Introduction to finite simple groups

808017424794512875886459904961710757005754368000000000
$2^{46} \cdot 3^{20} \cdot 5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$

Contents

- 1. Introduction
- 2. Alternating groups
- 3. Linear groups
- 4. Classical groups
- 5. Chevalley groups
-6. Exceptional groups
- 7. Sporadic groups: old generation
- 8. Sporadic groups: new generation

Literature

- R. Wilson: The finite simple groups, Graduate Texts in Mathematics 251, Springer, 2009.
- J. Conway, R. Curtis, R. Parker,
S. Norton, R. Wilson: Atlas of finite groups,

Clarendon Press Oxford, 1985/2004.

- P. Cameron: Permutation groups, LMS Student Texts 45, Cambridge, 1999.
- D. TAylor: The geometry of the classical groups, Heldermann, 1992.
- R. Carter: Simple groups of Lie type,

Wiley, 1972/1989.

- M. GECK: An introduction to algebraic geometry and algebraic groups, Oxford, 2003.
- R. GRIESs: Twelve sporadic groups, Springer Monographs in Mathematics, 1989.
- Aim: Explain the statement of the CFSG:

Classification of finite simple groups (CFSG)

- Cyclic groups of prime order $C_{p} ; p$ a prime
- Alternating groups $\mathcal{A}_{n} ; n \geq 5$.
- Finite groups of Lie type:
- Classical groups; q a prime power:

Linear groups $\mathrm{PSL}_{n}(q) ; n \geq 2,(n, q) \neq(2,2),(2,3)$.
Unitary groups $\mathrm{PSU}_{n}\left(q^{2}\right) ; n \geq 3,(n, q) \neq(3,2)$.
Symplectic groups $\mathrm{PSp}_{2 n}(q) ; n \geq 2,(n, q) \neq(2,2)$.
Odd-dimensional orthogonal groups $\Omega_{2 n+1}(q) ; n \geq 3, q$ odd.
Even-dimensional orthogonal groups $\mathrm{P} \Omega_{2 n}^{+}(q), \mathrm{P} \Omega_{2 n}^{-}(q) ; n \geq 4$.

- Exceptional groups; q a prime power, $f \geq 1$:
$E_{6}(q) . E_{7}(q) . E_{8}(q) . F_{4}(q) . G_{2}(q) ; q \neq 2$.
Steinberg groups ${ }^{2} E_{6}\left(q^{2}\right)$. Steinberg triality groups ${ }^{3} D_{4}\left(q^{3}\right)$.
Suzuki groups ${ }^{2} B_{2}\left(2^{2 f+1}\right)$. Small Ree groups ${ }^{2} G_{2}\left(3^{2 f+1}\right)$.
Large Ree groups ${ }^{2} F_{4}\left(2^{2 f+1}\right)$, Tits group ${ }^{2} F_{4}(2)^{\prime}$.
- 26 Sporadic groups: ...

Classification of finite simple groups (CFSG), II

- Sporadic groups:
- Mathieu groups $M_{11}, M_{12}, M_{22}, M_{23}, M_{24}$.
- Leech lattice groups:

Conway groups $\mathrm{Co}_{1}, \mathrm{Co}_{2}, \mathrm{Co}_{3}$.
McLaughlin group $M c L$. Higman-Sims group HS .
Suzuki group Suz. Hall-Janko group J_{2}.

- Fischer groups $F i_{22}, F i_{23}, F i_{24}^{\prime}$.
- Monstrous groups:

Fischer-Griess Monster M.
Baby Monster B. Thompson group $T h$.
Harada-Norton group $H N$. Held group He

- Pariahs:

Janko groups J_{1}, J_{3}, J_{4}. O'Nan group $O N$.
Lyons group $L y$. Rudvalis group $R u$.

- Repetitions:
- $\mathrm{PSL}_{2}(4) \cong \operatorname{PSL}_{2}(5) \cong \mathcal{A}_{5} ; \quad \mathrm{PSL}_{2}(7) \cong \mathrm{PSL}_{3}(2)$;
- $\mathrm{PSL}_{2}(9) \cong \mathcal{A}_{6} ; \quad \mathrm{PSL}_{4}(2) \cong \mathcal{A}_{8} ;$
- $\operatorname{PSU}_{4}(2) \cong \operatorname{PSp}_{4}(3)$.

Composition series

- Let G be a finite group.
- G is called simple if G is non-trivial and does not have any proper non-trivial normal subgroup.

- Composition series:

- G has a composition series of length $n \in \mathbb{N}_{0}$

$$
\{1\}=G_{0} \triangleleft G_{1} \triangleleft \cdots \triangleleft G_{n}=G,
$$

- where $G_{i-1} \triangleleft G_{i}$ such that G_{i} / G_{i-1} is simple, for all $i \in\{1, \ldots, n\}$.

