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• Aim: Explain the statement of the CFSG:



1.1

Classification of finite simple groups (CFSG)

• Cyclic groups of prime order Cp; p a prime.

• Alternating groups An; n ≥ 5.

• Finite groups of Lie type:

◦ Classical groups; q a prime power:

Linear groups PSLn(q); n ≥ 2, (n, q) 6= (2, 2), (2, 3).

Unitary groups PSUn(q
2); n ≥ 3, (n, q) 6= (3, 2).

Symplectic groups PSp2n(q); n ≥ 2, (n, q) 6= (2, 2).

Odd-dimensional orthogonal groups Ω2n+1(q); n ≥ 3, q odd.

Even-dimensional orthogonal groups PΩ+
2n(q), PΩ−

2n(q); n ≥ 4.

◦ Exceptional groups; q a prime power, f ≥ 1:

E6(q). E7(q). E8(q). F4(q). G2(q); q 6= 2.

Steinberg groups 2E6(q
2). Steinberg triality groups 3D4(q

3).

Suzuki groups 2B2(2
2f+1). Small Ree groups 2G2(3

2f+1).

Large Ree groups 2F4(2
2f+1), Tits group 2F4(2)′.

• 26 Sporadic groups: ...



1.2

Classification of finite simple groups (CFSG), II

• Sporadic groups:

◦ Mathieu groups M11, M12, M22, M23, M24.

◦ Leech lattice groups:

Conway groups Co1, Co2, Co3.

McLaughlin group McL. Higman-Sims group HS.

Suzuki group Suz. Hall-Janko group J2.

◦ Fischer groups Fi22, Fi23, Fi′24.

◦ Monstrous groups:

Fischer-Griess Monster M .

Baby Monster B. Thompson group Th.

Harada-Norton group HN . Held group He.

◦ Pariahs:

Janko groups J1, J3, J4. O’Nan group ON .

Lyons group Ly. Rudvalis group Ru.

• Repetitions:

◦ PSL2(4) ∼= PSL2(5) ∼= A5; PSL2(7) ∼= PSL3(2);

◦ PSL2(9) ∼= A6; PSL4(2) ∼= A8;

◦ PSU4(2) ∼= PSp4(3).



1.3

Composition series

◦ Let G be a finite group.

• G is called simple if G is non-trivial and does not have any proper

non-trivial normal subgroup.

• Composition series:

◦ G has a composition series of length n ∈ N0

{1} = G0 ⊳ G1 ⊳ · · · ⊳ Gn = G,

◦ where Gi−1⊳Gi such that Gi/Gi−1 is simple, for all i ∈ {1, . . . , n}.

• Jordan-Hölder Theorem:

◦ The set of composition factors Gi/Gi−1, counting multiplici-

ties, is independent of the choice of a composition series.

• G is called soluble if all composition factors Gi/Gi−1 are abelian,

or equivalently cyclic of prime order.

• Examples:

◦ {1} ⊳ S2 with composition factors C2.

◦ {1} ⊳ A3 ⊳ S3 with composition factors C2, C3.

◦ {1}⊳ C2 ⊳ V4 ⊳A4 ⊳ S4 with composition factors C2, C2, C2, C3.

◦ {1} ⊳ A5 ⊳ S5 with composition factors A5, C2.



1.4

Some history

• Abel’s Theorem:

◦ The Galois group of the general polynomial equation of degree

n ∈ N over any field is isomorphic to the symmmetric group Sn.

◦ The general polynomial equation of degree n ∈ N over a field of

characteristic 0 is solvable by radicals if and only if its Galois

group is soluble, that is if and only if n ≤ 4.

◦ Galois [∼1830]: An simple for n ≥ 5, PSL2(p) for p a prime.

◦ Jordan [1870]: ‘Traité des substitutions’, PSLn(p).

◦ Sylow Theorems [1872]: the first classification tool.

◦ Mathieu [1861/1873]: the simple Mathieu groups.

◦ Killing [∼1890]: classification of complex simple Lie algebras.

◦ Dickson [∼1900]: finite field analoga of the classical Lie groups.

◦ Chevalley [1955]: uniform construction of

the classical and exceptional finite groups of Lie type.

◦ Ree, Steinberg, Suzuki, Tits [∼1960]:

twisted classical and exceptional finite groups of Lie type.

◦ ∼1960: common belief is that all finite simple groups are known.



1.5

Some history, II

◦ Brauer, Fowler [1955]:

Given n ∈ N, there are at most finitely many simple groups contain-

ing an involution with centraliser of order n.

◦ Feit-Thompson Theorem [1963]:

Any finite group of odd order is soluble.

◦ Brauer program: Hence any non-abelian finite simple group

contains an involution, thus consider centralisers of central involu-

tions and prove completeness of classification by induction.

◦ Janko [1964]: (the first since almost a century)

sporadic group J1 with involution centraliser C2 ×A5.

◦ Thompson [1968]: classification of minimal simple groups.

◦ Janko [1975]: the last sporadic group J4.

◦ ∼1980: common belief is that CFSG is proved.

◦ Gorenstein, Lyons, Solomon [≥1994]:

revision project of the proof of CFSG.

◦ Aschbacher, Smith [2004]:

the quasithin case, completing the proof of CFSG.

• Do we really believe that the Four-Colour Theorem, or Fer-

mat’s Last Theorem, or the Poincaré Conjecture, or the

CFSG are proved?



1.6

Applications of CFSG

• Let T be a non-abelian finite simple group.

◦ Then Z(T ) = {1} implies T ∼= Inn(T ) E Aut(T ).

• A group G such that T ≤ G ≤ Aut(T ) is called almost simple.

• A perfect group G such that G/Z(G) ∼= T is called quasi-simple.

• Schreier’s Conjecture:

◦ The outer automorphism group Out(T ) := Aut(T )/Inn(T ) of any

finite simple group T is soluble.

• Proof: by inspection; in all cases Out(T ) is ‘very small’. ♯

• Theorem: Let N E G such that gcd(|N |, |G/N |) = 1. Then all

complements of N in G are conjugate.

• Proof: uses the Feit-Thompson Theorem; or alternatively:

◦ Let G = N : H be a minimal counterexample.

◦ Easy: N is non-abelian simple and CG(N) = {1}
◦ Hence G ∼= G/CG(N) ≤ Aut(N) such that N ≤ Inn(N).

◦ Thus G/N ≤ Out(N) is soluble.

◦ Hence the assertion follows from Zassenhaus’s Theorem. ♯



1.7

Applications of CFSG, II

• Multiply-transitive permutation groups:

◦ The finite 2-transitive groups are explicitly known.

◦ The only finite 6-transitive groups are symmetric and alternating.

◦ The only finite 4-transitive groups are symmetric and alternating,

and the Mathieu groups M11, M12, M23, and M24.

• Proof:

◦ Burnside’s Theorem: A minimal non-trivial normal subgroup

of a finite 2-transitive group is either elementary-abelian and regular,

or simple and primitive.

◦ Hence a 2-transitive group is either affine or almost simple:

◦ Huppert and Hering: soluble and insoluble affine cases;

◦ Maillet, Curtis, Kantor, Seitz, Howlett:

almost simple cases.

◦ The higher transitive groups are then found by inspection. ♯

• Example:

◦ ASLd(q) ∼= [qd] : SLd(q), where q is a prime power and n = qd.

◦ PSLd(q), where q is a prime power, d ≥ 2, and n = qd−1
q−1

.



2.1

Symmetric and alternating groups

◦ Let n ∈ N0.

• Let Sn be the symmetric group on {1, . . . , n}.

◦ Let sgn : Sn → {±1} ∼= C2 be the sign representation.

◦ LetAn := ker(sgn)ESn be the alternating group on {1, . . . , n};

◦ the elements of An are called even permutations,

◦ the elements of Sn \ An are called odd permutations.

• The cycle type of a permutation is the partition of n indicating

the lengths of its distinct cycles, counting multiplicities.

