Introduction to finite simple groups

80801742479451287588645990496171075700575436800000000

$2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$

- 1. Introduction
- 2. Alternating groups
- 3. Linear groups
- 4. Classical groups
- 5. Chevalley groups
- 6. Exceptional groups
- 7. Sporadic groups: old generation
- 8. Sporadic groups: new generation

• R. WILSON: The finite simple groups, Graduate Texts in Mathematics 251, Springer, 2009.

J. CONWAY, R. CURTIS, R. PARKER,
S. NORTON, R. WILSON: Atlas of finite groups,
Clarendon Press Oxford, 1985/2004.

• P. CAMERON: Permutation groups, LMS Student Texts 45, Cambridge, 1999.

• D. TAYLOR: The geometry of the classical groups, Heldermann, 1992.

• R. CARTER: Simple groups of Lie type, Wiley, 1972/1989.

• М. GECK: An introduction to algebraic geometry and algebraic groups, Oxford, 2003.

• R. GRIESS: Twelve sporadic groups, Springer Monographs in Mathematics, 1989.

• Aim: Explain the statement of the CFSG:

- Cyclic groups of prime order C_p ; p a prime.
- Alternating groups \mathcal{A}_n ; $n \geq 5$.
- Finite groups of Lie type:
 - Classical groups; q a prime power: Linear groups PSL_n(q); n ≥ 2, (n,q) ≠ (2,2), (2,3). Unitary groups PSU_n(q²); n ≥ 3, (n,q) ≠ (3,2). Symplectic groups PSp_{2n}(q); n ≥ 2, (n,q) ≠ (2,2). Odd-dimensional orthogonal groups Ω_{2n+1}(q); n ≥ 3, q odd. Even-dimensional orthogonal groups PΩ⁺_{2n}(q), PΩ⁻_{2n}(q); n ≥ 4.
 Exceptional groups; q a prime power, f ≥ 1: E₆(q). E₇(q). E₈(q). F₄(q). G₂(q); q ≠ 2.
 - Steinberg groups ${}^{2}E_{6}(q^{2})$. Steinberg triality groups ${}^{3}D_{4}(q^{3})$. Suzuki groups ${}^{2}B_{2}(2^{2f+1})$. Small Ree groups ${}^{2}G_{2}(3^{2f+1})$. Large Ree groups ${}^{2}F_{4}(2^{2f+1})$, Tits group ${}^{2}F_{4}(2)'$.
- 26 Sporadic groups: ...

Classification of finite simple groups (CFSG), II

• Sporadic groups:

- Mathieu groups M_{11} , M_{12} , M_{22} , M_{23} , M_{24} .
- Leech lattice groups:

Conway groups Co_1 , Co_2 , Co_3 .

McLaughlin group McL. Higman-Sims group HS.

Suzuki group Suz. Hall-Janko group J_2 .

- Fischer groups Fi_{22} , Fi_{23} , Fi'_{24} .
- Monstrous groups:

Fischer-Griess Monster M.

Baby Monster B. Thompson group Th.

Harada-Norton group HN. Held group He.

• Pariahs:

Janko groups J_1 , J_3 , J_4 . O'Nan group ON.

Lyons group Ly. Rudvalis group Ru.

• Repetitions:

$$\circ \operatorname{PSL}_2(4) \cong \operatorname{PSL}_2(5) \cong \mathcal{A}_5; \quad \operatorname{PSL}_2(7) \cong \operatorname{PSL}_3(2);$$

- $\circ \operatorname{PSL}_2(9) \cong \mathcal{A}_6; \quad \operatorname{PSL}_4(2) \cong \mathcal{A}_8;$
- $\circ \operatorname{PSU}_4(2) \cong \operatorname{PSp}_4(3).$

 \circ Let G be a finite group.

 $\bullet~G$ is called **simple** if G is non-trivial and does not have any proper non-trivial normal subgroup.

• Composition series:

• G has a composition series of length $n \in \mathbb{N}_0$

$$\{1\} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G,$$

• where $G_{i-1} \triangleleft G_i$ such that G_i/G_{i-1} is simple, for all $i \in \{1, \ldots, n\}$.

• Jordan-Hölder Theorem:

• The set of **composition factors** G_i/G_{i-1} , counting multiplicities, is independent of the choice of a composition series.

• G is called **soluble** if all composition factors G_i/G_{i-1} are abelian, or equivalently cyclic of prime order.

• Examples:

- \circ {1} $\triangleleft S_2$ with composition factors C_2 .
- \circ {1} $\triangleleft \mathcal{A}_3 \triangleleft \mathcal{S}_3$ with composition factors C_2, C_3 .
- \circ {1} $\triangleleft C_2 \triangleleft V_4 \triangleleft \mathcal{A}_4 \triangleleft \mathcal{S}_4$ with composition factors C_2, C_2, C_2, C_3 .
- \circ {1} $\triangleleft \mathcal{A}_5 \triangleleft \mathcal{S}_5$ with composition factors \mathcal{A}_5, C_2 .

• Abel's Theorem:

• The **Galois group** of the general polynomial equation of degree $n \in \mathbb{N}$ over any field is isomorphic to the symmetric group S_n .

• The general polynomial equation of degree $n \in \mathbb{N}$ over a field of characteristic 0 is **solvable by radicals** if and only if its Galois group is soluble, that is if and only if $n \leq 4$.

- GALOIS [~1830]: \mathcal{A}_n simple for $n \ge 5$, $\mathrm{PSL}_2(p)$ for p a prime.
- JORDAN [1870]: 'Traité des substitutions', $PSL_n(p)$.
- Sylow Theorems [1872]: the first classification tool.
- \circ MATHIEU [1861/1873]: the simple Mathieu groups.
- \circ KILLING [~1890]: classification of complex simple Lie algebras.
- \circ DICKSON [~1900]: finite field analoga of the classical Lie groups.
- CHEVALLEY [1955]: uniform construction of the classical and exceptional finite groups of Lie type.
- \circ Ree, Steinberg, Suzuki, Tits [~1960]:
- twisted classical and exceptional finite groups of Lie type.
- $\circ \sim \!\! 1960:$ common belief is that all finite simple groups are known.

```
\circ Brauer, Fowler [1955]:
```

Given $n \in \mathbb{N}$, there are at most finitely many simple groups containing an involution with centraliser of order n.

• Feit-Thompson Theorem [1963]:

Any finite group of odd order is soluble.

• **Brauer program:** Hence any non-abelian finite simple group contains an involution, thus consider centralisers of central involutions and prove completeness of classification by induction.

• JANKO [1964]: (the first since almost a century) sporadic group J_1 with involution centraliser $C_2 \times \mathcal{A}_5$.

• THOMPSON [1968]: classification of minimal simple groups.

• JANKO [1975]: the last sporadic group J_4 .

 $\circ \sim \! 1980:$ common belief is that CFSG is proved.

```
• GORENSTEIN, LYONS, SOLOMON [\geq1994]: revision project of the proof of CFSG.
```

```
• Aschbacher, Smith [2004]:
```

the quasithin case, completing the proof of CFSG.

• Do we really believe that the Four-Colour Theorem, or Fermat's Last Theorem, or the Poincaré Conjecture, or the CFSG are proved?

- Let T be a non-abelian finite simple group.
- Then $Z(T) = \{1\}$ implies $T \cong \text{Inn}(T) \trianglelefteq \text{Aut}(T)$.
- A group G such that $T \leq G \leq \operatorname{Aut}(T)$ is called **almost simple**.
- A perfect group G such that $G/Z(G) \cong T$ is called **quasi-simple**.

• Schreier's Conjecture:

• The outer automorphism group $\operatorname{Out}(T) := \operatorname{Aut}(T)/\operatorname{Inn}(T)$ of any finite simple group T is soluble.

• **Proof:** by inspection; in all cases Out(T) is 'very small'.

• **Theorem:** Let $N \leq G$ such that gcd(|N|, |G/N|) = 1. Then all complements of N in G are conjugate.

- **Proof:** uses the Feit-Thompson Theorem; or alternatively:
- Let G = N: H be a minimal counterexample.
- Easy: N is non-abelian simple and $C_G(N) = \{1\}$
- Hence $G \cong G/C_G(N) \leq \operatorname{Aut}(N)$ such that $N \leq \operatorname{Inn}(N)$.
- Thus $G/N \leq \operatorname{Out}(N)$ is soluble.
- Hence the assertion follows from **Zassenhaus's Theorem**.

• Multiply-transitive permutation groups:

• The finite 2-transitive groups are explicitly known.

• The only finite 6-transitive groups are symmetric and alternating.

• The only finite 4-transitive groups are symmetric and alternating, and the Mathieu groups M_{11} , M_{12} , M_{23} , and M_{24} .

• Proof:

• **Burnside's Theorem:** A minimal non-trivial normal subgroup of a finite 2-transitive group is either elementary-abelian and regular, or simple and primitive.

• Hence a 2-transitive group is either **affine** or almost simple:

• HUPPERT and HERING: soluble and insoluble affine cases;

• MAILLET, CURTIS, KANTOR, SEITZ, HOWLETT: almost simple cases.

• The higher transitive groups are then found by inspection.

• Example:

• $\operatorname{ASL}_d(q) \cong [q^d]$: $\operatorname{SL}_d(q)$, where q is a prime power and $n = q^d$.

• $\operatorname{PSL}_d(q)$, where q is a prime power, $d \ge 2$, and $n = \frac{q^d - 1}{q - 1}$.

Ħ

• Let $n \in \mathbb{N}_0$.

• Let S_n be the symmetric group on $\{1, \ldots, n\}$.

• Let sgn: $S_n \to {\pm 1} \cong C_2$ be the sign representation.

• Let $\mathcal{A}_n := \ker(\operatorname{sgn}) \trianglelefteq \mathcal{S}_n$ be the **alternating group** on $\{1, \ldots, n\}$;

• the elements of \mathcal{A}_n are called **even permutations**,

• the elements of $S_n \setminus A_n$ are called **odd** permutations.

• The **cycle type** of a permutation is the partition of n indicating the lengths of its distinct **cycles**, counting multiplicities.