- Jordan-Hölder Theorem:

- The set of composition factors G_{i} / G_{i-1}, counting multiplicities, is independent of the choice of a composition series.
- G is called soluble if all composition factors G_{i} / G_{i-1} are abelian, or equivalently cyclic of prime order.

- Examples:

- $\{1\} \triangleleft \mathcal{S}_{2}$ with composition factors C_{2}.
- $\{1\} \triangleleft \mathcal{A}_{3} \triangleleft \mathcal{S}_{3}$ with composition factors C_{2}, C_{3}.
- $\{1\} \triangleleft C_{2} \triangleleft V_{4} \triangleleft \mathcal{A}_{4} \triangleleft \mathcal{S}_{4}$ with composition factors $C_{2}, C_{2}, C_{2}, C_{3}$.
- $\{1\} \triangleleft \mathcal{A}_{5} \triangleleft \mathcal{S}_{5}$ with composition factors \mathcal{A}_{5}, C_{2}.

Some history

- Abel's Theorem:

- The Galois group of the general polynomial equation of degree $n \in \mathbb{N}$ over any field is isomorphic to the symmmetric group \mathcal{S}_{n}.
- The general polynomial equation of degree $n \in \mathbb{N}$ over a field of characteristic 0 is solvable by radicals if and only if its Galois group is soluble, that is if and only if $n \leq 4$.
- Galois [$\sim 1830]: \mathcal{A}_{n}$ simple for $n \geq 5, \operatorname{PSL}_{2}(p)$ for p a prime. - Jordan [1870]: ‘Traité des substitutions', $\operatorname{PSL}_{n}(p)$.
- Sylow Theorems [1872]: the first classification tool.
- Mathieu [1861/1873]: the simple Mathieu groups.
- Killing [~1890]: classification of complex simple Lie algebras.
- Dickson [~ 1900]: finite field analoga of the classical Lie groups.
- Chevalley [1955]: uniform construction of the classical and exceptional finite groups of Lie type.
- Ree, Steinberg, Suzuki, Tits [~1960]: twisted classical and exceptional finite groups of Lie type.
- ~1960: common belief is that all finite simple groups are known.

Some history, II

- Brauer, Fowler [1955]:

Given $n \in \mathbb{N}$, there are at most finitely many simple groups containing an involution with centraliser of order n.

- Feit-Thompson Theorem [1963]:

Any finite group of odd order is soluble.

- Brauer program: Hence any non-abelian finite simple group contains an involution, thus consider centralisers of central involutions and prove completeness of classification by induction.
- Janko [1964]: (the first since almost a century) sporadic group J_{1} with involution centraliser $C_{2} \times \mathcal{A}_{5}$.
- Thompson [1968]: classification of minimal simple groups.
- Janko [1975]: the last sporadic group J_{4}.
- ~1980: common belief is that CFSG is proved.
- Gorenstein, Lyons, Solomon [$\geq 1994]$: revision project of the proof of CFSG.
- Aschbacher, Smith [2004]:
the quasithin case, completing the proof of CFSG.
- Do we really believe that the Four-Colour Theorem, or Fermat's Last Theorem, or the Poincaré Conjecture, or the CFSG are proved?

Applications of CFSG

- Let T be a non-abelian finite simple group.
- Then $Z(T)=\{1\}$ implies $T \cong \operatorname{Inn}(T) \unlhd \operatorname{Aut}(T)$.
- A group G such that $T \leq G \leq \operatorname{Aut}(T)$ is called almost simple.
- A perfect group G such that $G / Z(G) \cong T$ is called quasi-simple.

- Schreier's Conjecture:

- The outer automorphism group $\operatorname{Out}(T):=\operatorname{Aut}(T) / \operatorname{Inn}(T)$ of any finite simple group T is soluble.
- Proof: by inspection; in all cases $\operatorname{Out}(T)$ is 'very small'.
- Theorem: Let $N \unlhd G$ such that $\operatorname{gcd}(|N|,|G / N|)=1$. Then all complements of N in G are conjugate.
- Proof: uses the Feit-Thompson Theorem; or alternatively:
- Let $G=N$: H be a minimal counterexample.
- Easy: N is non-abelian simple and $C_{G}(N)=\{1\}$
- Hence $G \cong G / C_{G}(N) \leq \operatorname{Aut}(N)$ such that $N \leq \operatorname{Inn}(N)$.
- Thus $G / N \leq \operatorname{Out}(N)$ is soluble.
- Hence the assertion follows from Zassenhaus's Theorem.

Applications of CFSG, II

- Multiply-transitive permutation groups:

- The finite 2-transitive groups are explicitly known.
- The only finite 6 -transitive groups are symmetric and alternating.
- The only finite 4 -transitive groups are symmetric and alternating, and the Mathieu groups M_{11}, M_{12}, M_{23}, and M_{24}.

- Proof:

- Burnside's Theorem: A minimal non-trivial normal subgroup of a finite 2-transitive group is either elementary-abelian and regular, or simple and primitive.
- Hence a 2-transitive group is either affine or almost simple:
- Huppert and Hering: soluble and insoluble affine cases;
- Maillet, Curtis, Kantor, Seitz, Howlett:
almost simple cases.
- The higher transitive groups are then found by inspection.