◦ Example: The identity has cycle type [1n],

a 2-cycle or transposition has cycle type [2, 1n−2],

a 3-cycle has cycle type [3, 1n−3].

◦ A permutation is even if and only if it has an even number of cycles

of even length.

• The conjugacy classes of Sn are parametrised by cycle types.

◦ A permutation is centralised by no odd permutation if and only

if it is the product of cycles of distinct odd lengths.

◦ Hence the orbit-stabiliser theorem implies:

◦ A conjugacy class of Sn contained in An splits into two conjugacy

classes of An if and only if its cycle type has pairwise distinct odd

parts, otherwise it is a single conjugacy class of An.



2.2

Simplicity of An

• Theorem: Let n ≥ 5. Then An is simple.

• Proof: by induction on n; let {1} 6= N E An.

• Let n = 5. Then N is a union of conjugacy classes.

◦ The cycle types of even permutations are [15], [3, 12], [22, 1], [5],

where only type [5] splits into two conjugacy classes.

◦ The conjugacy class lengths are 1, 20, 15, 12, 12, respectively.

◦ No sub-sum of these, strictly including 1, divides 60; thus N = An.

• Let n > 5. Then An−1 = StabAn
(n) is simple.

◦ N ∩ An−1 E An−1, hence i) An−1 ≤ N or ii) N ∩An−1 = {1}:

i) Then N contains all elements of cycle type [3, 1n−3].

◦ Any even permutation is a product of 3-cycles; thus N = An.

ii) Then any non-trivial element of N acts fixed-point-free.

◦ If 1σ = 1τ for σ, τ ∈ N , then στ−1 ∈ N ∩ An−1 = {1}.

◦ Thus |N | ≤ n.

◦ But An does not have a non-trivial conjugacy class with fewer than

n elements, a contradiction. ♯



2.3

Automorphisms of An

◦ Let n ≥ 4. Then Z(An) = {1}, hence An
∼= Inn(An) E Aut(An);

◦ and Sn acts faithfully by conjugation, hence Sn ≤ Aut(An).

• Theorem: Let n ≥ 7. Then Aut(An) = Sn.

• Proof: [C. Parker]

◦ An being simple, it cannot possess a proper subgroup of index

k < n, since otherwise there would be an injective map An → Ak.

• We show (∗): If An−1
∼= H < An, then H = StabAn(i) for some i.

◦ Let n = 7. H cannot have a non-trivial orbit of less than 6 points.

If H is not a point stabiliser, then H acts transitively on {1, . . . , 7}.

This is a contradiction since 7 6 | |H| = |A6|, proving (∗) for n = 7.

◦ Let n ≥ 9. A ‘3-cycle’ of H centralises a group ∼= An−4.

Since n − 4 ≥ 5 the latter has an orbit of at least n − 4 points.

Thus a ‘3-cycle’ of H moves at most 4 points, thus is a 3-cycle of An.

◦ Let n = 8. A ‘3-cycle’ of H centralises a group ∼= A4.

Hence there is a V4 centralising the ‘3-cycle’.

The elements of A8 of cycle type [32, 12] do not centralise a V4.

Hence a ‘3-cycle’ of H is a 3-cycle of A8.



2.4

Automorphisms of An, II

◦ Thus for n ≥ 8 the ‘3-cycles’ of H map to 3-cycles of An.

◦ For pairs of 3-cycles we have 〈(a, b, c), (a, b, d)〉 ∼= A4.

◦ Hence the subgroup

H ∼= An−1 = 〈(1, 2, 3), . . . , (1, 2, n − 1)〉

maps to a subgroup

〈(a, b, c1), . . . , (a, b, cn−3)〉 ≤ An.

◦ The latter moves n − 1 points.

◦ Hence H ≤ StabAn(i) for some i, proving (∗) for n ≥ 8.

• Now:

◦ Any automorphism permutes the subgroups isomorphic to An−1.

◦ These subgroups are in natural bijection with {1, . . . , n}.

◦ Hence any automorphism induces a permutation of {1, . . . , n}. ♯

• We have Aut(An) = Sn for n ∈ {4, 5}.

◦ We have Aut(A6) ∼= A6.2
2.

◦ A6 has two conjugacy classes of subgroups isomorphic to A5.



2.5

Schur covers of Sn and An

• A finite group H such that Z(H) ≤ H ′ and H/Z(H) ∼= G is

called an |Z(H)|-fold cover of G.

◦ Two maximal covers of G are isoclinic.

◦ If G is perfect, its unique maximal cover is a universal cover.

• An has maximal 2-fold covers Ãn = 2.An, for n ≥ 4,

◦ except for n ∈ {6, 7} where it has maximal 6-fold covers 6.An.

• Sn has two maximal 2-fold covers S̃n and Ŝn, for n ≥ 4,

◦ both of shape 2.Sn, but we have S̃n
∼= Ŝn if and only if n = 6.

• The Coxeter presentation of Sn, where n ∈ N, is given as

Sn
∼= 〈s1, . . . , sn−1 | s2

i = (sisi+1)
3 = (sisj)

2 = 1 for |i − j| ≥ 2〉,

◦ where adjacent transpositions (i, i + 1) 7→ si.

• For S̃n and Ŝn, where n ≥ 4, we have [Schur, 1911]:

S̃n := 〈s1, . . . , sn−1, z |
z2 = 1, s2

i = (sisi+1)
3 = z, (sisj)

2 = z〉

Ŝn := 〈s1, . . . , sn−1, z |
z2 = 1, s2

i = (siz)2 = (sisi+1)
3 = 1, (sisj)

2 = z〉



2.6

Subgroups of Sn

◦ Describing all the subgroups of Sn, for all n ∈ N0, is by

◦ Cayley’s Theorem equivalent to classifying all finite groups:

◦ hopeless.

◦ But there are certainly are interesting prominent subgroups:

• for example, intransitive subgroups.

• Partition the set of n = km points into m blocks of size k.

◦ The wreath product Sk ≀ Sm
∼= Sm

k : Sm acts on this partition,

◦ where the base group Sm
k = Sk×· · ·×Sk consists of permutations

of the various blocks,

◦ and the wreathing Sm permutes the blocks.

◦ Sk ≀ Sm < Sn is an imprimitive transitive subgroup, for k, m ≥ 2.

• Sk ≀ Sm acts on {1, . . . , k}m by the product action, n = km,

◦ where [π1, . . . , πm] ∈ Sm
k acts by [a1, . . . , am] 7→ [aπ1

1 , . . . , aπm
m ],

◦ and π−1 ∈ Sm acts by [a1, . . . , am] 7→ [a1π, . . . , amπ ].

◦ Sk ≀ Sm < Sn is a primitive subgroup, for k ≥ 3 and m ≥ 2.



2.7

Maximal subgroups of Sn

◦ One might try to describe the maximal subgroups of Sn;

◦ the maximal subgroups of An are then obtained by intersection:

• O’Nan-Scott Theorem [1979]: Any proper subgroup of Sn

different from An is contained in one of the following subgroups:

i) an intransitive group Sk × Sm, where n = k + m;

ii) an imprimitive transitive group Sk ≀ Sm, where n = km;

iii) a primitive wreath product Sk ≀ Sm, where n = km;

iv) an affine group AGLd(p) ∼= pd : GLd(p), where n = pd;

v) a diagonal type group

Tm.(Out(T ) × Sm) ∼= (T ≀ Sm).Out(T ),

where T is a non-abelian simple group,

acting on the cosets of a subgroup of index n = |T |m−1, of shape

∆(T ).(Out(T ) × Sm) ∼= Aut(T ) × Sm;

vi) an almost simple group,

acting on the cosets of a maximal subgroup of index n.

◦ Describing the groups in class vi) requires complete knowledge of

the maximal subgroups of all almost simple groups:

◦ reducing an impossible problem to an even harder one.



3.1

Linear groups

◦ Let Fq be the field with q = pf elements, p a prime, f ∈ N, n ∈ N.