• **Example:** The identity has cycle type $[1^n]$,

a 2-cycle or transposition has cycle type $[2, 1^{n-2}]$,

a 3-cycle has cycle type $[3, 1^{n-3}]$.

• A permutation is even if and only if it has an even number of cycles of even length.

• The **conjugacy classes** of S_n are parametrised by cycle types.

• A permutation is **centralised** by no odd permutation if and only if it is the product of cycles of distinct odd lengths.

 \circ Hence the ${\bf orbit}{\textbf{-stabiliser theorem}}$ implies:

• A conjugacy class of S_n contained in A_n splits into two conjugacy classes of A_n if and only if its cycle type has pairwise distinct odd parts, otherwise it is a single conjugacy class of A_n .

- **Theorem:** Let $n \geq 5$. Then \mathcal{A}_n is simple.
- **Proof:** by induction on n; let $\{1\} \neq N \leq \mathcal{A}_n$.
- Let n = 5. Then N is a union of conjugacy classes.

• The cycle types of even permutations are $[1^5]$, $[3, 1^2]$, $[2^2, 1]$, [5], where only type [5] splits into two conjugacy classes.

• The conjugacy class lengths are 1, 20, 15, 12, 12, respectively.

- No sub-sum of these, strictly including 1, divides 60; thus $N = \mathcal{A}_n$.
- Let n > 5. Then $\mathcal{A}_{n-1} = \operatorname{Stab}_{\mathcal{A}_n}(n)$ is simple.
- $\circ N \cap \mathcal{A}_{n-1} \trianglelefteq \mathcal{A}_{n-1}$, hence **i**) $\mathcal{A}_{n-1} \le N$ or **ii**) $N \cap \mathcal{A}_{n-1} = \{1\}$:

i) Then N contains all elements of cycle type $[3, 1^{n-3}]$.

• Any even permutation is a product of 3-cycles; thus $N = \mathcal{A}_n$.

ii) Then any non-trivial element of N acts fixed-point-free.

• If $1^{\sigma} = 1^{\tau}$ for $\sigma, \tau \in N$, then $\sigma \tau^{-1} \in N \cap \mathcal{A}_{n-1} = \{1\}$.

• Thus $|N| \leq n$.

• But \mathcal{A}_n does not have a non-trivial conjugacy class with fewer than n elements, a contradiction.

• Let $n \ge 4$. Then $Z(\mathcal{A}_n) = \{1\}$, hence $\mathcal{A}_n \cong \operatorname{Inn}(\mathcal{A}_n) \trianglelefteq \operatorname{Aut}(\mathcal{A}_n)$; • and \mathcal{S}_n acts faithfully by conjugation, hence $\mathcal{S}_n \le \operatorname{Aut}(\mathcal{A}_n)$.

- **Theorem:** Let $n \geq 7$. Then $\operatorname{Aut}(\mathcal{A}_n) = \mathcal{S}_n$.
- **Proof:** [C. PARKER]

• \mathcal{A}_n being simple, it cannot possess a proper subgroup of index k < n, since otherwise there would be an injective map $\mathcal{A}_n \to \mathcal{A}_k$.

• We show (*): If $\mathcal{A}_{n-1} \cong H < \mathcal{A}_n$, then $H = \operatorname{Stab}_{\mathcal{A}_n}(i)$ for some i.

• Let n = 7. H cannot have a non-trivial orbit of less than 6 points. If H is not a point stabiliser, then H acts transitively on $\{1, \ldots, 7\}$. This is a contradiction since $7 \not\mid |H| = |\mathcal{A}_6|$, proving (*) for n = 7.

• Let $n \ge 9$. A '3-cycle' of H centralises a group $\cong \mathcal{A}_{n-4}$.

Since $n - 4 \ge 5$ the latter has an orbit of at least n - 4 points.

Thus a '3-cycle' of H moves at most 4 points, thus is a 3-cycle of \mathcal{A}_n .

• Let n = 8. A '3-cycle' of H centralises a group $\cong \mathcal{A}_4$.

Hence there is a V_4 centralising the '3-cycle'.

The elements of \mathcal{A}_8 of cycle type $[3^2, 1^2]$ do not centralise a V_4 . Hence a '3-cycle' of H is a 3-cycle of \mathcal{A}_8 .

- Thus for $n \ge 8$ the '3-cycles' of H map to 3-cycles of \mathcal{A}_n .
- For pairs of 3-cycles we have $\langle (a, b, c), (a, b, d) \rangle \cong \mathcal{A}_4$.

• Hence the subgroup

$$H \cong \mathcal{A}_{n-1} = \langle (1,2,3), \dots, (1,2,n-1) \rangle$$

maps to a subgroup

$$\langle (a, b, c_1), \ldots, (a, b, c_{n-3}) \rangle \leq \mathcal{A}_n.$$

• The latter moves n-1 points.

• Hence $H \leq \operatorname{Stab}_{\mathcal{A}_n}(i)$ for some i, proving (*) for $n \geq 8$.

- Now:
- Any automorphism permutes the subgroups isomorphic to \mathcal{A}_{n-1} .
- These subgroups are in natural bijection with $\{1, \ldots, n\}$.
- \circ Hence any automorphism induces a permutation of $\{1,\ldots,n\}.~~\sharp$
- We have $\operatorname{Aut}(\mathcal{A}_n) = \mathcal{S}_n$ for $n \in \{4, 5\}$.
- We have $\operatorname{Aut}(\mathcal{A}_6) \cong \mathcal{A}_6.2^2$.
- \mathcal{A}_6 has two conjugacy classes of subgroups isomorphic to \mathcal{A}_5 .

• A finite group H such that $Z(H) \leq H'$ and $H/Z(H) \cong G$ is called an |Z(H)|-fold cover of G.

 \circ Two maximal covers of G are **isoclinic**.

 \circ If G is perfect, its unique maximal cover is a **universal cover**.

- \mathcal{A}_n has maximal 2-fold covers $\widetilde{\mathcal{A}}_n = 2.\mathcal{A}_n$, for $n \ge 4$,
- except for $n \in \{6, 7\}$ where it has maximal 6-fold covers $6.\mathcal{A}_n$.
- S_n has two maximal 2-fold covers S̃_n and Ŝ_n, for n ≥ 4,
 both of shape 2.S_n, but we have S̃_n ≅ Ŝ_n if and only if n = 6.
- The Coxeter presentation of S_n , where $n \in \mathbb{N}$, is given as $S_n \cong \langle s_1, \ldots, s_{n-1} \mid s_i^2 = (s_i s_{i+1})^3 = (s_i s_j)^2 = 1$ for $|i - j| \ge 2 \rangle$,
- where adjacent transpositions $(i, i+1) \mapsto s_i$.

• For $\widetilde{\mathcal{S}}_n$ and $\widehat{\mathcal{S}}_n$, where $n \ge 4$, we have [SCHUR, 1911]: $\widetilde{\mathcal{S}}_n := \langle s_1, \dots, s_{n-1}, z \mid z^2 = 1, \mathbf{s_i^2} = (\mathbf{s_i s_{i+1}})^3 = \mathbf{z}, (s_i s_j)^2 = z \rangle$ $\widehat{\mathcal{S}}_n := \langle s_1, \dots, s_{n-1}, z \mid z^2 = 1, \mathbf{s_i^2} = (\mathbf{s_i z})^2 = (\mathbf{s_i s_{i+1}})^3 = \mathbf{1}, (s_i s_j)^2 = z \rangle$

- Describing all the subgroups of \mathcal{S}_n , for all $n \in \mathbb{N}_0$, is by
- Cayley's Theorem equivalent to classifying all finite groups:

\circ hopeless.

- But there are certainly are interesting prominent subgroups:
- for example, intransitive subgroups.
- Partition the set of n = km points into m blocks of size k.

• The wreath product $S_k \wr S_m \cong S_k^m \colon S_m$ acts on this partition, • where the base group $S_k^m = S_k \times \cdots \times S_k$ consists of permutations of the various blocks,

 \circ and the wreathing \mathcal{S}_m permutes the blocks.

• $S_k \wr S_m < S_n$ is an imprimitive transitive subgroup, for $k, m \ge 2$.

S_k ≥ S_m acts on {1,...,k}^m by the product action, n = k^m,
where [π₁,...,π_m] ∈ S^m_k acts by [a₁,..., a_m] → [a^{π₁}₁,..., a^{π_m}_m],
and π⁻¹ ∈ S_m acts by [a₁,..., a_m] → [a₁π,..., a_mπ].
S_k ≥ S_m < S_n is a primitive subgroup, for k ≥ 3 and m ≥ 2.

• One might try to describe the **maximal** subgroups of S_n ;

 \circ the maximal subgroups of \mathcal{A}_n are then obtained by intersection:

• O'Nan-Scott Theorem [1979]: Any proper subgroup of S_n different from A_n is contained in one of the following subgroups:

i) an intransitive group $S_k \times S_m$, where n = k + m;

ii) an imprimitive transitive group $S_k \wr S_m$, where n = km;

iii) a primitive wreath product $S_k \wr S_m$, where $n = k^m$;

iv) an affine group $AGL_d(p) \cong p^d$: $GL_d(p)$, where $n = p^d$;

v) a diagonal type group

 $T^m.(\operatorname{Out}(T) \times \mathcal{S}_m) \cong (T \wr \mathcal{S}_m).\operatorname{Out}(T),$

where T is a non-abelian simple group,

acting on the cosets of a subgroup of index $n = |T|^{m-1}$, of shape

$$\Delta(T).(\operatorname{Out}(T) \times \mathcal{S}_m) \cong \operatorname{Aut}(T) \times \mathcal{S}_m;$$

vi) an almost simple group,

acting on the cosets of a maximal subgroup of index n.

• Describing the groups in class **vi**) requires complete knowledge of the maximal subgroups of all almost simple groups:

\circ reducing an impossible problem to an even harder one.

• Let \mathbb{F}_q be the field with $q = p^f$ elements, p a prime, $f \in \mathbb{N}$, $n \in \mathbb{N}$.