- Example:

- $\mathrm{ASL}_{d}(q) \cong\left[q^{d}\right]: \mathrm{SL}_{d}(q)$, where q is a prime power and $n=q^{d}$.
- $\operatorname{PSL}_{d}(q)$, where q is a prime power, $d \geq 2$, and $n=\frac{q^{d}-1}{q-1}$.

Symmetric and alternating groups

- Let $n \in \mathbb{N}_{0}$.
- Let \mathcal{S}_{n} be the symmetric group on $\{1, \ldots, n\}$.
- Let sgn : $\mathcal{S}_{n} \rightarrow\{ \pm 1\} \cong C_{2}$ be the sign representation.
- Let $\mathcal{A}_{n}:=\operatorname{kr}(\mathrm{sgn}) \unlhd \mathcal{S}_{n}$ be the alternating group on $\{1, \ldots, n\}$;
- the elements of \mathcal{A}_{n} are called even permutations,
- the elements of $\mathcal{S}_{n} \backslash \mathcal{A}_{n}$ are called odd permutations.
- The cycle type of a permutation is the partition of n indicating the lengths of its distinct cycles, counting multiplicities.
- Example: The identity has cycle type $\left[1^{n}\right]$,
a 2 -cycle or transposition has cycle type $\left[2,1^{n-2}\right]$,
a 3 -cycle has cycle type $\left[3,1^{n-3}\right]$.
- A permutation is even if and only if it has an even number of cycles of even length.
- The conjugacy classes of \mathcal{S}_{n} are parametrised by cycle types.
- A permutation is centralised by no odd permutation if and only if it is the product of cycles of distinct odd lengths.
- Hence the orbit-stabiliser theorem implies:
- A conjugacy class of \mathcal{S}_{n} contained in \mathcal{A}_{n} splits into two conjugacy classes of \mathcal{A}_{n} if and only if its cycle type has pairwise distinct odd parts, otherwise it is a single conjugacy class of \mathcal{A}_{n}.

Simplicity of \mathcal{A}_{n}

- Theorem: Let $n \geq 5$. Then \mathcal{A}_{n} is simple.
- Proof: by induction on n; let $\{1\} \neq N \unlhd \mathcal{A}_{n}$.
- Let $n=5$. Then N is a union of conjugacy classes.
- The cycle types of even permutations are $\left[1^{5}\right],\left[3,1^{2}\right],\left[2^{2}, 1\right],[5]$, where only type [5] splits into two conjugacy classes.
- The conjugacy class lengths are $1,20,15,12,12$, respectively. - No sub-sum of these, strictly including 1 , divides 60 ; thus $N=\mathcal{A}_{n}$.
- Let $n>5$. Then $\mathcal{A}_{n-1}=\operatorname{Stab}_{\mathcal{A}_{n}}(n)$ is simple.
- $N \cap \mathcal{A}_{n-1} \unlhd \mathcal{A}_{n-1}$, hence i) $\mathcal{A}_{n-1} \leq N$ or ii) $N \cap \mathcal{A}_{n-1}=\{1\}$:
i) Then N contains all elements of cycle type $\left[3,1^{n-3}\right]$.
- Any even permutation is a product of 3 -cycles; thus $N=\mathcal{A}_{n}$.
ii) Then any non-trivial element of N acts fixed-point-free.
- If $1^{\sigma}=1^{\tau}$ for $\sigma, \tau \in N$, then $\sigma \tau^{-1} \in N \cap \mathcal{A}_{n-1}=\{1\}$.
- Thus $|N| \leq n$.
- But \mathcal{A}_{n} does not have a non-trivial conjugacy class with fewer than n elements, a contradiction.

Automorphisms of \mathcal{A}_{n}

- Let $n \geq 4$. Then $Z\left(\mathcal{A}_{n}\right)=\{1\}$, hence $\mathcal{A}_{n} \cong \operatorname{Inn}\left(\mathcal{A}_{n}\right) \unlhd \operatorname{Aut}\left(\mathcal{A}_{n}\right)$; - and \mathcal{S}_{n} acts faithfully by conjugation, hence $\mathcal{S}_{n} \leq \operatorname{Aut}\left(\mathcal{A}_{n}\right)$.
- Theorem: Let $n \geq 7$. Then $\operatorname{Aut}\left(\mathcal{A}_{n}\right)=\mathcal{S}_{n}$.

