f : A ! B is an onto isomorphism,
the group

G =< A;B j
�
aaf

�2
= e for all a 2 A > ,

is the semidirect product of the augmentation ideal !2;n
of GF (2)[A] by A.

� By a theorem of Coxeter,



G(m) = < a1; a2; :::; amj a3k = e for all 1 � k � m,�
aka

�1
l

�2
= e for all 1 � k < l � m > .

is �nite only for m � 3.

� On the other hand, by Carmichael, the following

< a1; a2; :::; amj a3k = e for all 1 � k � m,
(akal)

2 = e for all 1 � k � l � m >

is a presentation of the alternating group Alt(m+ 2).

We generalized this presentation in 1982 in the form:

Y (m;n) = < a1; a2; :::; amj ank = e for all 1 � k � m,�
aika

i
l

�2
= e for all 1 � k < l � m, 1 � i � n

2
> .



Open Conjecture. The group Y (m;n) is �nite, for all
m;n.

If n is odd greater than 1 then the group Y (m;n) con-
tains a subgroup isomorphic to the symmetric group �m,
from which we obtain a new presentation

y(m;n) = < a; �m j an = e;�
�a

i

12; �12

�
= e

�
1 � i � n

2

�
; �1+a+:::+a

n�1
12 = e;

� i;i+1a� i;i+1 = a�1 (2 � i � m� 1) >
which can be depicted as an extended Coxeter diagram.

The group y(3; n) a¤ords a representation into SL(2; F )
where F is a �eld of characteristic 2 containing an ele-
ment � of order n :

a!
 
� 0
0 ��1

!
; �12 !

 
1 0
1 1

!
; �23 !

 
0 1
1 0

!
.

Indeed, the representation can be extended to higher di-
mension by tensoring, as

a!
 
�Ir 0
0 ��1Ir

!
; �12 !

 
Ir 0
Ir Ir

!
; �23 !

 
0r Ir
Ir 0r

!



which creates space to allow representations of y(m;n)
for m � 3.

For n � 5, the linear groups thus generated turn out
to involve orthogonal groups in higher dimensions. To
exemplify,

y(3; 5) �= SL(2; 16) �= 
�(4; 4);
y(4; 5) �= 
(5; 4);

y(5; 5) �= 
�(6; 4);

y(6; 5) �= 46
�(6; 4);

y(3; 7) �= 
+(4; 8);

y(4; 7) �= 
(5; 8).

The isomorphisms in this list were obtained by a combina-
tion of representation theory and computer coset enumer-
ation. The periodicity of groups in the list is explained
in my paper of 1982 and it is probably related to the
Bott periodicity. The list was expanded in 1987 for larger
(m;n) in collaboration with J. Neubuser and W. Felsch



at RWTH in Aachen; for n = 5, the list reached y(10; 5).
During this conference E. O�Brien has reproduced and ex-
panded the list even further to

y(12; 5) �= 
(11; 4); y(8; 7) �= 
+(7; 8); y(5; 11) �= 
+(6; 32).

3.1 Linear Groups over a Laurent Polyno-

mial Ring

We drop the relations ani = 1 from Y (3; n); that is,
de�ne

Y (3) = < a1; a2; a3j
�
aika

i
l

�2
= e

for all 1 � k < l � 3, i � 1 > .
.

Then Y (3)! SL(2;Z2[t; t�1]):

a!
 
t 0
0 t�1

!
; �12 !

 
1 0
1 1

!
; �23 !

 
0 1
1 0

!
.



Let R be the ring of Laurent polynomials k[t; t�1] with
coe¢ cients from a general �eld k (commutative or not),

s =

 
t 0
0 t�1

!
in SL(2; R) and the elementary sub-

group e(2; R) =< SL(2; k); s >. We gave in J. Algebra
1990 a presentation of the group e(2; R). On specializing
R to Z2[t; t�1], the group Y (3) is shown to be the nor-
mal closure of < s > in e(2; R). Now, since the congru-
ence subgroup theorem holds for Z2[t; t�1], adding the
relation an = 1 to the above presentation corresponds
to making tn = 1 and with this we reach

Y (3; n) �= SL(2; !2;n)

where !2;n is the augmentation ideal of Z2[Cn].

3.2 Spinor Groups

Another line of development was pursued by Claus Halk-
jaer in 1996, in his doctoral thesis at the University of
Brasilia, with the title



"On Cli¤ord Algebras C(m) in prime characteristic and
a class of geometric subgroups of GL(2; C(m))".

In it, the groups y(m;n) were generalized to yp(m;n)
where p is any prime number. This was done by mak-
ing �p12 = e and by replacing the symmetric group <
�23; :::; �m�1;m > by one of its well-known central cov-
erings. It was shown that yp(m;n) maps onto spinor
groups in characteristic p, by using the same represen-
tation theoretic approach we had devised for y(m;n).
Here, the representations are interpreted as ones into
GL(2; C(m)) where C(m) are Cli¤ord algebras in char-
acteristic p. Though, for p odd, the relations do not
guarantee anymore �niteness of the groups.