• General linear group GLn(q) := {g ∈ Fn×n
q ; det(g) 6= 0}

◦ Counting the number of ordered Fq-bases of Fn
q :

◦ |GLn(q)| = (qn − 1)(qn − q) · · · (qn − qn−1) = q(n
2) ·

∏n
i=1(q

i − 1)

◦ Viewing q as an indeterminate,

◦ this is an order polyomial in Z[q],

◦ whose irreducible factors are q and cyclotomic polynomials.

• Special linear group SLn(q) := {g ∈ GLn(q); det(g) = 1}

• Projective general linear group PGLn(q) := GLn(q)/Z(GLn(q)),

◦ where Z(GLn(q)) = F∗
q · En

∼= Cq−1.

◦ |SLn(q)| = |PGLn(q)| = 1
q−1 · |GLn(q)|

• Projective special linear group PSLn(q) := SLn(q)/Z(SLn(q)),

◦ where Z(SLn(q)) = {λ · En; λn = 1} ∼= Cgcd(n,q−1).

◦ |PSLn(q)| = 1
gcd(n,q−1) · |SLn(q)| = 1

gcd(n,q−1) · 1
q−1 · |GLn(q)|



3.2

Simplicity of PSLn(q)

• PSL2(2) ∼= GL2(2) ∼= S3:

◦ GL2(2) acts 2-transitively on the three vectors in F2
2 \ {0}.

• PSL2(3) ∼= A4:

◦ GL2(3) acts on the four 1-dimensional F3-subspaces of F2
3,

◦ the action is 2-transitive,

[
1 0

0 −1

]
fixes the standard F3-basis,

◦ hence GL2(3) → S4, with kernel Z(GL2(3)) ∼= C2,

◦ thus PGL2(3) ∼= S4 and PSL2(3) ∼= A4.

◦ Note: GL2(3) ∼= S̃4 and SL2(3) ∼= Ã4.

• Theorem: Let n ≥ 2 and (n, q) 6= (2, 2), (2, 3).

Then PSLn(q) is simple.

• Proof:

◦ G := SLn(q) acts on the set of 1-dimensional subspaces of Fn
q ,

◦ yielding a 2-transitive, hence primitive, action of PSLn(q).

◦ Let x := 〈[1, 0, . . . , 0]〉Fq and H := StabG(x),

◦ then

H =

{[
λ 0n−1

∗ h

]
∈ G; λ ∈ F∗

q, h ∈ GLn−1(q), λ · det(h) = 1

}
.



3.3

Simplicity of PSLn(q), II

◦ Use Iwasawa’s Criterion:

◦ Let

A :=

{[
1 0n−1

∗ En−1

]
∈ H

}
,

◦ then A ⊳ H is abelian, consisting of transvections,

◦ that is g ∈ G such that rk(g − En) = 1 and rk((g − En)
2) = 0.

◦ Jordan normal form theorem implies that

• any transvection is G-conjugate to some element of A.

• G is generated by transvections:

◦ Any g ∈ G can be reduced to En by a sequence of elementary row

operations of the form ‘ri 7→ ri + λrj’,

◦ that is multiplying g from the right with a series of transvections.

• G is perfect:

◦ For n ≥ 3 any transvection is a commutator:






1 0 0

1 1 0

0 0 1


 ,




1 0 0

0 1 0

0 λ 1




 =




1 0 0

0 1 0

−λ 0 1




◦ For n = 2 and q ≥ 4 there is λ ∈ F∗
q such that λ2 6= 1, then

[[
1 0

β 1

]
,

[
λ 0

0 λ−1

]]
=

[
1 0

β(λ2 − 1) 1

]

is an arbitrary element of A. ♯
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Iwasawa’s Criterion

• Theorem: [Iwasawa, 1941]

◦ Let G be a finite group, acting primitively on a set Ω,

◦ let H := StabG(x) < G for some x ∈ Ω,

◦ and let A E H such that 〈Ag; g ∈ G〉 = G.

• Then for any N E G we have

◦ either N ≤ StabG(Ω) =
⋂

g∈G Hg ⊳ G,

◦ or G/N is isomorphic to a quotient of A.

• In particular:

◦ if A is abelian and G is perfect, then G/StabG(Ω) is simple.

• Proof:

◦ We may assume that N 6≤ H.

◦ H < G being maximal implies G = HN , thus

◦ any g ∈ G can be written as g = hn, where h ∈ H and n ∈ N .

◦ Hence Ag = Ahn = An ≤ AN , for any g ∈ G,

◦ implying G = 〈Ag; g ∈ G〉 = AN ,

◦ thus G/N = AN/N ∼= A/(A ∩ N). ♯

◦ Despite its simplicity this is astonishingly powerful.

◦ Exercise: Use it to prove the simplicity of An, for n ≥ 5.



3.5

Automorphisms of SLn(q)

• Diagonal automorphisms:

◦ induced by conjugation with diagonal matrices,

◦ that is by the conjugation action of GLn(q).

◦ GLn(q)/SLn(q) ∼= Cq−1, PGLn(q)/PSLn(q) ∼= Cgcd(n,q−1)

• Field automorphisms:

◦ induced by the Frobenius automorphism ϕp : λ 7→ λp of Fq,

◦ where q = pf , hence 〈ϕp〉 ∼= Cf .

◦ Semilinear groups

ΓLn(q) := GLn(q) : 〈ϕp〉, PΓLn(q) := PGLn(q) : 〈ϕp〉,
ΣLn(q) := SLn(q) : 〈ϕp〉, PΣLn(q) := PSLn(q) : 〈ϕp〉.

• Graph automorphisms:

◦ induced by a graph automorphism of the Dynkin diagram.

◦ Duality GLn(q) → GLn(q) : g 7→ g−tr;

◦ induces duality on SLn(q), PGLn(q), PSLn(q).

◦ Note: duality is not inner for n ≥ 3.

• These are all the ‘outer’ automorphisms;

◦ in particular the outer automorphism group is soluble.



3.6

Covers of PSLn(q)

• PSLn(q) has gcd(n, q − 1)-fold universal cover

SLn(q) ∼= Cgcd(n,q−1).PSLn(q),

• except:

◦ PSL2(4) ∼= PSL2(5) ∼= A5 has universal cover 2.PSL2(4);

◦ PSL2(9) ∼= A6 has universal cover 6.PSL2(9);

◦ PSL3(2) ∼= PSL2(7) has universal cover 2.PSL3(2);

◦ PSL4(2) ∼= A8 has universal cover 2.PSL4(2);

◦ PSL3(4) has universal cover (3 × 42).PSL3(4).

• Note:

◦ generic universal covers have order coprime to the

defining characteristic p of the Lie type group,

◦ while exceptional parts of universal covers are p-groups.



3.7

Subgroups of GLn(q)

• Borel subgroup B := {g; g lower triangular} < G := GLn(q),

◦ the stabiliser of a maximal flag of Fn
q ;

• monomial subgroup N := {g ∈ G; g monomial} < G;

• maximal split torus T := B ∩ N = {g ∈ G; g diagonal},

◦ T ∼= Cn
q−1, and N = NG(T ) for q ≥ 3;

• unipotent subgroup U := {g ∈ G; g lower unitriangular}EB,

◦ U ∈ Sylp(G), and B = U : T split;

• Weyl group W := N/T ∼= Sn, via

[
0 1

1 0

]
7→ (1, 2),

◦ a crystallographic real reflection group:

◦ the adjacent transpositions act as reflections,

◦ that is dimQ(ker(g − En)) = n − 1 and dimQ(ker(g + En)) = 1.

• Flag stabilisers are called parabolic subgroups;

◦ B ≤ P =

[
GLk(q) 0

∗ GLn−k(q)

]
= UP : LP maximal parabolic,

◦ with unipotent radical UP =

[
Ek 0

∗ En−k

]
, and

◦ Levi subgroup LP =

[
GLk(q) 0

0 GLn−k(q)

]
∼= GLk(q)×GLn−k(q).