- General linear group $\operatorname{GL}_n(q) := \{g \in \mathbb{F}_q^{n \times n}; \det(g) \neq 0\}$
- Counting the number of ordered \mathbb{F}_q -bases of \mathbb{F}_q^n :

$$\circ |\operatorname{GL}_n(q)| = (q^n - 1)(q^n - q) \cdots (q^n - q^{n-1}) = q^{\binom{n}{2}} \cdot \prod_{i=1}^n (q^i - 1)$$

- \circ Viewing q as an indeterminate,
- this is an **order polyomial** in $\mathbb{Z}[q]$,

 \circ whose irreducible factors are q and cyclotomic polynomials.

• Special linear group $SL_n(q) := \{g \in GL_n(q); \det(g) = 1\}$

Projective general linear group PGL_n(q) := GL_n(q)/Z(GL_n(q)),
o where Z(GL_n(q)) = 𝔽^{*}_q · 𝔅_n ≅ 𝔅_{q-1}.
o |SL_n(q)| = |PGL_n(q)| = ¹/_{q-1} · |GL_n(q)|

• **Projective** special linear group $\operatorname{PSL}_n(q) := \operatorname{SL}_n(q)/Z(\operatorname{SL}_n(q)),$ • where $Z(\operatorname{SL}_n(q)) = \{\lambda \cdot E_n; \lambda^n = 1\} \cong C_{\operatorname{gcd}(n,q-1)}.$ • $|\operatorname{PSL}_n(q)| = \frac{1}{\operatorname{gcd}(n,q-1)} \cdot |\operatorname{SL}_n(q)| = \frac{1}{\operatorname{gcd}(n,q-1)} \cdot \frac{1}{q-1} \cdot |\operatorname{GL}_n(q)|$

• $\operatorname{PSL}_2(2) \cong \operatorname{GL}_2(2) \cong \mathcal{S}_3$:

• $\operatorname{GL}_2(2)$ acts 2-transitively on the three vectors in $\mathbb{F}_2^2 \setminus \{0\}$.

- $\operatorname{PSL}_2(3) \cong \mathcal{A}_4$:
- $GL_2(3)$ acts on the four 1-dimensional \mathbb{F}_3 -subspaces of \mathbb{F}_3^2 ,
- the action is 2-transitive, $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ fixes the standard \mathbb{F}_3 -basis,
- hence $\operatorname{GL}_2(3) \to \mathcal{S}_4$, with kernel $Z(\operatorname{GL}_2(3)) \cong C_2$,
- thus $PGL_2(3) \cong \mathcal{S}_4$ and $PSL_2(3) \cong \mathcal{A}_4$.

• Note: $\operatorname{GL}_2(3) \cong \widetilde{\mathcal{S}}_4$ and $\operatorname{SL}_2(3) \cong \widetilde{\mathcal{A}}_4$.

• **Theorem:** Let $n \ge 2$ and $(n, q) \ne (2, 2), (2, 3)$.

Then $PSL_n(q)$ is simple.

• Proof:

\$G := SL_n(q)\$ acts on the set of 1-dimensional subspaces of \$\mathbb{F}_q^n\$,
\$\mathbf{y}\$ yielding a 2-transitive, hence primitive, action of \$PSL_n(q)\$.

• Let $x := \langle [1, 0, \dots, 0] \rangle_{\mathbb{F}_q}$ and $H := \operatorname{Stab}_G(x)$,

 \circ then

$$H = \left\{ \begin{bmatrix} \lambda & 0_{n-1} \\ * & h \end{bmatrix} \in G; \lambda \in \mathbb{F}_q^*, h \in \mathrm{GL}_{n-1}(q), \lambda \cdot \det(h) = 1 \right\}.$$

• Use Iwasawa's Criterion:

• Let

$$A := \left\{ \begin{bmatrix} 1 & 0_{n-1} \\ * & E_{n-1} \end{bmatrix} \in H \right\},$$

 \circ then $A \triangleleft H$ is abelian, consisting of **transvections**,

• that is $g \in G$ such that $\operatorname{rk}(g - E_n) = 1$ and $\operatorname{rk}((g - E_n)^2) = 0$.

• Jordan normal form theorem implies that

- any transvection is G-conjugate to some element of A.
- G is generated by transvections:

• Any $g \in G$ can be reduced to E_n by a sequence of elementary row operations of the form ' $r_i \mapsto r_i + \lambda r_j$ ',

- \circ that is multiplying g from the right with a series of transvections.
- G is perfect:
- \circ For $n \geq 3$ any transvection is a commutator:

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \lambda & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -\lambda & 0 & 1 \end{bmatrix}$$

• For n = 2 and $q \ge 4$ there is $\lambda \in \mathbb{F}_q^*$ such that $\lambda^2 \ne 1$, then

$$\begin{bmatrix} 1 & 0 \\ \beta & 1 \end{bmatrix}, \begin{bmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \beta(\lambda^2 - 1) & 1 \end{bmatrix}$$

is an arbitrary element of A.

#

• Theorem: [Iwasawa, 1941]

- Let G be a finite group, acting primitively on a set Ω ,
- \circ let $H := \operatorname{Stab}_G(x) < G$ for some $x \in \Omega$,
- and let $A \leq H$ such that $\langle A^g; g \in G \rangle = G$.
- Then for any $N \trianglelefteq G$ we have
- \circ either $N \leq \operatorname{Stab}_G(\Omega) = \bigcap_{g \in G} H^g \triangleleft G$,
- \circ or G/N is isomorphic to a quotient of A.
- In particular:
- if A is abelian and G is perfect, then $G/\operatorname{Stab}_G(\Omega)$ is simple.

• Proof:

- We may assume that $N \not\leq H$.
- $\circ H < G$ being maximal implies G = HN, thus
- \circ any $g \in G$ can be written as g = hn, where $h \in H$ and $n \in N$.
- Hence $A^g = A^{hn} = A^n \leq AN$, for any $g \in G$,
- implying $G = \langle A^g; g \in G \rangle = AN$,
- thus $G/N = AN/N \cong A/(A \cap N)$.

#

\circ Despite its simplicity this is astonishingly powerful.

• **Exercise:** Use it to prove the simplicity of \mathcal{A}_n , for $n \geq 5$.

• Diagonal automorphisms:

• induced by conjugation with diagonal matrices,

• that is by the conjugation action of $GL_n(q)$.

 $\circ \operatorname{GL}_n(q)/\operatorname{SL}_n(q) \cong C_{q-1}, \operatorname{PGL}_n(q)/\operatorname{PSL}_n(q) \cong C_{\operatorname{gcd}(n,q-1)}$

• Field automorphisms:

 \circ induced by the **Frobenius automorphism** $\varphi_p \colon \lambda \mapsto \lambda^p$ of \mathbb{F}_q ,

- where $q = p^f$, hence $\langle \varphi_p \rangle \cong C_f$.
- Semilinear groups

$$\Gamma \mathcal{L}_n(q) := \mathrm{GL}_n(q) : \langle \varphi_p \rangle, \quad \mathrm{P} \Gamma \mathcal{L}_n(q) := \mathrm{P} \mathrm{GL}_n(q) : \langle \varphi_p \rangle,$$
$$\Sigma \mathcal{L}_n(q) := \mathrm{SL}_n(q) : \langle \varphi_p \rangle, \quad \mathrm{P} \Sigma \mathcal{L}_n(q) := \mathrm{P} \mathrm{SL}_n(q) : \langle \varphi_p \rangle.$$

• Graph automorphisms:

• induced by a graph automorphism of the **Dynkin diagram**.

 \circ **Duality** $\operatorname{GL}_n(q) \to \operatorname{GL}_n(q) \colon g \mapsto g^{-\operatorname{tr}};$

• induces duality on $SL_n(q)$, $PGL_n(q)$, $PSL_n(q)$.

• Note: duality is not inner for $n \ge 3$.

• These are all the 'outer' automorphisms;

 \circ in particular the outer automorphism group is soluble.

• $PSL_n(q)$ has gcd(n, q - 1)-fold universal cover

$$\operatorname{SL}_n(q) \cong C_{\operatorname{gcd}(n,q-1)}.\operatorname{PSL}_n(q),$$

• except:

- $PSL_2(4) \cong PSL_2(5) \cong \mathcal{A}_5$ has universal cover 2. $PSL_2(4)$;
- $\operatorname{PSL}_2(9) \cong \mathcal{A}_6$ has universal cover 6. $\operatorname{PSL}_2(9)$;
- $PSL_3(2) \cong PSL_2(7)$ has universal cover 2. $PSL_3(2)$;
- $PSL_4(2) \cong \mathcal{A}_8$ has universal cover 2. $PSL_4(2)$;
- $PSL_3(4)$ has universal cover $(3 \times 4^2).PSL_3(4)$.

• Note:

 \circ generic universal covers have order coprime to the **defining characteristic** p of the Lie type group,

 \circ while exceptional parts of universal covers are *p*-groups.

- Borel subgroup B := {g; g lower triangular} < G := GL_n(q),
 the stabiliser of a maximal flag of Fⁿ_q;
- monomial subgroup $N := \{g \in G; g \text{ monomial}\} < G;$
- maximal split torus $T := B \cap N = \{g \in G; g \text{ diagonal}\},\$

$$\circ T \cong C_{q-1}^n$$
, and $N = N_G(T)$ for $q \ge 3$;

unipotent subgroup U := {g ∈ G; g lower unitriangular} ≤B,
U ∈ Syl_p(G), and B = U: T split;

- Weyl group $W := N/T \cong S_n$, via $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \mapsto (1, 2)$,
- a crystallographic real reflection group:

• the adjacent transpositions act as **reflections**,

• that is $\dim_{\mathbb{Q}}(\ker(g-E_n)) = n-1$ and $\dim_{\mathbb{Q}}(\ker(g+E_n)) = 1$.