- Proof: [C. Parker]

- \mathcal{A}_{n} being simple, it cannot possess a proper subgroup of index $k<n$, since otherwise there would be an injective map $\mathcal{A}_{n} \rightarrow \mathcal{A}_{k}$.
- We show $(*)$: If $\mathcal{A}_{n-1} \cong H<\mathcal{A}_{n}$, then $H=\operatorname{Stab}_{\mathcal{A}_{n}}(i)$ for some i. - Let $n=7$. H cannot have a non-trivial orbit of less than 6 points. If H is not a point stabiliser, then H acts transitively on $\{1, \ldots, 7\}$. This is a contradiction since $7 \times|H|=\left|\mathcal{A}_{6}\right|$, proving $(*)$ for $n=7$. - Let $n \geq 9$. A ' 3 -cycle' of H centralises a group $\cong \mathcal{A}_{n-4}$.

Since $n-4 \geq 5$ the latter has an orbit of at least $n-4$ points. Thus a ' 3 -cycle' of H moves at most 4 points, thus is a 3 -cycle of \mathcal{A}_{n}.

- Let $n=8$. A '3-cycle' of H centralises a group $\cong \mathcal{A}_{4}$.

Hence there is a V_{4} centralising the ' 3 -cycle'.
The elements of \mathcal{A}_{8} of cycle type $\left[3^{2}, 1^{2}\right]$ do not centralise a V_{4}. Hence a ' 3 -cycle' of H is a 3 -cycle of \mathcal{A}_{8}.

Automorphisms of \mathcal{A}_{n}, II

- Thus for $n \geq 8$ the ' 3 -cycles' of H map to 3 -cycles of \mathcal{A}_{n}.
- For pairs of 3-cycles we have $\langle(a, b, c),(a, b, d)\rangle \cong \mathcal{A}_{4}$.
- Hence the subgroup

$$
H \cong \mathcal{A}_{n-1}=\langle(1,2,3), \ldots,(1,2, n-1)\rangle
$$

maps to a subgroup

$$
\left\langle\left(a, b, c_{1}\right), \ldots,\left(a, b, c_{n-3}\right)\right\rangle \leq \mathcal{A}_{n} .
$$

- The latter moves $n-1$ points.
- Hence $H \leq \operatorname{Stab}_{\mathcal{A}_{n}}(i)$ for some i, proving $(*)$ for $n \geq 8$.
- Now:
- Any automorphism permutes the subgroups isomorphic to \mathcal{A}_{n-1}.
- These subgroups are in natural bijection with $\{1, \ldots, n\}$.
- Hence any automorphism induces a permutation of $\{1, \ldots, n\}$. $\#$
- We have $\operatorname{Aut}\left(\mathcal{A}_{n}\right)=\mathcal{S}_{n}$ for $n \in\{4,5\}$.
- We have $\operatorname{Aut}\left(\mathcal{A}_{6}\right) \cong \mathcal{A}_{6} .2^{2}$.
- \mathcal{A}_{6} has two conjugacy classes of subgroups isomorphic to \mathcal{A}_{5}.

Schur covers of \mathcal{S}_{n} and \mathcal{A}_{n}

- A finite group H such that $Z(H) \leq H^{\prime}$ and $H / Z(H) \cong G$ is called an $|Z(H)|$-fold cover of G.
- Two maximal covers of G are isoclinic.
\circ If G is perfect, its unique maximal cover is a universal cover.
- \mathcal{A}_{n} has maximal 2 -fold covers $\widetilde{\mathcal{A}}_{n}=2 . \mathcal{A}_{n}$, for $n \geq 4$, - except for $n \in\{6,7\}$ where it has maximal 6 -fold covers $6 . \mathcal{A}_{n}$.
- \mathcal{S}_{n} has two maximal 2 -fold covers $\widetilde{\mathcal{S}}_{n}$ and $\widehat{\mathcal{S}}_{n}$, for $n \geq 4$, - both of shape $2 \cdot \mathcal{S}_{n}$, but we have $\widetilde{\mathcal{S}}_{n} \cong \widehat{\mathcal{S}}_{n}$ if and only if $n=6$.
- The Coxeter presentation of \mathcal{S}_{n}, where $n \in \mathbb{N}$, is given as

$$
\left.\mathcal{S}_{n} \cong\left\langle s_{1}, \ldots, s_{n-1}\right| s_{i}^{2}=\left(s_{i} s_{i+1}\right)^{3}=\left(s_{i} s_{j}\right)^{2}=1 \text { for }|i-j| \geq 2\right\rangle,
$$

- where adjacent transpositions $(i, i+1) \mapsto s_{i}$.
- For $\widetilde{\mathcal{S}}_{n}$ and $\widehat{\mathcal{S}}_{n}$, where $n \geq 4$, we have [SChUR, 1911]:

$$
\begin{gathered}
\widetilde{\mathcal{S}}_{n}:=\left\langle s_{1}, \ldots, s_{n-1}, z\right| \\
\\
\left.z^{2}=1, \mathbf{s}_{\mathbf{i}}^{2}=\left(\mathbf{s}_{\mathbf{i}} \mathbf{s}_{\mathbf{i}+1}\right)^{3}=\mathbf{z},\left(s_{i} s_{j}\right)^{2}=z\right\rangle \\
\widehat{\mathcal{S}}_{n}:= \\
\left\langle s_{1}, \ldots, s_{n-1}, z\right| \\
\left.z^{2}=1, \mathbf{s}_{\mathbf{i}}^{2}=\left(\mathbf{s}_{\mathbf{i}} \mathbf{z}\right)^{2}=\left(\mathbf{s}_{\mathbf{i}} \mathbf{S}_{\mathbf{i}+\mathbf{1}}\right)^{\mathbf{3}}=\mathbf{1},\left(s_{i} s_{j}\right)^{2}=z\right\rangle
\end{gathered}
$$