• Axiomatic: BN-pairs [Tits, 1962]



3.8

Maximal subgroups GLn(q)

• Aschbacher-Dynkin Theorem: [1984/1952]

◦ Any proper subgroup of GLn(q) different from SLn(q) is contained

in one of the following subgroups:

i) a reducible group qkm : (GLk(q) × GLm(q)), where n = k + m,

the stabiliser of a k-dimensional Fq-subspace;

ii) an imprimitive group GLk(q) ≀ Sm, where n = km,

the stabiliser of a direct sum decomposition into m k-subspaces;

iii) a tensor product GLk(q) ◦ GLm(q), where n = km,

the stabiliser of a tensor product decomposition Fk
q ⊗ Fm

q ;

iv) a wreathed tensor product,

the preimage in GLn(q) of PGLk(q) ≀ Sm, where n = km,

the stabiliser of a tensor product decomposition Fk
q ⊗ · · · ⊗ Fk

q ;

v) the preimage in GLn(q) of r2k : Sp2k(r), where n = rk,

or of 22k.GOǫ
2k(2), for r = 2 and q ≡ ǫ (mod 4);

vi) an almost quasi-simple group acting irreducibly.

• Aschbacher: looks more closely at case vi) ,

◦ in particular considers subfields and extension fields of Fq.



3.9

Proof of the Aschbacher-Dynkin Theorem

• Proof:

◦ Let PSLn(q) 6≤ H < G := PGLn(q),

◦ and let Ĥ < Ĝ := GLn(q) be its preimage.

• We may assume that Ĥ acts irreducibly, otherwise case i) .

◦ Let N E H be the socle of H,

◦ that is the product of its minimal non-trivial normal subgroups.

◦ By Clifford theory N̂ acts completely reducibly.

• We may assume that N̂ has only one isotypic component,

otherwise case ii) .

• We may assume that N̂ acts irreducibly,

otherwise Ĥ ≤ N̂ ◦ CĜ(N̂) implies case iii) .

• We may assume that N is the only minimal normal subgroup,

otherwise N̂ ≤ N̂1 ◦ N̂2 implies case iii) again.

• If N ∼= Cr × · · · × Cr is (elementary) abelian we get case v) .

• If N ∼= T is non-abelian simple we get case vi) .

• If N ∼= T × · · · × T is non-abelian non-simple we get case iv) . ♯



4.1

Geometric algebra

◦ Let F be a field, with automorphism σ : F → F such that σ2 = id,

◦ and let V be a finitely generated F -vector space.

• A σ-bilinear form is a map f : V × V → F such that

◦ f(λu + v, w) = λf(u, w) + f(v, w),

◦ f(u, λv + w) = λσf(u, v) + f(u, w).

• f is called

◦ symmetric if σ = id and f(w, v) = f(v, w),

◦ hermitian if σ 6= id and f(w, v) = f(v, w)σ,

◦ symplectic if σ = id and f(w, v) = −f(v, w),

◦ alternating if σ = id and f(v, v) = 0.

◦ Any alternating form is symplectic,

◦ if char(F ) 6= 2 then any symplectic form is alternating;

◦ if char(F ) = 2 then being symmetric or symplectic coincide.

• A quadratic form is a map q : V → F such that

◦ q(λv + w) = λ2q(v) + q(w) + λf(v, w),

◦ where the associated bilinear form f : V × V → F is symmetric.

◦ If char(F ) 6= 2 then q is recovered from f as q(v) = 1
2f(v, v),

◦ if char(F ) = 2 then f is alternating.



4.2

Geometric algebra, II

• A σ-bilinear form f is called non-degenerate, if

rad(f) := {w ∈ V ; f(v, w) = 0 for all v ∈ V } = {0}.

◦ v ∈ V is called isotropic if f(v, v) = 0.

◦ A map A ∈ GL(V ) is called an isometry of f , if

f(vA, wA) = f(v, w) for all v, w ∈ V ;

◦ the set of all isometries is a subgroup of GL(V ).

• A quadratic form q is called non-degenerate, if

rad(q) := {v ∈ rad(f); v singular} = {0},

◦ where v ∈ V is called singular if q(v) = 0.

◦ The Witt index is the dimension of a maximal singular subspace;

◦ by Witt’s Theorem this is independent of the subspace chosen.

◦ A map A ∈ GL(V ) is called an isometry of q, if

q(vA) = q(v) for all v ∈ V ;

◦ the set of all isometries is a subgroup of GL(V ).

• No classification of non-degenerate forms for arbitrary F is known.



4.3

Unitary groups

• Theorem: Any non-degenerate ϕq-hermitian form over Fq2 has

an orthonormal Fq2-basis,

◦ that is the associated Gram matrix is En.

• Thus g ∈ GLn(q
2) is an isometry if and only if g · En · gtr = En.

◦ General unitary group GUn(q
2) := {g ∈ GLn(q2); g−tr = g},

◦ that is the fixed points of the concatenation of the graph auto-

morphism (the duality) and a field automorphism of GLn(q2).

• Counting the number of ordered orthonormal Fq2-bases:

◦ |GUn(q
2)| = q(n

2) ·
∏n

i=1(q
i − (−1)i) = (−q)(

n
2) ·

∏n
i=1((−q)i − 1)

◦ Ennola duality |GUn(q
2)| = |GLn(−q)|

• As in the linear case: SUn(q2), PGUn(q
2), PSUn(q

2),

◦ where Z(GUn(q2)) ∼= Cq+1 = C|(−q)−1|.

◦ |PSUn(q
2)| = 1

gcd(n,q+1)
· 1

q+1
· |GUn(q

2)| = |PSLn(−q)|

• Simplicity of PSUn(q
2): Apply Iwasawa’s Criterion

◦ to the action on the set of isotropic 1-dimensional subspaces,

◦ and use unitary transvections,

◦ that is V → V : v 7→ v + λf(v, w)w, where w ∈ V is isotropic.

◦ Exceptions: PSU2(q
2) ∼= PSL2(q), and PSU3(2

2) is soluble.



4.4

Symplectic groups

• Theorem: Any (necessarily even-dimensional) non-degenerate al-

ternating form over Fq is an orthogonal sum of hyperbolic planes;

◦ that is the latter have Gram matrix

[
0 1

−1 0

]
.

• Symplectic group Sp2n(q)

◦ Counting the number of ordered symplectic Fq-bases:

◦ |Sp2n(q)| = qn2 ·
∏n

i=1(q
2i − 1)

◦ We have Sp2n(q) ≤ SL2n(q).

• Projective symplectic group PSp2n(q) := Sp2n(q)/Z(Sp2n(q)),

◦ where Z(Sp2n(q)) = {±En}.

◦ |PSp2n(q)| = 1
gcd(2,q−1) · |Sp2n(q)|

• Simplicity of PSp2n(q): Apply Iwasawa’s Criterion

◦ to the action on the set of 1-dimensional subspaces,

◦ and use symplectic transvections,

◦ that is V → V : v 7→ v + λf(v, w)w.

◦ Exceptions: Sp2(q) ∼= SL2(q), and Sp4(2) ∼= S6.



4.5

Orthogonal groups

• Theorem: Any (2n + 1)-dimensional non-degenerate quadratic

form over Fq is equivalent to X2
0 +

∑n
i=1 XiX−i.

• Theorem: Any 2n-dimensional non-degenerate quadratic form

over Fq is equivalent

◦ either to
∑n

i=1 XiX−i, having maximal Witt index n,

◦ or to, where T 2 + T + a ∈ Fq[T ] is irreducible,

(X2
0 + X0X−0 + aX2

−0) +
n−1∑

i=1

XiX−i,

having non-maximal Witt index n − 1.

• General orthogonal groups GO2n+1(q), GO+
2n(q), GO−

2n(q)

• Counting the number of isotropic vectors,

◦ which are acted on transitively by GOn(q), and induction:

◦ |GOǫ
2n(q)| = 2q(n

2) · (qn − ǫ) ·
∏n−1

i=1 (q2i − 1)

◦ |GO2n+1(q)| = 2qn2 · ∏n
i=1(q

2i − 1),

• As in the linear case: SOn(q), PGOn(q), PSOn(q),

◦ where Z(GOn(q)) = {±En},

◦ and where g · J · gtr = J , for J being the Gram matrix,

◦ implies det(g)2 = 1 for all g ∈ GOn(q).