• Flag stabilisers are called **parabolic subgroups**;

 $\circ B \leq P = \begin{bmatrix} \operatorname{GL}_{k}(q) & 0 \\ * & \operatorname{GL}_{n-k}(q) \end{bmatrix} = U_{P} \colon L_{P} \text{ maximal parabolic},$ $\circ \text{ with unipotent radical } U_{P} = \begin{bmatrix} E_{k} & 0 \\ * & E_{n-k} \end{bmatrix}, \text{ and}$ $\circ \operatorname{\mathbf{Levi}} \operatorname{subgroup} L_{P} = \begin{bmatrix} \operatorname{GL}_{k}(q) & 0 \\ 0 & \operatorname{GL}_{n-k}(q) \end{bmatrix} \cong \operatorname{GL}_{k}(q) \times \operatorname{GL}_{n-k}(q).$

• Axiomatic: *BN*-pairs [TITS, 1962]

Maximal subgroups $\mathbf{GL}_n(q)$

• Aschbacher-Dynkin Theorem: [1984/1952]

• Any proper subgroup of $\operatorname{GL}_n(q)$ different from $\operatorname{SL}_n(q)$ is contained in one of the following subgroups:

i) a reducible group q^{km} : (GL_k(q) × GL_m(q)), where n = k + m,

the stabiliser of a k-dimensional \mathbb{F}_q -subspace;

ii) an imprimitive group $\operatorname{GL}_k(q) \wr \mathcal{S}_m$, where n = km,

the stabiliser of a direct sum decomposition into m k-subspaces;

iii) a tensor product $\operatorname{GL}_k(q) \circ \operatorname{GL}_m(q)$, where n = km,

the stabiliser of a tensor product decomposition $\mathbb{F}_q^k \otimes \mathbb{F}_q^m$;

iv) a wreathed tensor product,

the preimage in $\operatorname{GL}_n(q)$ of $\operatorname{PGL}_k(q) \wr \mathcal{S}_m$, where $n = k^m$,

the stabiliser of a tensor product decomposition $\mathbb{F}_q^k \otimes \cdots \otimes \mathbb{F}_q^k$;

v) the preimage in $\operatorname{GL}_n(q)$ of r^{2k} : $\operatorname{Sp}_{2k}(r)$, where $n = r^k$,

or of 2^{2k} .GO^{ϵ}_{2k}(2), for r = 2 and $q \equiv \epsilon \pmod{4}$;

vi) an almost quasi-simple group acting irreducibly.

- ASCHBACHER: looks more closely at case vi),
- \circ in particular considers subfields and extension fields of \mathbb{F}_q .

Proof of the Aschbacher-Dynkin Theorem

• Proof:

- Let $\operatorname{PSL}_n(q) \not\leq H < G := \operatorname{PGL}_n(q)$,
- and let $\widehat{H} < \widehat{G} := \operatorname{GL}_n(q)$ be its preimage.
- We may assume that *Ĥ* acts irreducibly, otherwise case i).
 Let N ≤ H be the socle of H,
- that is the product of its minimal non-trivial normal subgroups.

• By Clifford theory \widehat{N} acts completely reducibly.

• We may assume that \widehat{N} has only one **isotypic component**, otherwise case **ii**).

• We may assume that \widehat{N} acts irreducibly,

otherwise $\widehat{H} \leq \widehat{N} \circ C_{\widehat{G}}(\widehat{N})$ implies case **iii)**.

- We may assume that N is the only minimal normal subgroup, otherwise $\widehat{N} \leq \widehat{N}_1 \circ \widehat{N}_2$ implies case **iii**) again.
- If $N \cong C_r \times \cdots \times C_r$ is (elementary) abelian we get case **v**).
- If $N \cong T$ is non-abelian simple we get case **vi**).
- If $N \cong T \times \cdots \times T$ is non-abelian non-simple we get case **iv**). \sharp

• Let F be a field, with automorphism $\sigma \colon F \to F$ such that $\sigma^2 = id$, • and let V be a finitely generated F-vector space.

• A σ -bilinear form is a map $f: V \times V \to F$ such that • $f(\lambda u + v, w) = \lambda f(u, w) + f(v, w),$ • $f(u, \lambda v + w) = \lambda^{\sigma} f(u, v) + f(u, w).$

• f is called

- symmetric if σ = id and f(w, v) = f(v, w),
- hermitian if $\sigma \neq \text{id}$ and $f(w, v) = f(v, w)^{\sigma}$,
- symplectic if $\sigma = \text{id and } f(w, v) = -f(v, w)$,
- alternating if $\sigma = \text{id and } f(v, v) = 0$.

• Any alternating form is symplectic,

- if $char(F) \neq 2$ then any symplectic form is alternating;
- \circ if char(F) = 2 then being symmetric or symplectic coincide.
- A quadratic form is a map $q: V \to F$ such that

 $\circ \; q(\lambda v + w) = \lambda^2 q(v) + q(w) + \lambda f(v,w),$

 \circ where the associated bilinear form $f: V \times V \to F$ is symmetric.

o If char(F) ≠ 2 then q is recovered from f as q(v) = ¹/₂f(v, v),
o if char(F) = 2 then f is alternating.

• A σ -bilinear form f is called **non-degenerate**, if rad $(f) := \{ w \in V; f(v, w) = 0 \text{ for all } v \in V \} = \{ 0 \}.$

• $v \in V$ is called **isotropic** if f(v, v) = 0.

• A map $A \in GL(V)$ is called an **isometry** of f, if

$$f(vA, wA) = f(v, w)$$
 for all $v, w \in V$;

• the set of all isometries is a subgroup of GL(V).

• A quadratic form q is called **non-degenerate**, if $rad(q) := \{v \in rad(f); v \text{ singular}\} = \{0\},\$

• where $v \in V$ is called **singular** if q(v) = 0.

• The **Witt index** is the dimension of a maximal singular subspace;

• by Witt's Theorem this is independent of the subspace chosen.

• A map $A \in GL(V)$ is called an **isometry** of q, if

$$q(vA) = q(v)$$
 for all $v \in V$;

• the set of all isometries is a subgroup of GL(V).

[•] No classification of non-degenerate forms for arbitrary F is known.

• **Theorem:** Any non-degenerate φ_q -hermitian form over \mathbb{F}_{q^2} has an orthonormal \mathbb{F}_{q^2} -basis,

• that is the associated **Gram matrix** is E_n .

• Thus $g \in \operatorname{GL}_n(q^2)$ is an isometry if and only if $g \cdot E_n \cdot \overline{g}^{\operatorname{tr}} = E_n$.

• General unitary group $\operatorname{GU}_n(q^2) := \{g \in \operatorname{GL}_n(q^2); \overline{g}^{-\operatorname{tr}} = g\},\$

• that is the **fixed points** of the concatenation of the graph automorphism (the duality) and a field automorphism of $GL_n(q^2)$.

- Counting the number of ordered orthonormal 𝔽_q²-bases:
 |GU_n(q²)| = q⁽ⁿ⁾/₂ · ∏ⁿ_{i=1}(qⁱ (-1)ⁱ) = (-q)⁽ⁿ⁾/₂ · ∏ⁿ_{i=1}((-q)ⁱ 1)
 Ennola duality |GU_n(q²)| = |GL_n(-q)|
- As in the linear case: $\operatorname{SU}_n(q^2)$, $\operatorname{PGU}_n(q^2)$, $\operatorname{PSU}_n(q^2)$, \circ where $Z(GU_n(q^2)) \cong C_{q+1} = C_{|(-q)-1|}$. $\circ |\operatorname{PSU}_n(q^2)| = \frac{1}{\operatorname{gcd}(n,q+1)} \cdot \frac{1}{q+1} \cdot |\operatorname{GU}_n(q^2)| = |\operatorname{PSL}_n(-q)|$
- Simplicity of $\mathbf{PSU}_n(q^2)$: Apply Iwasawa's Criterion

 \circ to the action on the set of isotropic 1-dimensional subspaces,

• and use **unitary transvections**,

- that is $V \to V \colon v \mapsto v + \lambda f(v, w) w$, where $w \in V$ is isotropic.
- Exceptions: $PSU_2(q^2) \cong PSL_2(q)$, and $PSU_3(2^2)$ is soluble.

• **Theorem:** Any (necessarily even-dimensional) non-degenerate alternating form over \mathbb{F}_q is an orthogonal sum of **hyperbolic planes**;

• that is the latter have **Gram matrix** $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.

- Symplectic group $Sp_{2n}(q)$
- Counting the number of ordered symplectic \mathbb{F}_q -bases:

$$\circ |\operatorname{Sp}_{2n}(q)| = q^{n^2} \cdot \prod_{i=1}^n (q^{2i} - 1)$$

$$\circ \text{ We have } \operatorname{Sp}_{2n}(q) \le \operatorname{SL}_{2n}(q).$$

- **Projective** symplectic group $PSp_{2n}(q) := Sp_{2n}(q)/Z(Sp_{2n}(q)),$ • where $Z(\operatorname{Sp}_{2n}(q)) = \{\pm E_n\}.$ $\circ |\operatorname{PSp}_{2n}(q)| = \frac{1}{\gcd(2,q-1)} \cdot |\operatorname{Sp}_{2n}(q)|$
- Simplicity of $\mathbf{PSp}_{2n}(q)$: Apply Iwasawa's Criterion
- \circ to the action on the set of 1-dimensional subspaces,
- and use symplectic transvections,
- that is $V \to V \colon v \mapsto v + \lambda f(v, w) w$.
- Exceptions: $\operatorname{Sp}_2(q) \cong \operatorname{SL}_2(q)$, and $\operatorname{Sp}_4(2) \cong \mathcal{S}_6$.

• **Theorem:** Any (2n + 1)-dimensional non-degenerate quadratic form over \mathbb{F}_q is equivalent to $X_0^2 + \sum_{i=1}^n X_i X_{-i}$.

• Theorem: Any 2*n*-dimensional non-degenerate quadratic form over \mathbb{F}_q is equivalent

• either to $\sum_{i=1}^{n} X_i X_{-i}$, having maximal Witt index n, • or to, where $T^2 + T + a \in \mathbb{F}_q[T]$ is irreducible,

$$(X_0^2 + X_0 X_{-0} + a X_{-0}^2) + \sum_{i=1}^{n-1} X_i X_{-i},$$

having non-maximal Witt index n-1.