Subgroups of \mathcal{S}_{n}

- Describing all the subgroups of \mathcal{S}_{n}, for all $n \in \mathbb{N}_{0}$, is by
- Cayley's Theorem equivalent to classifying all finite groups:
- hopeless.
- But there are certainly are interesting prominent subgroups:
- for example, intransitive subgroups.
- Partition the set of $n=k m$ points into m blocks of size k.
- The wreath product $\mathcal{S}_{k} \backslash \mathcal{S}_{m} \cong \mathcal{S}_{k}^{m}: \mathcal{S}_{m}$ acts on this partition, - where the base group $\mathcal{S}_{k}^{m}=\mathcal{S}_{k} \times \cdots \times \mathcal{S}_{k}$ consists of permutations of the various blocks,
- and the wreathing \mathcal{S}_{m} permutes the blocks.
- $\mathcal{S}_{k} \backslash \mathcal{S}_{m}<\mathcal{S}_{n}$ is an imprimitive transitive subgroup, for $k, m \geq 2$.
- $\mathcal{S}_{k} \backslash \mathcal{S}_{m}$ acts on $\{1, \ldots, k\}^{m}$ by the product action, $n=k^{m}$, ○ where $\left[\pi_{1}, \ldots, \pi_{m}\right] \in \mathcal{S}_{k}^{m}$ acts by $\left[a_{1}, \ldots, a_{m}\right] \mapsto\left[a_{1}^{\pi_{1}}, \ldots, a_{m}^{\pi_{m}}\right]$, \circ and $\pi^{-1} \in \mathcal{S}_{m}$ acts by $\left[a_{1}, \ldots, a_{m}\right] \mapsto\left[a_{1^{\pi}}, \ldots, a_{m^{\pi}}\right]$.
- $\mathcal{S}_{k} \imath \mathcal{S}_{m}<\mathcal{S}_{n}$ is a primitive subgroup, for $k \geq 3$ and $m \geq 2$.

Maximal subgroups of \mathcal{S}_{n}

- One might try to describe the maximal subgroups of \mathcal{S}_{n};
- the maximal subgroups of \mathcal{A}_{n} are then obtained by intersection:
- O'Nan-Scott Theorem [1979]: Any proper subgroup of \mathcal{S}_{n} different from \mathcal{A}_{n} is contained in one of the following subgroups:
i) an intransitive group $\mathcal{S}_{k} \times \mathcal{S}_{m}$, where $n=k+m$;
ii) an imprimitive transitive group $\mathcal{S}_{k} \backslash \mathcal{S}_{m}$, where $n=k m$;
iii) a primitive wreath product $\mathcal{S}_{k} \backslash \mathcal{S}_{m}$, where $n=k^{m}$; iv) an affine group $\mathrm{AGL}_{d}(p) \cong p^{d}: \mathrm{GL}_{d}(p)$, where $n=p^{d}$;
v) a diagonal type group

$$
T^{m} \cdot\left(\operatorname{Out}(T) \times \mathcal{S}_{m}\right) \cong\left(T<\mathcal{S}_{m}\right) \cdot \operatorname{Out}(T)
$$

where T is a non-abelian simple group, acting on the cosets of a subgroup of index $n=|T|^{m-1}$, of shape

$$
\Delta(T) \cdot\left(\operatorname{Out}(T) \times \mathcal{S}_{m}\right) \cong \operatorname{Aut}(T) \times \mathcal{S}_{m}
$$

vi) an almost simple group, acting on the cosets of a maximal subgroup of index n.

- Describing the groups in class vi) requires complete knowledge of the maximal subgroups of all almost simple groups:
- reducing an impossible problem to an even harder one.