• But: PSOn(q) is in general not perfect.



4.6

Orthogonal groups in odd characteristic

◦ Let q be odd.

• Spinor norm ν : GOn(q) → F∗
q/F∗2

q
∼= C2:

◦ write g ∈ GOn(q) as a product of reflections

◦ rw : V → V : v 7→ v − f(v,w)
q(w)

· w, where w ∈ V is non-singular,

◦ and let ν(rw) := q(w) · F∗2
q ∈ F∗

q/F∗2
q .

◦ Note the similarity to the definition of the sign of a permutation.

• Let Ωn(q) := ker(ν) ∩ SOn(q) and PΩn(q) := Ωn(q)/Z(Ωn(q)),

◦ then GOn(q)/ ker(ν) ∼= SOn(q)/Ωn(q) ∼= C2.

• SO2n+1(q) ∼= PSO2n+1(q) and Ω2n+1(q) ∼= PΩ2n+1(q),

◦ hence |Ω2n+1(q)| = 1
4 · |GO2n+1(q)|.

• −E2n ∈ Ωǫ
2n(q) if and only if qn ≡ ǫ (mod 4),

◦ hence |PΩǫ
2n(q)| = 1

2·gcd(4,qn−ǫ) · |GOǫ
2n(q)|.

• Simplicity of PΩn(q): Apply Iwasawa’s Criterion

◦ to the action on the set of 1-dimensional singular subspaces,

◦ and use Siegel transformations.

◦ Exceptions: GOǫ
2(q) ∼= D2(q−ǫ), and PΩ3(3) ∼= PSL2(3) ∼= A4, and

PΩ+
4 (q) ∼= PSL2(q) × PSL2(q).

◦ Note: |Ω2n+1(q)| = |PSp2n(q)|, but Ω2n+1(q) 6∼= PSp2n(q).



4.7

Orthogonal groups in characteristic 2

◦ Let q = 2f .

◦ GOn(q) = SOn(q) = PGOn(q) = PSOn(q)

• Theorem: GO2n+1(q) ∼= Sp2n(q)

◦ Hence only consider the even-dimensional case:

• Quasideterminant ν : GOǫ
2n(q) → {±1} ∼= C2:

◦ write g ∈ GOǫ
2n(q) as a product of orthogonal transvections

◦ tw : V → V : v 7→ v + f(v, w) · w, where w ∈ V ,

◦ and let ν(tw) := −1.

◦ Kantor: Then ν(g) is the sign of the permutation induced by g

on the set of maximal isotropic subspaces.

• Let Ωǫ
2n(q) := ker(ν).

◦ Then the order formulae and the simplicity proof are still valid;

◦ the latter with the exceptions GOǫ
2(q) ∼= D2(q−ǫ), and PΩ+

4 (q) ∼=
PSL2(q) × PSL2(q), and PΩ5(2) ∼= Sp4(2) ∼= S6.

• Note: For arbitrary q we have, using Klein correspondence,

◦ GOǫ
2(q) ∼= D2(q−ǫ), PΩ3(q) ∼= PSL2(q),

◦ PΩ+
4 (q) ∼= PSL2(q) × PSL2(q), PΩ−

4 (q) ∼= PSL2(q
2),

◦ PΩ5(q) ∼= PSp4(q), PΩ+
6 (q) ∼= PSL4(q), PΩ−

6 (q) ∼= PSU4(q).



4.8

Structure of classical groups

• Subgroups:

◦ groups with BN -pairs,

◦ tori, Borels, and parabolics described in terms of geometry;

◦ entailing a generic ‘Iwasawa type’ simplicity argument.

◦ Moreover:

• Automorphisms:

◦ diagonal, field, and graph automorphisms

• Covers:

◦ generic p′-fold covers, and finitely many p-power-fold exceptions

• Maximal subgroups:

◦ Dynkin [1952]: complex classical groups

◦ Aschbacher [1984]: finite classical groups

◦ Kleidman, Liebeck [1990]: explicit lists



5.1

Modern view of classical groups

• Linear and classical groups: described in terms of

◦ geometry,

◦ Lie theory,

◦ algebraic groups.

• Example: SLn(q) is described by

◦ its natural faithful action on the n-dimensional space Fn
q ;

◦ the conjugation action on the (n2−1)-dimensional Lie algebra

sln(q) := {A ∈ Fn×n
q ; Tr(A) = 0},

yielding an action of PSLn(q) = SLn(q)/Z(SLn(q));

◦ polynomial equations defining the algebraic group

SLn(F) := {A ∈ F
n×n

; det(A) = 1},
where Fq ⊆ F is an algebraic closure with Frobenius morphism

F := ϕq : F → F : λ 7→ λq,

yielding the set of fixed points

SLn(q) = SLn(F)F := {g ∈ SLn(F); F (g) = g}.

• Starting point: Classification of simple complex Lie algebras

◦ by Dynkin types An, Bn, Cn, Dn, E6, E7, E8, F4, G2.



5.2

Chevalley groups

• Chevalley [1955]:

◦ integral forms of simple complex Lie algebras

◦ yield simple Lie algebras L over any field F ;

◦ consider adjoint representation

ad: L → EndF (L) : x 7→ (L → L : y 7→ [x, y]),

◦ and integrate suitable roots x ∈ L,

◦ obtain one-parameter subgroups of Aut(L), given by

exp(λ · ad(x)) :=
∑

i≥0

λi

i!
· ad(x)i ∈ GLF (L).

• Chevalley group

Gn(F ) := 〈exp(λ · ad(x)); x ∈ L root, λ ∈ F 〉 ≤ Aut(L)

• This uniformly yields finite field analoga of

◦ the classical Lie groups,

◦ and the exceptional groups G2, F4, E6, E7, E8.

• Gn(F ) is a group with BN -pair.



5.3

Chevalley group of type A1

• sl2(F ) = 〈f, h, e〉F , with Chevalley basis

f :=

[
0 0

1 0

]
, h :=

[
1 0

0 −1

]
, e :=

[
0 1

0 0

]
.

◦ Adjoint action of e is nilpotent:

ad(e) =




0 1 0

0 0 −2

0 0 0


 , ad(e)2 =




0 0 −2

0 0 0

0 0 0


 , ad(e)3 = 0 · E3.

◦ Integration λ · ad(e) and λ · ad(f) is well-defined:

exp(λ · ad(e)) = E3 + λ · ad(e) +
λ2

2
· ad(e)2 =




1 λ −λ2

0 1 −2λ

0 0 1




exp(λ · ad(f)) = E3 + λ · ad(f) +
λ2

2
· ad(f)2 =




1 0 0

2λ 1 0

−λ2 −λ 1




• SL2(F ) = 〈x(λ), y(λ); λ ∈ F 〉, with transvections

x(λ) :=

[
1 λ

0 1

]
, y(λ) :=

[
1 0

λ 1

]
.

◦ Adjoint action of SL2(F ) on sl2(F ) is conjugation:

x(λ) : f 7→ f + λh − λ2e, h 7→ h − 2λe, e 7→ e;

y(λ) : f 7→ f, h 7→ h + 2λe, e 7→ λ2f − λh + e.

• Thus we have SL2(F ) → A1(F ), implying

A1(F ) := 〈exp(λ · ad(e)), exp(λ · ad(f)); λ ∈ F 〉 ∼= PSL2(F ).



5.4

Twisted groups

◦ Generalise the construction of unitary groups from linear groups,

◦ as fixed point sets under suitable graph automorphisms:

• completes the list of classical groups;

• yields twisted exceptional groups

◦ 2E6(q
2) and 3D4(q

3) [Steinberg, 1959];

• yields ‘sporadic’ twisted exceptional groups

◦ 2B2(2
2f+1) [Suzuki, 1962],

◦ 2G2(3
2f+1) [Ree, 1961],

◦ 2F4(2
2f+1) [Ree, Tits, 1961/1964].