• General orthogonal groups $GO_{2n+1}(q)$, $GO_{2n}^+(q)$, $GO_{2n}^-(q)$

• Counting the number of isotropic vectors,

• which are acted on transitively by $GO_n(q)$, and induction:

- $\circ |\mathrm{GO}_{2n}^{\epsilon}(q)| = 2q^{\binom{n}{2}} \cdot (q^n \epsilon) \cdot \prod_{i=1}^{n-1} (q^{2i} 1)$ $\circ |\mathrm{GO}_{2n+1}(q)| = 2q^{n^2} \cdot \prod_{i=1}^n (q^{2i} - 1),$
- As in the linear case: SO_n(q), PGO_n(q), PSO_n(q),
 where Z(GO_n(q)) = {±E_n},
- \circ and where $g \cdot J \cdot g^{\text{tr}} = J$, for J being the Gram matrix,
- implies $\det(g)^2 = 1$ for all $g \in \mathrm{GO}_n(q)$.
- But: $PSO_n(q)$ is in general not perfect.

 \circ Let q be odd.

- Spinor norm ν: GO_n(q) → F^{*}_q/F^{*2}_q ≃ C₂:
 write g ∈ GO_n(q) as a product of reflections
 r_w: V → V: v ↦ v − f(v,w)/q(w) ⋅ w, where w ∈ V is non-singular,
 and let ν(r_w) := q(w) ⋅ F^{*2}_q ∈ F^{*}_q/F^{*2}_q.
 Note the similarity to the definition of the sign of a permutation
- Note the similarity to the definition of the sign of a permutation.
- Let $\Omega_n(q) := \ker(\nu) \cap \operatorname{SO}_n(q)$ and $\operatorname{P}\Omega_n(q) := \Omega_n(q)/Z(\Omega_n(q))$, • then $\operatorname{GO}_n(q)/\ker(\nu) \cong \operatorname{SO}_n(q)/\Omega_n(q) \cong C_2$.
- $\operatorname{SO}_{2n+1}(q) \cong \operatorname{PSO}_{2n+1}(q)$ and $\Omega_{2n+1}(q) \cong \operatorname{P}\Omega_{2n+1}(q)$,
- hence $|\Omega_{2n+1}(q)| = \frac{1}{4} \cdot |\mathrm{GO}_{2n+1}(q)|.$
- $-E_{2n} \in \Omega_{2n}^{\epsilon}(q)$ if and only if $q^n \equiv \epsilon \pmod{4}$, • hence $|P\Omega_{2n}^{\epsilon}(q)| = \frac{1}{2 \cdot \gcd(4, q^n - \epsilon)} \cdot |GO_{2n}^{\epsilon}(q)|$.
- Simplicity of $\mathbf{P}\Omega_n(q)$: Apply Iwasawa's Criterion

• to the action on the set of 1-dimensional singular subspaces,

• and use **Siegel transformations**.

• Exceptions: $\operatorname{GO}_2^{\epsilon}(q) \cong D_{2(q-\epsilon)}$, and $\operatorname{PO}_3(3) \cong \operatorname{PSL}_2(3) \cong \mathcal{A}_4$, and $\operatorname{PO}_4^+(q) \cong \operatorname{PSL}_2(q) \times \operatorname{PSL}_2(q)$.

• Note: $|\Omega_{2n+1}(q)| = |\operatorname{PSp}_{2n}(q)|$, but $\Omega_{2n+1}(q) \not\cong \operatorname{PSp}_{2n}(q)$.

- Let $q = 2^f$.
- $\circ \operatorname{GO}_n(q) = \operatorname{SO}_n(q) = \operatorname{PGO}_n(q) = \operatorname{PSO}_n(q)$
- Theorem: $GO_{2n+1}(q) \cong Sp_{2n}(q)$

• Hence only consider the even-dimensional case:

• Quasideterminant $\nu : \operatorname{GO}_{2n}^{\epsilon}(q) \to \{\pm 1\} \cong C_2$:

o write g ∈ GO^ε_{2n}(q) as a product of orthogonal transvections
o t_w: V → V: v ↦ v + f(v, w) ⋅ w, where w ∈ V,
o and let ν(t_w) := -1.

• KANTOR: Then $\nu(g)$ is the sign of the permutation induced by g on the set of maximal isotropic subspaces.

• Let $\Omega_{2n}^{\epsilon}(q) := \ker(\nu)$.

• Then the order formulae and the simplicity proof are still valid;

• the latter with the exceptions $\operatorname{GO}_2^{\epsilon}(q) \cong D_{2(q-\epsilon)}$, and $\operatorname{PO}_4^+(q) \cong \operatorname{PSL}_2(q) \times \operatorname{PSL}_2(q)$, and $\operatorname{PO}_5(2) \cong \operatorname{Sp}_4(2) \cong \mathcal{S}_6$.

Note: For arbitrary q we have, using Klein correspondence,
GO₂^ϵ(q) ≅ D_{2(q−ϵ)}, PΩ₃(q) ≅ PSL₂(q),
PΩ₄⁺(q) ≅ PSL₂(q) × PSL₂(q), PΩ₄⁻(q) ≅ PSL₂(q²),

 $\circ \operatorname{P}\Omega_5(q) \cong \operatorname{PSp}_4(q), \operatorname{P}\Omega_6^+(q) \cong \operatorname{PSL}_4(q), \operatorname{P}\Omega_6^-(q) \cong \operatorname{PSU}_4(q).$

Structure of classical groups

• Subgroups:

 \circ groups with BN-pairs,

• tori, Borels, and parabolics described in terms of **geometry**;

• entailing a generic 'Iwasawa type' simplicity argument.

 \circ Moreover:

• Automorphisms:

o diagonal, field, and graph automorphisms

• Covers:

 \circ generic $p'\mbox{-fold}$ covers, and finitely many $p\mbox{-power-fold}$ exceptions

• Maximal subgroups:

- DYNKIN [1952]: complex classical groups
- \circ Aschbacher [1984]: finite classical groups
- о Kleidman, Liebeck [1990]: explicit lists

- Linear and classical groups: described in terms of
- \circ geometry,
- \circ Lie theory,
- algebraic groups.
- **Example:** $SL_n(q)$ is described by
- its **natural** faithful action on the *n*-dimensional space \mathbb{F}_q^n ;
- the conjugation action on the (n^2-1) -dimensional Lie algebra

$$\mathfrak{sl}_n(q) := \{ A \in \mathbb{F}_q^{n \times n}; \operatorname{Tr}(A) = 0 \},\$$

yielding an action of $PSL_n(q) = SL_n(q)/Z(SL_n(q));$

• polynomial equations defining the algebraic group

$$\operatorname{SL}_n(\overline{\mathbb{F}}) := \{ A \in \overline{\mathbb{F}}^{n \times n}; \det(A) = 1 \},\$$

where $\mathbb{F}_q \subseteq \overline{\mathbb{F}}$ is an algebraic closure with **Frobenius morphism**

$$F := \varphi_q \colon \overline{\mathbb{F}} \to \overline{\mathbb{F}} \colon \lambda \mapsto \lambda^q,$$

yielding the set of fixed points

$$\operatorname{SL}_n(q) = \operatorname{SL}_n(\overline{\mathbb{F}})^F := \{g \in \operatorname{SL}_n(\overline{\mathbb{F}}); F(g) = g\}.$$

Starting point: Classification of simple complex Lie algebras
by Dynkin types A_n, B_n, C_n, D_n, E₆, E₇, E₈, F₄, G₂.

• Chevalley [1955]:

• integral forms of simple complex Lie algebras

 \circ yield simple Lie algebras L over any field F;

 \circ consider adjoint representation

ad:
$$L \to \operatorname{End}_F(L) \colon x \mapsto (L \to L \colon y \mapsto [x, y]),$$

• and **integrate** suitable **roots** $x \in L$,

 \circ obtain **one-parameter subgroups** of Aut(L), given by

$$\exp(\lambda \cdot \operatorname{ad}(x)) := \sum_{i \ge 0} \frac{\lambda^i}{i!} \cdot \operatorname{ad}(x)^i \in \operatorname{GL}_F(L).$$

• Chevalley group

$$G_n(F) := \langle \exp(\lambda \cdot \operatorname{ad}(x)); x \in L \operatorname{root}, \lambda \in F \rangle \leq \operatorname{Aut}(L)$$

- This uniformly yields finite field analoga of
- the classical Lie groups,
- \circ and the exceptional groups G_2 , F_4 , E_6 , E_7 , E_8 .
- $G_n(F)$ is a group with BN-pair.

• $\mathfrak{sl}_2(F) = \langle f, h, e \rangle_F$, with **Chevalley basis** $f := \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $h := \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $e := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

 \circ Adjoint action of e is nilpotent:

$$\operatorname{ad}(e) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix}, \quad \operatorname{ad}(e)^2 = \begin{bmatrix} 0 & 0 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \operatorname{ad}(e)^3 = 0 \cdot E_3.$$

 \circ Integration $\lambda \cdot \mathrm{ad}(e)$ and $\lambda \cdot \mathrm{ad}(f)$ is well-defined:

$$\exp(\lambda \cdot \operatorname{ad}(e)) = E_3 + \lambda \cdot \operatorname{ad}(e) + \frac{\lambda^2}{2} \cdot \operatorname{ad}(e)^2 = \begin{bmatrix} 1 & \lambda & -\lambda^2 \\ 0 & 1 & -2\lambda \\ 0 & 0 & 1 \end{bmatrix}$$

$$\exp(\lambda \cdot \operatorname{ad}(f)) = E_3 + \lambda \cdot \operatorname{ad}(f) + \frac{\lambda^2}{2} \cdot \operatorname{ad}(f)^2 = \begin{bmatrix} 1 & 0 & 0\\ 2\lambda & 1 & 0\\ -\lambda^2 & -\lambda & 1 \end{bmatrix}$$

•
$$\operatorname{SL}_2(F) = \langle x(\lambda), y(\lambda); \lambda \in F \rangle$$
, with transvections
 $x(\lambda) := \begin{bmatrix} 1 & \lambda \\ 0 & 1 \end{bmatrix}$, $y(\lambda) := \begin{bmatrix} 1 & 0 \\ \lambda & 1 \end{bmatrix}$.