Linear groups

- Let \mathbb{F}_{q} be the field with $q=p^{f}$ elements, p a prime, $f \in \mathbb{N}, n \in \mathbb{N}$.
- General linear $\operatorname{group} \mathrm{GL}_{n}(q):=\left\{g \in \mathbb{F}_{q}^{n \times n} ; \operatorname{det}(g) \neq 0\right\}$
- Counting the number of ordered \mathbb{F}_{q}-bases of \mathbb{F}_{q}^{n} :
- $\left|\mathrm{GL}_{n}(q)\right|=\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{n-1}\right)=q^{\binom{n}{2}} \cdot \prod_{i=1}^{n}\left(q^{i}-1\right)$
- Viewing q as an indeterminate,
- this is an order polyomial in $\mathbb{Z}[q]$,
- whose irreducible factors are q and cyclotomic polynomials.
- Special linear group $\mathrm{SL}_{n}(q):=\left\{g \in \mathrm{GL}_{n}(q) ; \operatorname{det}(g)=1\right\}$
- Projective general linear group $\mathrm{PGL}_{n}(q):=\mathrm{GL}_{n}(q) / Z\left(\mathrm{GL}_{n}(q)\right)$,
- where $Z\left(\operatorname{GL}_{n}(q)\right)=\mathbb{F}_{q}^{*} \cdot E_{n} \cong C_{q-1}$.
- $\left|\operatorname{SL}_{n}(q)\right|=\left|\operatorname{PGL}_{n}(q)\right|=\frac{1}{q-1} \cdot\left|\operatorname{GL}_{n}(q)\right|$
- Projective special linear group $\operatorname{PSL}_{n}(q):=\operatorname{SL}_{n}(q) / Z\left(\operatorname{SL}_{n}(q)\right)$,
- where $Z\left(\operatorname{SL}_{n}(q)\right)=\left\{\lambda \cdot E_{n} ; \lambda^{n}=1\right\} \cong C_{\operatorname{gcd}(n, q-1)}$.
- $\left|\operatorname{PSL}_{n}(q)\right|=\frac{1}{\operatorname{gcd}(n, q-1)} \cdot\left|\operatorname{SL}_{n}(q)\right|=\frac{1}{\operatorname{gcd}(n, q-1)} \cdot \frac{1}{q-1} \cdot\left|\operatorname{GL}_{n}(q)\right|$

Simplicity of $\operatorname{PSL}_{n}(q)$

- $\mathrm{PSL}_{2}(2) \cong \mathrm{GL}_{2}(2) \cong \mathcal{S}_{3}:$
- GL $2(2)$ acts 2 -transitively on the three vectors in $\mathbb{F}_{2}^{2} \backslash\{0\}$.
- $\operatorname{PSL}_{2}(3) \cong \mathcal{A}_{4}$:
- $\mathrm{GL}_{2}(3)$ acts on the four 1-dimensional \mathbb{F}_{3}-subspaces of \mathbb{F}_{3}^{2},
- the action is 2-transitive, $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ fixes the standard \mathbb{F}_{3}-basis,
- hence $\mathrm{GL}_{2}(3) \rightarrow \mathcal{S}_{4}$, with kernel $Z\left(\mathrm{GL}_{2}(3)\right) \cong C_{2}$,
- thus $\mathrm{PGL}_{2}(3) \cong \mathcal{S}_{4}$ and $\mathrm{PSL}_{2}(3) \cong \mathcal{A}_{4}$.
- Note: $\mathrm{GL}_{2}(3) \cong \widetilde{\mathcal{S}}_{4}$ and $\mathrm{SL}_{2}(3) \cong \widetilde{\mathcal{A}}_{4}$.
- Theorem: Let $n \geq 2$ and $(n, q) \neq(2,2),(2,3)$.

Then $\operatorname{PSL}_{n}(q)$ is simple.

- Proof:

- $G:=\operatorname{SL}_{n}(q)$ acts on the set of 1-dimensional subspaces of \mathbb{F}_{q}^{n}, - yielding a 2 -transitive, hence primitive, action of $\operatorname{PSL}_{n}(q)$.
- Let $x:=\langle[1,0, \ldots, 0]\rangle_{\mathbb{F}_{q}}$ and $H:=\operatorname{Stab}_{G}(x)$,
- then

$$
H=\left\{\left[\begin{array}{cc}
\lambda & 0_{n-1} \\
* & h
\end{array}\right] \in G ; \lambda \in \mathbb{F}_{q}^{*}, h \in \mathrm{GL}_{n-1}(q), \lambda \cdot \operatorname{det}(h)=1\right\} .
$$

Simplicity of $\operatorname{PSL}_{n}(q)$, II

- Use Iwasawa's Criterion:
o Let

$$
A:=\left\{\left[\begin{array}{cc}
1 & 0_{n-1} \\
* & E_{n-1}
\end{array}\right] \in H\right\}
$$

- then $A \triangleleft H$ is abelian, consisting of transvections,
- that is $g \in G$ such that $\operatorname{rk}\left(g-E_{n}\right)=1$ and $\operatorname{rk}\left(\left(g-E_{n}\right)^{2}\right)=0$.
- Jordan normal form theorem implies that
- any transvection is G-conjugate to some element of A.
- G is generated by transvections:
- Any $g \in G$ can be reduced to E_{n} by a sequence of elementary row operations of the form ' $r_{i} \mapsto r_{i}+\lambda r_{j}$ ',
- that is multiplying g from the right with a series of transvections.
- G is perfect:
- For $n \geq 3$ any transvection is a commutator:

$$
\left[\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & \lambda & 1
\end{array}\right]\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-\lambda & 0 & 1
\end{array}\right]
$$

- For $n=2$ and $q \geq 4$ there is $\lambda \in \mathbb{F}_{q}^{*}$ such that $\lambda^{2} \neq 1$, then

$$
\left[\left[\begin{array}{ll}
1 & 0 \\
\beta & 1
\end{array}\right],\left[\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right]\right]=\left[\begin{array}{cc}
1 & 0 \\
\beta\left(\lambda^{2}-1\right) & 1
\end{array}\right]
$$

is an arbitrary element of A.