• These also are groups with BN -pair.

• Are there geometrical interpretations of these groups?

◦ Mostly there are, elucidating more of the group structure;

◦ and leading to natural representations

◦ smaller than the adjoint representations.

• For E7(q) the smallest representation has dimension 56,

◦ while the adjoint representation has dimension 133.

• For E8(q) the adjoint representation is smallest, of dimension 248.



5.5

Classical Dynkin types

◦ Six series of classical groups:

• Classical Chevalley groups:

◦ Type An: PSLn+1(q), for n ≥ 1
1 2 3 nn−1

◦ Type Bn: Ω2n+1(q), for n ≥ 3
2 3 n−1 n1

◦ Type Cn: PSp2n(q), for n ≥ 2
1 2 3 n−1 n

◦ Type Dn: PΩ+
2n(q), for n ≥ 4

1 2 3

n−1

n

n−2

• Twisted classical groups:

◦ Type 2An: PSUn+1(q), for n ≥ 2
1 2 3 nn−1

◦ Type 2Dn: PΩ−
2n(q), for n ≥ 4

1 2 3

n−1

n

n−2



5.6

Exceptional Dynkin types

◦ Ten series of exceptional groups:

• Exceptional Chevalley groups:

◦ Type En, for n ∈ {6, 7, 8}

1 2 3 n−2 n−1

n

◦ Type F4

1 2 3 4

◦ Type G2

1 2

• Twisted exceptional groups:

◦ Type 2E6(q
2)

1 2 3

6

4 5

◦ Type 3D4(q
3)

1 2

3

4

◦ Type 2B2(2
2f+1)

21

◦ Type 2G2(3
2f+1)

1 2

◦ Type 2F4(2
2f+1)

1 2 3 4



6.1

Suzuki groups

◦ Let q := 22f+1 for f ∈ N0.

• Consider the exceptional isomorphism S6
∼= Sp4(2) = B2(2):

◦ Natural permutation representation of S6 over F := Fq

◦ has S6-invariant form f([x1, . . . , x6], [y1, . . . , y6]) :=
∑6

i=1 xiyi.

◦ Then V := 〈v〉⊥F/〈v〉F , where v := [1, . . . , 1],

◦ has S6-invariant non-degenerate alternating form,

◦ hence we have S6 ≤ Sp4(q); now compare orders for q = 2.

• V has hyperbolic basis

e1 := [1, 1, 0, 0, 0, 0], f1 := [0, 1, 1, 0, 0, 0],

e2 := [0, 0, 0, 1, 1, 0], f2 := [0, 0, 0, 0, 1, 1].

◦ Exterior square V ′ := Λ2(V ) has

◦ non-degenerate symplectic form f ′ (Klein correspondence)

◦ given by f ′(a ∧ b, c ∧ d) = 1 if and only if dim(〈a, b, c, d〉F ) = 4.

◦ 〈v′〉⊥F/〈v′〉F , where v′ := e1 ∧ f1 + e2 ∧ f2, has hyperbolic basis

e′1 := e1 ∧ e2, f ′
1 := f1 ∧ f2, e′2 := e1 ∧ f2, f ′

2 := e2 ∧ f1.

• γ : ei 7→ e′i, fi 7→ f ′
i defines a graph automorphism of Sp4(q)

◦ such that γ2 = ϕ2, hence (γϕf
2)2 = ϕ1+2f

2 = id.

• Suzuki group Sz(q) := 2B2(q) := CSp4(q)(γϕf
2) [Ono, 1962]

◦ Note: γ extends A6 < S6
∼= Sp4(2) to PGL2(9) 6∼= S6.



6.2

Suzuki groups, II

• Sz(q) acts 2-transitively on the Tits oval [Suzuki, 1962],

◦ a certain set of q2 + 1 many 1-dimensional subspaces of V ,

◦ with point stabiliser q1+1 : Cq−1,

◦ whose central involutions are commutators and generate Sz(q).

◦ This yields |Sz(q)| = (q2 + 1)q2(q − 1),

◦ and Iwasawa’s Criterion implies simplicity,

◦ with the exception Sz(2) ∼= 5: 4.

• Automorphisms: only field automorphisms

• Covers: generically trivial,

◦ with the exception 22.Sz(8).

• Maximal subgroups, for f ≥ 1: [Suzuki]

◦ q1+1 : Cq−1,

◦ D2(q−1),

◦ Cq+
√

2q+1 : 4,

◦ Cq−√
2q+1 : 4,

◦ Sz(q′), where q = (q′)r for r a prime and q′ 6= 2.

◦ Note: If 2f + 1 is a prime, Sz(q) is a minimal simple group.



6.3

Octonion algebras

◦ Let F be a field such that char(F ) 6= 2.

• Hamilton quaternions H(F ) = 〈1, i, j, k〉F [1843]

◦ are obtained from F by adjoining three orthogonal
√
−1’s,

◦ such that i · j = k, j · k = i, k · i = j.

◦ H(F ) is a skew-field such that dimF (H(F )) = 4.

• Letting H(F )′ := 〈i, j, k〉F = 〈1〉⊥F ,

◦ with respect to the natural symmetric form,

◦ we have dimF (H(F )′) = 3,

• yielding Aut(H(F )) = Aut(H(F )′) ∼= SO3(F ) ∼= PGL2(F ).

• Cayley octonions O(F ) [Cayley, Graves, 1845/1843]

◦ are obtained from F by adjoining seven orthogonal
√
−1’s

◦ {i0, . . . , i6}, where any triple [it, it+1, it+3]

◦ fulfills the multiplication rules of i, j, k ∈ H(F ).

◦ O(F ) is a non-associative algebra such that dimF (O(F )) = 8.

• Letting O(F )′ := 〈i0, . . . , i6〉F = 〈1〉⊥F ,

◦ with respect to the natural symmetric form,

◦ we have dimF (O(F )′) = 7.

• Replacing by a suitable form yields a characteristic-free definition:



6.4

Octonion algebras, II

• Chevalley group

G2(F ) ∼= Aut(O(F )) = Aut(O(F )′) < SO7(F )

◦ The geometric approach yields, for example,

|G2(q)| = q6(q6 − 1)(q2 − 1);

◦ G2(F ) has a 7-dimensional natural representation,

◦ while the adjoint representation has dimension 14.

◦ Exception to simplicity: G2(2) ∼= PSU3(3) : 2

• Small Ree group 2G2(3
2f+1) < G2(3

2f+1):

◦ fixed points under a suitable graph automorphism,

◦ similar to Sz(22f+1) ∼= 2B2(2
2f+1) < B2(2

2f+1) ∼= Sp4(2
2f+1).

◦ Exception to simplicity: 2G2(3) ∼= PSL2(8) : 3

• Steinberg triality group G2(q) < 3D4(q
3) < PΩ+

8 (q3):

◦ automorphism group of twisted octonions.

◦ Note: 3D4(q
3) < D4(q

3) ∼= PΩ+
8 (q3) fixed points under

◦ Steinberg’s triality automorphism,

◦ which hence can be understood in terms of octonions.



6.5

Albert algebras

◦ Let F be a finite field such that char(F ) 6∈ {2, 3}.

• Jordan product A◦B := 1
2(AB+BA) on an associative algebra

◦ is commutative, non-associative, and fufills the Jordan identity

((A ◦ A) ◦ B) ◦ A = (A ◦ A) ◦ (B ◦ A).

◦ A Jordan algebra is a commutative, non-associative algebra

fullfing the Jordan identity.

• Any simple Jordan F -algebra arises from an associative F -algebra,

• except the Albert algebra

A(F ) := {A ∈ O(F )3×3; Atr = A},

◦ where : O(F ) → O(F ) denotes octonion conjugation;

◦ we have dimF (A(F )) = 27.