• Adjoint action of $SL_2(F)$ on $\mathfrak{sl}_2(F)$ is conjugation:

$$\begin{aligned} x(\lambda) \colon f \mapsto f + \lambda h - \lambda^2 e, \quad h \mapsto h - 2\lambda e, \quad e \mapsto e; \\ y(\lambda) \colon f \mapsto f, \quad h \mapsto h + 2\lambda e, \quad e \mapsto \lambda^2 f - \lambda h + e. \end{aligned}$$

• Thus we have
$$\operatorname{SL}_2(F) \to A_1(F)$$
, implying
 $A_1(F) := \langle \exp(\lambda \cdot \operatorname{ad}(e)), \exp(\lambda \cdot \operatorname{ad}(f)); \lambda \in F \rangle \cong \operatorname{PSL}_2(F).$

- \circ Generalise the construction of unitary groups from linear groups,
- as fixed point sets under suitable graph automorphisms:
- completes the list of classical groups;
- yields twisted exceptional groups
- $\circ {}^{2}E_{6}(q^{2})$ and ${}^{3}D_{4}(q^{3})$ [Steinberg, 1959];
- yields 'sporadic' twisted exceptional groups
- $\circ {}^{2}B_{2}(2^{2f+1})$ [Suzuki, 1962],
- $\circ {}^{2}G_{2}(3^{2f+1})$ [Ree, 1961],
- $\circ {}^{2}F_{4}(2^{2f+1})$ [Ree, Tits, 1961/1964].
- These also are groups with BN-pair.

• Are there geometrical interpretations of these groups?

- Mostly there are, elucidating more of the group structure;
- \circ and leading to ${\bf natural}$ representations
- smaller than the **adjoint** representations.
- For $E_7(q)$ the smallest representation has dimension 56,
- \circ while the adjoint representation has dimension 133.
- For $E_8(q)$ the adjoint representation is smallest, of dimension 248.

• Six series of classical groups:

• Classical Chevalley groups:

• Type A_n : $\operatorname{PSL}_{n+1}(q)$, for $n \ge 1$ • Type B_n : $\Omega_{2n+1}(q)$, for $n \ge 3$ • Type C_n : $\operatorname{PSp}_{2n}(q)$, for $n \ge 2$

• Type D_n : $P\Omega_{2n}^+(q)$, for $n \ge 4$

• Twisted classical groups:

• Type ${}^{2}A_{n}$: $\mathrm{PSU}_{n+1}(q)$, for $n \geq 2$

• Type
$${}^{2}D_{n}$$
: $P\Omega_{2n}^{-}(q)$, for $n \geq 4$

• Exceptional Chevalley groups:

- Type E_n , for $n \in \{6, 7, 8\}$
- \circ Type F_4
- \circ Type G_2
- Twisted exceptional groups:

• Let $q := 2^{2f+1}$ for $f \in \mathbb{N}_0$.

- Consider the exceptional isomorphism $\mathcal{S}_6 \cong \mathrm{Sp}_4(2) = B_2(2)$:
- Natural permutation representation of \mathcal{S}_6 over $F := \mathbb{F}_q$
- has \mathcal{S}_6 -invariant form $f([x_1, \ldots, x_6], [y_1, \ldots, y_6]) := \sum_{i=1}^6 x_i y_i$. • Then $V := \langle v \rangle_F^{\perp} / \langle v \rangle_F$, where $v := [1, \ldots, 1]$,
- \circ has \mathcal{S}_6 -invariant non-degenerate alternating form,
- hence we have $\mathcal{S}_6 \leq \mathrm{Sp}_4(q)$; now compare orders for q = 2.
- V has hyperbolic basis

$$e_1 := [1, 1, 0, 0, 0, 0], \quad f_1 := [0, 1, 1, 0, 0, 0],$$

 $e_2 := [0, 0, 0, 1, 1, 0], \quad f_2 := [0, 0, 0, 0, 1, 1].$

\circ Exterior square $V' := \Lambda^2(V)$ has

o non-degenerate symplectic form f' (Klein correspondence)
o given by f'(a ∧ b, c ∧ d) = 1 if and only if dim(⟨a, b, c, d⟩_F) = 4.
o ⟨v'⟩[⊥]_F/⟨v'⟩_F, where v' := e₁ ∧ f₁ + e₂ ∧ f₂, has hyperbolic basis
e'₁ := e₁ ∧ e₂, f'₁ := f₁ ∧ f₂, e'₂ := e₁ ∧ f₂, f'₂ := e₂ ∧ f₁.

- $\gamma : e_i \mapsto e'_i, f_i \mapsto f'_i$ defines a graph automorphism of $\operatorname{Sp}_4(q)$ • such that $\gamma^2 = \varphi_2$, hence $(\gamma \varphi_2^f)^2 = \varphi_2^{1+2f} = \operatorname{id}$.
- Suzuki group $Sz(q) := {}^2\!B_2(q) := C_{\operatorname{Sp}_4(q)}(\gamma \varphi_2^f)$ [Ono, 1962]
- Note: γ extends $\mathcal{A}_6 < \mathcal{S}_6 \cong \mathrm{Sp}_4(2)$ to $\mathrm{PGL}_2(9) \not\cong \mathcal{S}_6$.

- Sz(q) acts 2-transitively on the **Tits oval** [SUZUKI, 1962],
- \circ a certain set of $q^2 + 1$ many 1-dimensional subspaces of V,
- with point stabiliser q^{1+1} : C_{q-1} ,
- \circ whose central involutions are commutators and generate Sz(q).
- This yields $|Sz(q)| = (q^2 + 1)q^2(q 1)$,
- and Iwasawa's Criterion implies simplicity,
- with the exception $Sz(2) \cong 5: 4$.
- Automorphisms: only field automorphisms
- **Covers:** generically trivial,
- with the exception $2^2 \cdot Sz(8)$.
- Maximal subgroups, for $f \ge 1$: [SUZUKI]
- $\circ q^{1+1} \colon C_{q-1},$
- $D_{2(q-1)}$,
- $\circ \ C_{q+\sqrt{2q}+1} \colon 4,$
- $\circ \ C_{q-\sqrt{2q}+1} \colon 4,$
- Sz(q'), where $q = (q')^r$ for r a prime and $q' \neq 2$.
- Note: If 2f + 1 is a prime, Sz(q) is a **minimal simple group**.

• Let F be a field such that $char(F) \neq 2$.

• Hamilton quaternions $\mathbb{H}(F) = \langle 1, i, j, k \rangle_F$ [1843]

 \circ are obtained from F by adjoining three orthogonal $\sqrt{-1}$'s,

- \circ such that $i \cdot j = k, j \cdot k = i, k \cdot i = j$.
- $\circ \mathbb{H}(F)$ is a skew-field such that $\dim_F(\mathbb{H}(F)) = 4$.
- Letting $\mathbb{H}(F)' := \langle i, j, k \rangle_F = \langle 1 \rangle_F^{\perp}$,

• with respect to the natural symmetric form,

- we have $\dim_F(\mathbb{H}(F)') = 3$,
- yielding $\operatorname{Aut}(\mathbb{H}(F)) = \operatorname{Aut}(\mathbb{H}(F)') \cong \operatorname{SO}_3(F) \cong \operatorname{PGL}_2(F).$

• Cayley octonions $\mathbb{O}(F)$ [Cayley, Graves, 1845/1843]

- \circ are obtained from F by adjoining seven orthogonal $\sqrt{-1}$'s
- $\{i_0, \ldots, i_6\}$, where any triple $[i_t, i_{t+1}, i_{t+3}]$
- fulfills the multiplication rules of $i, j, k \in \mathbb{H}(F)$.
- $\circ \mathbb{O}(F)$ is a non-associative algebra such that $\dim_F(\mathbb{O}(F)) = 8$.
- Letting $\mathbb{O}(F)' := \langle i_0, \ldots, i_6 \rangle_F = \langle 1 \rangle_F^{\perp}$,

• with respect to the natural symmetric form,

- we have $\dim_F(\mathbb{O}(F)') = 7$.
- Replacing by a suitable form yields a characteristic-free definition:

• Chevalley group

$$G_2(F) \cong \operatorname{Aut}(\mathbb{O}(F)) = \operatorname{Aut}(\mathbb{O}(F)') < \operatorname{SO}_7(F)$$

• The geometric approach yields, for example,

$$|G_2(q)| = q^6(q^6 - 1)(q^2 - 1);$$

 $\circ G_2(F)$ has a 7-dimensional natural representation,

• while the adjoint representation has dimension 14.

• Exception to simplicity: $G_2(2) \cong \text{PSU}_3(3): 2$

• Small Ree group ${}^{2}G_{2}(3^{2f+1}) < G_{2}(3^{2f+1})$:

o fixed points under a suitable graph automorphism,
o similar to Sz(2^{2f+1}) ≈ ²B₂(2^{2f+1}) < B₂(2^{2f+1}) ≈ Sp₄(2^{2f+1}).
o Exception to simplicity: ²G₂(3) ≈ PSL₂(8): 3

• Steinberg triality group $G_2(q) < {}^3D_4(q^3) < P\Omega_8^+(q^3)$:

• automorphism group of **twisted** octonions.

- Note: ${}^{3}D_{4}(q^{3}) < D_{4}(q^{3}) \cong P\Omega_{8}^{+}(q^{3})$ fixed points under
- Steinberg's triality automorphism,
- \circ which hence can be understood in terms of octonions.

• Let F be a finite field such that $char(F) \notin \{2,3\}$.

Jordan product A \circ B := \frac{1}{2}(AB + BA) on an associative algebra
is commutative, non-associative, and fufills the Jordan identity

$$((A \circ A) \circ B) \circ A = (A \circ A) \circ (B \circ A).$$

• A **Jordan algebra** is a commutative, non-associative algebra fullfing the Jordan identity.