Iwasawa's Criterion

- Theorem: [Iwasawa, 1941]

- Let G be a finite group, acting primitively on a set Ω,
- let $H:=\operatorname{Stab}_{G}(x)<G$ for some $x \in \Omega$,
- and let $A \unlhd H$ such that $\left\langle A^{g} ; g \in G\right\rangle=G$.
- Then for any $N \unlhd G$ we have
- either $N \leq \operatorname{Stab}_{G}(\Omega)=\bigcap_{g \in G} H^{g} \triangleleft G$,
- or G / N is isomorphic to a quotient of A.
- In particular:
\circ if A is abelian and G is perfect, then $G / \operatorname{Stab}_{G}(\Omega)$ is simple.

- Proof:

- We may assume that $N \not \approx H$.
- $H<G$ being maximal implies $G=H N$, thus
- any $g \in G$ can be written as $g=h n$, where $h \in H$ and $n \in N$.
- Hence $A^{g}=A^{h n}=A^{n} \leq A N$, for any $g \in G$,
- implying $G=\left\langle A^{g} ; g \in G\right\rangle=A N$,
- thus $G / N=A N / N \cong A /(A \cap N)$.
- Despite its simplicity this is astonishingly powerful.
- Exercise: Use it to prove the simplicity of \mathcal{A}_{n}, for $n \geq 5$.

Automorphisms of $\mathbf{S L}_{n}(q)$

- Diagonal automorphisms:

- induced by conjugation with diagonal matrices,
- that is by the conjugation action of $\mathrm{GL}_{n}(q)$.
- $\operatorname{GL}_{n}(q) / \operatorname{SL}_{n}(q) \cong C_{q-1}, \operatorname{PGL}_{n}(q) / \operatorname{PSL}_{n}(q) \cong C_{\operatorname{gcd}(n, q-1)}$

- Field automorphisms:

\circ induced by the Frobenius automorphism $\varphi_{p}: \lambda \mapsto \lambda^{p}$ of \mathbb{F}_{q},

- where $q=p^{f}$, hence $\left\langle\varphi_{p}\right\rangle \cong C_{f}$.
- Semilinear groups

$$
\begin{array}{ll}
\Gamma \mathrm{L}_{n}(q):=\mathrm{GL}_{n}(q):\left\langle\varphi_{p}\right\rangle, & {\mathrm{P} \Gamma \mathrm{~L}_{n}(q):=\operatorname{PGL}_{n}(q):\left\langle\varphi_{p}\right\rangle,}^{\Sigma \mathrm{L}_{n}(q):=\mathrm{SL}_{n}(q):\left\langle\varphi_{p}\right\rangle,} \quad \\
\mathrm{PLL}_{n}(q):=\operatorname{PSL}_{n}(q):\left\langle\varphi_{p}\right\rangle .
\end{array}
$$

- Graph automorphisms:

- induced by a graph automorphism of the Dynkin diagram.
\circ Duality $\mathrm{GL}_{n}(q) \rightarrow \mathrm{GL}_{n}(q): g \mapsto g^{-\mathrm{tr}} ;$
- induces duality on $\mathrm{SL}_{n}(q), \mathrm{PGL}_{n}(q), \mathrm{PSL}_{n}(q)$.
- Note: duality is not inner for $n \geq 3$.
- These are all the 'outer' automorphisms;
- in particular the outer automorphism group is soluble.

Covers of $\mathrm{PSL}_{n}(q)$

- $\operatorname{PSL}_{n}(q)$ has $\operatorname{gcd}(n, q-1)$-fold universal cover

$$
\operatorname{SL}_{n}(q) \cong C_{\operatorname{gcd}(n, q-1)} \cdot \operatorname{PSL}_{n}(q)
$$

- except:
- $\mathrm{PSL}_{2}(4) \cong \operatorname{PSL}_{2}(5) \cong \mathcal{A}_{5}$ has universal cover $2 . \mathrm{PSL}_{2}(4)$;
- $\operatorname{PSL}_{2}(9) \cong \mathcal{A}_{6}$ has universal cover 6.PSL $2(9)$;
- $\operatorname{PSL}_{3}(2) \cong \operatorname{PSL}_{2}(7)$ has universal cover $2 . \mathrm{PSL}_{3}(2)$;
- $\mathrm{PSL}_{4}(2) \cong \mathcal{A}_{8}$ has universal cover 2. $\mathrm{PSL}_{4}(2)$;
- $\mathrm{PSL}_{3}(4)$ has universal cover $\left(3 \times 4^{2}\right) \cdot \mathrm{PSL}_{3}(4)$.
- Note:
- generic universal covers have order coprime to the defining characteristic p of the Lie type group,
o while exceptional parts of universal covers are p-groups.