• Letting A(F )′ := {A ∈ A(F ); Tr(A) = 0} = 〈E3〉⊥,

◦ with respect to the natural symmetric form,

◦ we have dimF (A(F )′) = 26.

• Replacing by a suitable form yields a characteristic-free definition:



6.6

Albert algebras, II

• Chevalley group F4(q) ∼= Aut(A(Fq)):

◦ has a 26-dimensional natural representation,

◦ while the adjoint representation has dimension 52.

• Large Ree group 2F4(2
2f+1) < F4(2

2f+1):

◦ fixed points under a suitable graph automorphism;

◦ similar to 2G2(3
2f+1) < G2(3

2f+1).

◦ Exception to simplicity: Tits group 2F4(2)′

• Chevalley group E6(q): [Dickson, 1901]

◦ leaves invariant a cubic ‘determinant’ form on A(Fq);

◦ E6(q) has a 27-dimensional natural representation,

◦ while the adjoint representation has dimension 78.

• Steinberg group 2E6(q
2) < E6(q):

◦ fixed points under a suitable graph automorphism;

◦ twisting the symmetric form on A(Fq) yields a hermitian form,

◦ similar to PSUn(q) < PSLn(q).



7.1

Golay codes

• A Steiner system S(t, k, v) on the set {1, . . . , v}
◦ is a set of k-subsets, called blocks, such that

◦ any subset of size t is contained in precisely one block.

◦ Hence there are |S(t, k, v)| =
(
v
t

)
/
(
k
t

)
blocks.

• Example: The finite projective plane of order q

◦ is a Steiner system S(2, q + 1, q2 + q + 1),

◦ the blocks being the projective lines.

• Theorem: There is a unique Steiner system S(5, 8, 24).

◦ Existence: Three successive one-point extensions of S(2, 5, 21)

◦ coming from the projective plane of order 4 [Witt, 1938];

◦ or: the blocks are the 759 words of weight 8 of the

◦ self-dual extended binary Golay [24, 12, 8]2-code G24 < F24
2 .

• Words of weight 8 are called octads [Todd, 1966].

◦ Computational combinatorial tool: [Curtis, 1976]

◦ Miracle Octad Generator (MOG)

• Weight enumerator T 24 + 759 ·T 16 + 2576 ·T 12 + 759 ·T 8 + 1,

◦ the 2576 words of weight 12 are called dodecads.



7.2

Golay codes, II

• Given a dodecad,

◦ S(5, 8, 24) induces a Steiner system S(5, 6, 12) on it,

◦ being unique up to isomorphism,

◦ having 132 blocks, called hexads.

• Attaching signs, the blocks yield the words of weight 6 of the

◦ self-dual extended ternary Golay [12, 6, 6]3-code G12 < F12
3 ;

◦ weight enumerator 2 · (12 · T 12 + 220 · T 9 + 132 · T 6 + 1).

• Any word of weight 4 determines a coset in the

◦ Golay cocode (Todd module) F24
2 /G24,

◦ where 6 mutually disjoint words determine the same coset.

◦ Hence any word of weight 4 yields a sextet,

◦ a partition of {1, . . . , 24} into 6 subsets of size 4,

◦ the union of any two of which is an octad;

• there are 1
6
·
(

24
4

)
= 1771 sextets.



7.3

Mathieu groups [1861/1873]

• Mathieu group M24 := Aut(S(5, 8, 24)) ∼= Aut(G24),

◦ acts 5-transitively on {1, . . . , 24}:

• Mathieu group M23 := StabM24
(1) ∼= Aut(G23),

◦ where G23 < F23
2 is the perfect binary Golay [23, 12, 7]2-code;

• Mathieu group M22 := StabM24
(1, 2);

◦ M21 := StabM24
(1, 2, 3) ∼= PSL3(4), in natural 2-transitive action.

• |M24| = 24 · 23 · 22 · 21 · 20 · 48 = 210 · 33 · 5 · 7 · 11 · 23

• Simplicity of M24: Apply Iwasawa’s Criterion

◦ to the transitive action on the sextets, with stabiliser 26 : (3.S6).

◦ M24 acts transitive on the dodecads, with point stabiliser

• Mathieu group M12
∼= Aut(S(5, 6, 12)), Aut(G12) ∼= 2.M12;

◦ |M12| = |M24|
2576

= 95040 = 26 · 33 · 5 · 11.

◦ M12 acts sharply 5-transivitely on {1, . . . , 12}:

• Mathieu group M11 := StabM12
(1), Aut(G11) ∼= 2 × M11,

◦ where G11 < F11
3 is the perfect ternary Golay [11, 6, 5]3-code;

• M10 := StabM12
(1, 2) ∼= A6.2,

◦ where Aut(A6) ∼= A6.2
2 and S6 6∼= A6.2 6∼= PGL2(9).



7.4

Leech lattice

• 212 : M24 afforded by the Golay code G24,

◦ acts monomially on

• Leech lattice L: [Leech, Witt, 1967/1940]

◦ the set of all x := [x1, . . . , x24] ∈ Z24 such that

◦ xi ≡ 1
4

∑24
i=1 xi ≡ m (mod 2), for some m,

◦ and {i; xi ≡ k (mod 4)} ∈ G24, for each k;

◦ with scalar product 〈x, y〉 := 1
8
· ∑24

i=1 xiyi ∈ Z.

• Theorem: L is the unique unimodular even lattice in R24

◦ without roots, that is vectors of norm 2.

• Ln := {x ∈ L; 〈x, x〉 = n}, for n ∈ 2N0.

◦ Weight function ΘL :=
∑

n∈N0
|L2n| · T n ∈ Z[[T ]]:

ΘL = 1 + 196560 · T 2 + 16773120 · T 3 + 398034000 · T 4 + · · ·

• L8 falls into classes of 48 mutually orthogonal vectors,

◦ called coordinate frames,

◦ hence there are 398034000
48

= 8292375 coordinate frames.



7.5

Conway groups [1969]

• Conway group 2.Co1 := Aut(L)

◦ |Co1| = 1
2 · 8292375 · 212 · |M24| = 221 · 39 · 54 · 72 · 11 · 13 · 23

◦ Simplicity: Apply Iwasawa’s Criterion to

◦ the transitive action on coordinate frames, with stabiliser 212 : M24.

◦ Smallest representation of dimension 24 is globally irreducible.

◦ Sublattice groups: 2.Co1 acts transitively on L4 and L6.

• Conway group Co2 := Stab2.Co1
(v) where v ∈ L4;

• Conway group Co3 := Stab2.Co1
(w) where w ∈ L6.

◦ 2.Co1 acts transitively on {[v, v′] ∈ L4 × L4; v + v′ ∈ L6},

• McLaughlin group [1969] McL := Stab2.Co1
(v, v′).

◦ 2.Co1 acts transitively on {[w, w′] ∈ L6 × L6; w + w′ ∈ L4},

• Higman-Sims group [1968] HS := Stab2.Co1
(w, w′).

• Higman-Sims graph on {z ∈ L4, 〈z, w〉 = 3, 〈z, w′〉 = −3},

◦ vertices z, z′ being adjacent if 〈z, z′〉 = 1,

◦ size n = 100, regular of valency k = 22;

◦ HS primitive of rank 3, with stabiliser M22.



7.6

Suzuki chain

• Let 3D ∈ Co1 [Atlas]

◦ have order 3 and centraliser CCo1
(3D) ∼= 3 ×A9.

◦ Letting

A9 > A8 > A7 > A6 > A5 > A4 > A3 > A2

◦ yields corresponding centralisers CCo1
(Ai)

S3 < S4 < PSL3(2) < PSU3(3) < J2 < G2(4) < 3.Suz < Co1.

• Suzuki group [1969] Suz

• Hall-Janko group [1968] J2

◦ has two classes of involutions and CJ2
(2A) ∼= 21+4

− : A5.

• 6.Suz < 2.Co1 induces a complex structure LC on L,

◦ such that 6.Suz = Aut(LC) acts irreducibly.