- Any simple Jordan *F*-algebra arises from an associative *F*-algebra,
- except the Albert algebra

$$\mathbb{A}(F) := \{ A \in \mathbb{O}(F)^{3 \times 3}; A^{\mathrm{tr}} = \overline{A} \},\$$

o where ¬: O(F) → O(F) denotes octonion conjugation;
o we have dim_F(A(F)) = 27.

• Letting $\mathbb{A}(F)' := \{A \in \mathbb{A}(F); \operatorname{Tr}(A) = 0\} = \langle E_3 \rangle^{\perp},$

• with respect to the natural symmetric form,

- we have $\dim_F(\mathbb{A}(F)') = 26$.
- Replacing by a suitable form yields a characteristic-free definition:

• Chevalley group $F_4(q) \cong \operatorname{Aut}(\mathbb{A}(\mathbb{F}_q))$:

• has a 26-dimensional natural representation,

• while the adjoint representation has dimension 52.

• Large Ree group ${}^2\!F_4(2^{2f+1}) < F_4(2^{2f+1})$:

• fixed points under a suitable graph automorphism; • similar to ${}^{2}G_{2}(3^{2f+1}) < G_{2}(3^{2f+1})$.

- Exception to simplicity: **Tits group** ${}^{2}F_{4}(2)'$
- Chevalley group $E_6(q)$: [DICKSON, 1901]
- leaves invariant a cubic 'determinant' form on $\mathbb{A}(\mathbb{F}_q)$;
- $E_6(q)$ has a 27-dimensional natural representation,
- while the adjoint representation has dimension 78.

• Steinberg group ${}^2\!E_6(q^2) < E_6(q)$:

• fixed points under a suitable graph automorphism;

o twisting the symmetric form on A(𝔽_q) yields a hermitian form,
o similar to PSU_n(q) < PSL_n(q).

- A Steiner system S(t, k, v) on the set {1,...,v}
 is a set of k-subsets, called blocks, such that
 any subset of size t is contained in precisely one block.
 Hence there are |S(t, k, v)| = {v \choose t} / {k \choose t} blocks.
- Example: The finite projective plane of order q
 is a Steiner system S(2, q + 1, q² + q + 1),
 the blocks being the projective lines.
- **Theorem:** There is a unique Steiner system S(5, 8, 24).

• Existence: Three successive one-point extensions of S(2, 5, 21)
• coming from the projective plane of order 4 [WITT, 1938];

• or: the blocks are the 759 words of **weight** 8 of the

• self-dual **extended binary Golay** $[24, 12, 8]_2$ -code $\mathcal{G}_{24} < \mathbb{F}_2^{24}$.

- Words of weight 8 are called **octads** [TODD, 1966].
- Computational combinatorial tool: [CURTIS, 1976]
- Miracle Octad Generator (MOG)
- Weight enumerator T²⁴ + 759 · T¹⁶ + 2576 · T¹² + 759 · T⁸ + 1,
 the 2576 words of weight 12 are called **dodecads**.

- Given a dodecad,
- S(5, 8, 24) induces a Steiner system S(5, 6, 12) on it,
- being unique up to isomorphism,
- having 132 blocks, called **hexads**.
- Attaching signs, the blocks yield the words of weight 6 of the
- self-dual **extended ternary Golay** $[12, 6, 6]_3$ -code $\mathcal{G}_{12} < \mathbb{F}_3^{12}$;
- weight enumerator $2 \cdot (12 \cdot T^{12} + 220 \cdot T^9 + 132 \cdot T^6 + 1)$.
- Any word of weight 4 determines a coset in the

\circ Golay cocode (Todd module) $\mathbb{F}_2^{24}/\mathcal{G}_{24}$,

- where 6 mutually disjoint words determine the same coset.
- Hence any word of weight 4 yields a **sextet**,
- \circ a partition of $\{1, \ldots, 24\}$ into 6 subsets of size 4,
- the union of any two of which is an octad;
- there are $\frac{1}{6} \cdot \binom{24}{4} = 1771$ sextets.

• Mathieu group $M_{24} := \operatorname{Aut}(S(5, 8, 24)) \cong \operatorname{Aut}(\mathcal{G}_{24}),$

 \circ acts 5-transitively on $\{1, \ldots, 24\}$:

• Mathieu group $M_{23} := \operatorname{Stab}_{M_{24}}(1) \cong \operatorname{Aut}(\mathcal{G}_{23}),$

• where $\mathcal{G}_{23} < \mathbb{F}_2^{23}$ is the perfect **binary Golay** $[23, 12, 7]_2$ -code;

- Mathieu group $M_{22} := \operatorname{Stab}_{M_{24}}(1,2);$
- $M_{21} := \operatorname{Stab}_{M_{24}}(1,2,3) \cong \operatorname{PSL}_3(4)$, in natural 2-transitive action.
- $|M_{24}| = 24 \cdot 23 \cdot 22 \cdot 21 \cdot 20 \cdot 48 = 2^{10} \cdot 3^3 \cdot 5 \cdot 7 \cdot 11 \cdot 23$
- Simplicity of M_{24} : Apply Iwasawa's Criterion

• to the transitive action on the sextets, with stabiliser 2^6 : $(3.S_6)$.

- $\circ M_{24}$ acts transitive on the dodecads, with point stabiliser
- Mathieu group $M_{12} \cong \operatorname{Aut}(S(5, 6, 12)), \operatorname{Aut}(\mathcal{G}_{12}) \cong 2.M_{12};$ • $|M_{12}| = \frac{|M_{24}|}{2576} = 95040 = 2^6 \cdot 3^3 \cdot 5 \cdot 11.$
- M_{12} acts sharply 5-transivitely on $\{1, \ldots, 12\}$:

• Mathieu group $M_{11} := \operatorname{Stab}_{M_{12}}(1), \operatorname{Aut}(\mathcal{G}_{11}) \cong 2 \times M_{11},$

• where $\mathcal{G}_{11} < \mathbb{F}_3^{11}$ is the perfect **ternary Golay** $[11, 6, 5]_3$ -code;

•
$$M_{10} := \operatorname{Stab}_{M_{12}}(1,2) \cong \mathcal{A}_{6.2},$$

• where $\operatorname{Aut}(\mathcal{A}_6) \cong \mathcal{A}_6.2^2$ and $\mathcal{S}_6 \ncong \mathcal{A}_6.2 \ncong \operatorname{PGL}_2(9)$.

2¹²: M₂₄ afforded by the Golay code G₂₄,
acts monomially on

Leech lattice *L*: [Leech, Witt, 1967/1940]
the set of all x := [x₁,...,x₂₄] ∈ Z²⁴ such that
x_i ≡ ¹/₄ ∑²⁴_{i=1} x_i ≡ m (mod 2), for some m,
and {i; x_i ≡ k (mod 4)} ∈ G₂₄, for each k;
with scalar product ⟨x, y⟩ := ¹/₈ · ∑²⁴_{i=1} x_iy_i ∈ Z.

Theorem: *L* is the unique unimodular even lattice in R²⁴
without roots, that is vectors of norm 2.

•
$$\mathcal{L}_n := \{ x \in \mathcal{L}; \langle x, x \rangle = n \}, \text{ for } n \in 2\mathbb{N}_0.$$

• Weight function $\Theta_{\mathcal{L}} := \sum_{n \in \mathbb{N}_0} |\mathcal{L}_{2n}| \cdot T^n \in \mathbb{Z}[[T]]$:

 $\Theta_{\mathcal{L}} = 1 + 196560 \cdot T^2 + 16773120 \cdot T^3 + 398034000 \cdot T^4 + \cdots$

\$\mathcal{L}_8\$ falls into classes of 48 mutually orthogonal vectors,
\$\cancel{coordinate frames}\$,

$$\circ$$
 hence there are $\frac{398034000}{48} = 8292375$ coordinate frames.

- Conway group $2.Co_1 := \operatorname{Aut}(\mathcal{L})$
- $\circ |Co_1| = \frac{1}{2} \cdot 8292375 \cdot 2^{12} \cdot |M_{24}| = 2^{21} \cdot 3^9 \cdot 5^4 \cdot 7^2 \cdot 11 \cdot 13 \cdot 23$
- Simplicity: Apply Iwasawa's Criterion to
- \circ the transitive action on coordinate frames, with stabiliser 2^{12} : M_{24} .
- Smallest representation of dimension 24 is **globally irreducible**.
- Sublattice groups: 2. Co_1 acts transitively on \mathcal{L}_4 and \mathcal{L}_6 .
- Conway group $Co_2 := \operatorname{Stab}_{2.Co_1}(v)$ where $v \in \mathcal{L}_4$;
- Conway group $Co_3 := \operatorname{Stab}_{2.Co_1}(w)$ where $w \in \mathcal{L}_6$.
- 2. Co_1 acts transitively on $\{[v, v'] \in \mathcal{L}_4 \times \mathcal{L}_4; v + v' \in \mathcal{L}_6\},\$
- McLaughlin group [1969] $McL := \text{Stab}_{2.Co_1}(v, v')$.
- 2. Co_1 acts transitively on $\{[w, w'] \in \mathcal{L}_6 \times \mathcal{L}_6; w + w' \in \mathcal{L}_4\},\$
- Higman-Sims group [1968] $HS := \operatorname{Stab}_{2.Co_1}(w, w')$.
- Higman-Sims graph on {z ∈ L₄, ⟨z, w⟩ = 3, ⟨z, w'⟩ = -3},
 vertices z, z' being adjacent if ⟨z, z'⟩ = 1,
- \circ size n = 100, regular of valency k = 22;
- HS primitive of rank 3, with stabiliser M_{22} .

• Let $3D \in Co_1$ [ATLAS]

• have order 3 and centraliser $C_{Co_1}(3D) \cong 3 \times \mathcal{A}_9$.

• Letting

$$\mathcal{A}_9 > \mathcal{A}_8 > \mathcal{A}_7 > \mathcal{A}_6 > \mathcal{A}_5 > \mathcal{A}_4 > \mathcal{A}_3 > \mathcal{A}_2$$

 \circ yields corresponding centralisers $C_{Co_1}(\mathcal{A}_i)$

 $S_3 < S_4 < PSL_3(2) < PSU_3(3) < J_2 < G_2(4) < 3.Suz < Co_1.$

- Suzuki group [1969] Suz
- Hall-Janko group [1968] J_2

• has two classes of involutions and $C_{J_2}(2A) \cong 2^{1+4}_-$: \mathcal{A}_5 .

- 6.Suz < 2.Co₁ induces a complex structure L_C on L,
 such that 6.Suz = Aut(L_C) acts irreducibly.
- 2. $\mathcal{A}_5 < \mathbb{H}(\mathbb{R})$ binary icosahedral group [HAMILTON, 1857],
- hence $2.A_5 \circ 2.J_2 < 2.A_4 \circ 2.G_2(4) < 2.Co_1$
- \circ induces a **quaternionic** structure $\mathcal{L}_{\mathbb{H}}$ on \mathcal{L} ,
- such that $2.J_2 < 2.G_2(4) = \operatorname{Aut}(\mathcal{L}_{\mathbb{H}})$ act irreducibly;
- \circ note: this yields the exceptional 2-fold cover 2. $G_2(4)$.

- A finite group G generated by
- a conjugacy class of involutions, called 3-transpositions,
- such that the product of two transpositions has order at most 3,

 $\circ G' = G''$, and any normal 2- or 3-subgroup is central,

• is called a 3-transposition group.

• **Theorem:** [FISCHER, 1968/1971]

Let G be a 3-transposition group. Then G/Z(G) is isomorphic to: $\circ S_n$; PSU_n(2²), Sp_{2n}(2), GO^{\epsilon}_{2n}(2); PΩ^{\epsilon}_{2n}(3) : 2, Ω_{2n+1}(3), SO_{2n+1}(3); \circ or one of the **Fischer groups** Fi_{22} , Fi_{23} , Fi'_{24} .2.

• Key tool: Transposition graph Δ ,

• with vertices corresponding to the 3-transpositions,

• being adjacent if the 3-transpositions commute.

- Hence Δ is regular, and $G \leq \operatorname{Aut}(\Delta)$ is vertex-transitive.
- Fi_{22} : $n = 3510, k = 693, H \cong 2.\text{PSU}_6(2);$
- Fi_{23} : $n = 31671, k = 3510, H \cong 2.Fi_{22}$;
- Fi'_{24} .2: $n = 306936, k = 31671, H \cong 2 \times Fi_{23}$
- Simplicity: Apply Iwasawa's Criterion
- \circ to the above primitive rank 3 actions on the vertices of Δ .

3-transposition groups 2².PSU₆(2²) < 2.Fi₂₂ < Fi₂₃ < Fi'₂₄.2
embedding 2.Fi₂₂ < 2².²E₆(2²): 2 into a 4-transposition group
2¹¹.M₂₄ < Fi'₂₄ Todd action, 2¹¹: M₂₄ < Co₁ Golay action
FISCHER, CONWAY [1968]:

$$2^2 \cdot {}^2E_6(2^2) : 2 \stackrel{?}{<} 2 \cdot B \stackrel{?}{<} M \stackrel{?}{<} ?$$

Fischer-Griess Monster (Friendly Giant) M [1973]:
a 6-transposition group of order

- \circ Smallest representation V has dimension 196883,
- carrying structure of non-associative Griess algebra [1980].
- \circ Construction needs a thorough analysis of \mathcal{L} and \mathcal{G}_{24} .
- \circ The Leech lattice and Fischer groups are **involved** in M.

Monstrous Moonshine

- McKay, Thompson [1979]:
- \circ Fourier expansion of the elliptic modular j-function

 $j - 744 = q^{-1} + 196884 \cdot q + 21493760 \cdot q^2 + 864299970 \cdot q^3 + \cdots,$

 \circ has coefficients being character degrees of M.

• Moonshine Conjectures: [CONWAY, NORTON, 1979]

 \circ There is an infinite-dimensional graded $M\operatorname{-module}$

 \circ inducing a relation between conjugacy classes of M

 \circ and modular functions of genus 0.

• FRENKEL, LEPOWSKY, MEURMAN [1988]:

• construction of moonshine module,

• using vertex operators from conformal field theory.

• BORCHERDS [1992]:

• *M*-invariant **vertex algebra** on moonshine module,

• proving the Moonshine Conjectures.

How to construct a Monster? [GRIESS, CONWAY, 1980/1985]

•
$$G_1 := C_M(2B) \cong 2_+^{1+24}.Co_1$$
,
• where $2^{24} \cong \mathcal{L}/2\mathcal{L}$ and $G_1/Z(G_1) \cong 2^{24}$: Co_1 .
• Let \widetilde{G}_1 be the universal cover of G_1 , then $Z(\widetilde{G}_1) \cong V_4$,
• giving rise to groups $G_1^s \ncong G_1^t \cong G_1$ of shape $2_+^{1+24}.Co_1$,
• with smallest faithful representations of dimension 2^{12} and $24 \cdot 2^{12}$.
• $V|_{G_1} \cong 98304 \oplus 98280 \oplus 299$, where
• $98304 \cong 4096 \otimes 24 = 2^{12} \otimes \mathcal{L}$, acted on by G_1^s and $2.Co_1$;
• $2^{24}|_{Co_2} = [1, 22, 1]$ uniserial, 2^{24} : Co_2 having linear character 1^- ,
 $98280 \cong (1_{2^{24}.Co_2}^{-}) \uparrow^{2^{24}.Co_1}$ monomial action;

 $\circ 1 \oplus 299 \cong S^2(\mathcal{L}) < \mathcal{L} \otimes \mathcal{L}$, acted on by Co_1 .

- Restrict to $G_1 > G_{12} \cong 2^{1+24}_+ . (2^{11} \colon M_{24}) \cong 2^{2+11+22} . (2 \times M_{24}),$
- triality symmetry yields $G_{12} < G_2 \cong 2^{2+11+22} . (\mathcal{S}_3 \times M_{24}).$

 $\circ V|_{G_2} \cong 147456 \oplus 48576 \oplus 828 \oplus 23$

◦ 98304|_{G'_{12} \cong 49152 \oplus 49152 and 552|_{G'_{12}} \cong 276 \oplus 276

G_1	98304				98280						299
	\downarrow			\checkmark	\downarrow	\searrow				\checkmark	\downarrow
G_{12}	98304		49152		48576		552		276		23
	\uparrow	\nearrow			\uparrow			~	\uparrow		\uparrow
G_2	147456				48576				828		23

- $C_M(2B) \cong 2^{1+24}_+.Co_1$
- $C_M(3A) \cong 3.Fi'_{24}$
- Baby Monster B: [FISCHER, 1973]
- a 4-transposition group, arising as $C_M(2A) \cong 2.B$.

• Smallest representation has dimension 4371,

• is irreducible except in characteristic 2,

• and contains a vector with stabiliser $2.2E_6(2^2)$: 2, yielding

 \circ smallest permutation representation on $13\,571\,955\,000$ points

 \circ [Leon, Sims, 1980].

• Thompson group [1973] Th:

• $3C \in M$ preimage of 3D with respect to $2^{1+24}_+.Co_1 \rightarrow Co_1$ • gives rise to $C_M(3C) \cong 3 \times Th$.

 $\circ C_{Th}(2A) \cong 2^{1+8}_+ . \mathcal{A}_9$

• Smallest representation has dimension 248,

• is globally irreducible,

• and yields an embedding $Th < E_8(3)$.

Harada-Norton group [1973] HN:
5A ∈ M preimage of 5B with respect to 2¹⁺²⁴₊.Co₁ → Co₁
gives rise to C_M(5A) ≈ 5 × HN.
C_{HN}(2B) ≈ 2¹⁺⁸₊.(A₅ × A₅).2

• Smallest representation has dimension 133 over $\mathbb{Q}[\sqrt{5}]$,

• is irreducible except in characteristic 2,

• and **does not** yield an embedding into $E_7(5)$.

• Held group [1968] *He*:

• arises as $C_M(7A) \cong 7 \times He$.

Any simple group having an involution centraliser 2¹⁺⁶: PSL₃(2)
is isomorphic to PSL₅(2), M₂₄, or He.

 \circ There are just six sporadic groups not involved in M.

• WILSON: 'The behaviour of these six groups is so bizarre that any attempt to describe them ends up looking like a disconnected sequence of unrelated facts — it is simply the nature of the subject.'

• Janko group [1965] *J*₁:

- $\circ C_{J_1}(2A) \cong 2 \times \mathcal{A}_5;$
- $\circ J_1 < G_2(11),$
- $\circ \ |J_1| = 11 \cdot (11^3 1)(11 + 1).$
- WILSON [1986]: J_1 is **not** a subgroup of M.

• Janko group [1968] *J*₃:

• has a single class of involutions and $C_{J_3}(2A) \cong 2^{1+4}_-$: \mathcal{A}_5 ;

• while J_2 has two classes of involutions and $C_{J_2}(2A) \cong C_{J_3}(2A)$.

• Rudvalis group [1972] Ru

- O'Nan group [1973] *ON*:
- Parker, Ryba [1988]: $3.ON < GL_{452}(\mathbb{F}_7)$
- SOICHER [1990]: action on 122760 points
- Lyons group [1969] *Ly*:
- $\circ C_{Ly}(2A) \cong 2.\mathcal{A}_{11}$
- Meyer, Neutsch, Parker [1985]: $Ly < GL_{111}(\mathbb{F}_5)$

• Janko group [1975] *J*₄:

- $\circ C_{J_4}(2A) \cong 2^{1+12}_+.(3.M_{22}:2)$
- Norton, Parker, Thackray [1980]: $J_4 < \operatorname{GL}_{112}(\mathbb{F}_2)$,
- \circ the original motivation to develop the MeatAxe.

Computational techniques play an important role in the construction and analysis of the sporadic simple groups.