• 2.A5 < H(R) binary icosahedral group [Hamilton, 1857],

◦ hence 2.A5 ◦ 2.J2 < 2.A4 ◦ 2.G2(4) < 2.Co1

◦ induces a quaternionic structure LH on L,

◦ such that 2.J2 < 2.G2(4) = Aut(LH) act irreducibly;

◦ note: this yields the exceptional 2-fold cover 2.G2(4).



8.1

Fischer groups

• A finite group G generated by

◦ a conjugacy class of involutions, called 3-transpositions,

◦ such that the product of two transpositions has order at most 3,

◦ G′ = G′′, and any normal 2- or 3-subgroup is central,

◦ is called a 3-transposition group.

• Theorem: [Fischer, 1968/1971]

Let G be a 3-transposition group. Then G/Z(G) is isomorphic to:

◦ Sn; PSUn(22), Sp2n(2), GOǫ
2n(2); PΩǫ

2n(3) : 2, Ω2n+1(3), SO2n+1(3);

◦ or one of the Fischer groups Fi22, Fi23, Fi′24.2.

• Key tool: Transposition graph ∆,

◦ with vertices corresponding to the 3-transpositions,

◦ being adjacent if the 3-transpositions commute.

• Hence ∆ is regular, and G ≤ Aut(∆) is vertex-transitive.

◦ Fi22: n = 3510, k = 693, H ∼= 2.PSU6(2);

◦ Fi23: n = 31671, k = 3510, H ∼= 2.F i22;

◦ Fi′24.2: n = 306936, k = 31671, H ∼= 2 × Fi23

• Simplicity: Apply Iwasawa’s Criterion

◦ to the above primitive rank 3 actions on the vertices of ∆.



8.2

The Monster

◦ 3-transposition groups 22.PSU6(2
2) < 2.F i22 < Fi23 < Fi′24.2

◦ embedding 2.F i22 < 22.2E6(2
2) : 2 into a 4-transposition group

◦ 211.M24 < Fi′24 Todd action, 211 : M24 < Co1 Golay action

◦ Fischer, Conway [1968]:

22.2E6(2
2) : 2

?
< 2.B

?
< M

?
< ?

• Fischer-Griess Monster (Friendly Giant) M [1973]:

◦ a 6-transposition group of order

808017424794512875886459904961710757005754368000000000

= 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71

∼ 8 · 1053

◦ Smallest representation V has dimension 196883,

◦ carrying structure of non-associative Griess algebra [1980].

◦ Construction needs a thorough analysis of L and G24.

◦ The Leech lattice and Fischer groups are involved in M .



8.3

Monstrous Moonshine

• McKay, Thompson [1979]:

◦ Fourier expansion of the elliptic modular j-function

j − 744 = q−1 + 196884 · q + 21493760 · q2 + 864299970 · q3 + · · · ,

◦ has coefficients being character degrees of M .

• Moonshine Conjectures: [Conway, Norton, 1979]

◦ There is an infinite-dimensional graded M -module

◦ inducing a relation between conjugacy classes of M

◦ and modular functions of genus 0.

• Frenkel, Lepowsky, Meurman [1988]:

◦ construction of moonshine module,

◦ using vertex operators from conformal field theory.

• Borcherds [1992]:

◦ M -invariant vertex algebra on moonshine module,

◦ proving the Moonshine Conjectures.



8.4

How to construct a Monster?

[Griess, Conway, 1980/1985]

• G1 := CM(2B) ∼= 21+24
+ .Co1,

◦ where 224 ∼= L/2L and G1/Z(G1) ∼= 224 : Co1.

• Let G̃1 be the universal cover of G1, then Z(G̃1) ∼= V4,

◦ giving rise to groups Gs
1 6∼= Gt

1
∼= G1 of shape 21+24

+ .Co1,

◦ with smallest faithful representations of dimension 212 and 24 · 212.

• V |G1

∼= 98304 ⊕ 98280 ⊕ 299, where

◦ 98304 ∼= 4096 ⊗ 24 = 212 ⊗L, acted on by Gs
1 and 2.Co1;

◦ 224|Co2
= [1, 22, 1] uniserial, 224 : Co2 having linear character 1−,

98280 ∼= (1−
224.Co2

) ↑224.Co1 monomial action;

◦ 1 ⊕ 299 ∼= S2(L) < L ⊗ L, acted on by Co1.

• Restrict to G1 > G12
∼= 21+24

+ .(211 : M24) ∼= 22+11+22.(2 × M24),

• triality symmetry yields G12 < G2
∼= 22+11+22.(S3 × M24).

◦ V |G2

∼= 147456 ⊕ 48576 ⊕ 828 ⊕ 23

◦ 98304|G′
12

∼= 49152 ⊕ 49152 and 552|G′
12

∼= 276 ⊕ 276

G1 98304 98280 299

↓ ւ ↓ ց ւ ↓
G12 98304 49152 48576 552 276 23

↑ ր ↑ տ ↑ ↑
G2 147456 48576 828 23



8.5

Monstrous groups

• CM(2B) ∼= 21+24
+ .Co1

• CM(3A) ∼= 3.F i′24

• Baby Monster B: [Fischer, 1973]

◦ a 4-transposition group, arising as CM(2A) ∼= 2.B.

◦ Smallest representation has dimension 4371,

◦ is irreducible except in characteristic 2,

◦ and contains a vector with stabiliser 2.2E6(2
2) : 2, yielding

◦ smallest permutation representation on 13 571 955 000 points

◦ [Leon, Sims, 1980].

• Thompson group [1973] Th:

◦ 3C ∈ M preimage of 3D with respect to 21+24
+ .Co1 → Co1

◦ gives rise to CM(3C) ∼= 3 × Th.

◦ CTh(2A) ∼= 21+8
+ .A9

◦ Smallest representation has dimension 248,

◦ is globally irreducible,

◦ and yields an embedding Th < E8(3).



8.6

Monstrous groups, II

• Harada-Norton group [1973] HN :

◦ 5A ∈ M preimage of 5B with respect to 21+24
+ .Co1 → Co1

◦ gives rise to CM(5A) ∼= 5 × HN .

◦ CHN(2B) ∼= 21+8
+ .(A5 ×A5).2

◦ Smallest representation has dimension 133 over Q[
√

5],

◦ is irreducible except in characteristic 2,

◦ and does not yield an embedding into E7(5).

• Held group [1968] He:

◦ arises as CM(7A) ∼= 7 × He.

◦ Any simple group having an involution centraliser 21+6 : PSL3(2)

◦ is isomorphic to PSL5(2), M24, or He.



8.7

Pariahs

◦ There are just six sporadic groups not involved in M .

◦ Wilson: ‘The behaviour of these six groups is so bizarre that

any attempt to describe them ends up looking like a disconnected

sequence of unrelated facts — it is simply the nature of the subject.’

• Janko group [1965] J1:

◦ CJ1
(2A) ∼= 2 ×A5;

◦ J1 < G2(11),

◦ |J1| = 11 · (113 − 1)(11 + 1).

◦ Wilson [1986]: J1 is not a subgroup of M .

• Janko group [1968] J3:

◦ has a single class of involutions and CJ3
(2A) ∼= 21+4

− : A5;

◦ while J2 has two classes of involutions and CJ2
(2A) ∼= CJ3

(2A).

• Rudvalis group [1972] Ru



8.8

Pariahs, II

• O’Nan group [1973] ON :

◦ Parker, Ryba [1988]: 3.ON < GL452(F7)

◦ Soicher [1990]: action on 122760 points

• Lyons group [1969] Ly:

◦ CLy(2A) ∼= 2.A11

◦ Meyer, Neutsch, Parker [1985]: Ly < GL111(F5)

• Janko group [1975] J4:

◦ CJ4
(2A) ∼= 21+12

+ .(3.M22 : 2)

◦ Norton, Parker, Thackray [1980]: J4 < GL112(F2),

◦ the original motivation to develop the MeatAxe.

Computational techniques

play an important role in the

construction and analysis of

the sporadic simple groups.