Subgroups of $\mathbf{G L}_{n}(q)$

- Borel subgroup $B:=\{g ; g$ lower triangular $\}<G:=\operatorname{GL}_{n}(q)$, - the stabiliser of a maximal flag of \mathbb{F}_{q}^{n};
- monomial subgroup $N:=\{g \in G ; g$ monomial $\}<G$;
- maximal split torus $T:=B \cap N=\{g \in G ; g$ diagonal $\}$,
- $T \cong C_{q-1}^{n}$, and $N=N_{G}(T)$ for $q \geq 3$;
- unipotent subgroup $U:=\{g \in G ; g$ lower unitriangular $\} \unlhd B$, - $U \in \operatorname{Syl}_{p}(G)$, and $B=U: T$ split;
- Weyl group $W:=N / T \cong \mathcal{S}_{n}$, via $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \mapsto(1,2)$,
- a crystallographic real reflection group:
- the adjacent transpositions act as reflections,
- that is $\operatorname{dim}_{\mathbb{Q}}\left(\operatorname{ker}\left(g-E_{n}\right)\right)=n-1$ and $\operatorname{dim}_{\mathbb{Q}}\left(\operatorname{ker}\left(g+E_{n}\right)\right)=1$.
- Flag stabilisers are called parabolic subgroups;

○ $B \leq P=\left[\begin{array}{cc}\mathrm{GL}_{k}(q) & 0 \\ * & \mathrm{GL}_{n-k}(q)\end{array}\right]=U_{P}: L_{P}$ maximal parabolic,
○ with unipotent radical $U_{P}=\left[\begin{array}{cc}E_{k} & 0 \\ * & E_{n-k}\end{array}\right]$, and

- Levi subgroup $L_{P}=\left[\begin{array}{cc}\mathrm{GL}_{k}(q) & 0 \\ 0 & \mathrm{GL}_{n-k}(q)\end{array}\right] \cong \mathrm{GL}_{k}(q) \times \mathrm{GL}_{n-k}(q)$.
- Axiomatic: $B N$-pairs [Tits, 1962]

Maximal subgroups $\mathbf{G L}_{n}(q)$

- Aschbacher-Dynkin Theorem: [1984/1952]

- Any proper subgroup of $\mathrm{GL}_{n}(q)$ different from $\mathrm{SL}_{n}(q)$ is contained in one of the following subgroups:
i) a reducible group $q^{k m}:\left(\mathrm{GL}_{k}(q) \times \mathrm{GL}_{m}(q)\right)$, where $n=k+m$, the stabiliser of a k-dimensional \mathbb{F}_{q}-subspace;
ii) an imprimitive group $\mathrm{GL}_{k}(q)\left\{\mathcal{S}_{m}\right.$, where $n=k m$, the stabiliser of a direct sum decomposition into $m k$-subspaces; iii) a tensor product $\mathrm{GL}_{k}(q) \circ \mathrm{GL}_{m}(q)$, where $n=k m$, the stabiliser of a tensor product decomposition $\mathbb{F}_{q}^{k} \otimes \mathbb{F}_{q}^{m}$; iv) a wreathed tensor product,
the preimage in $\mathrm{GL}_{n}(q)$ of $\mathrm{PGL}_{k}(q)$ 亿 \mathcal{S}_{m}, where $n=k^{m}$, the stabiliser of a tensor product decomposition $\mathbb{F}_{q}^{k} \otimes \cdots \otimes \mathbb{F}_{q}^{k}$;
\mathbf{v}) the preimage in $\mathrm{GL}_{n}(q)$ of $r^{2 k}: \mathrm{Sp}_{2 k}(r)$, where $n=r^{k}$, or of $2^{2 k} \cdot \mathrm{GO}_{2 k}^{\epsilon}(2)$, for $r=2$ and $q \equiv \epsilon(\bmod 4)$;
vi) an almost quasi-simple group acting irreducibly.
- Aschbacher: looks more closely at case vi) ,
- in particular considers subfields and extension fields of \mathbb{F}_{q}.

Proof of the Aschbacher-Dynkin Theorem

- Proof:

- Let $\operatorname{PSL}_{n}(q) \not 又 H<G:=\operatorname{PGL}_{n}(q)$,
- and let $\widehat{H}<\widehat{G}:=\mathrm{GL}_{n}(q)$ be its preimage.
- We may assume that \widehat{H} acts irreducibly, otherwise case i) .
- Let $N \unlhd H$ be the socle of H,
- that is the product of its minimal non-trivial normal subgroups.
- By Clifford theory \widehat{N} acts completely reducibly.
- We may assume that \hat{N} has only one isotypic component, otherwise case ii).
- We may assume that \hat{N} acts irreducibly, otherwise $\widehat{H} \leq \widehat{N} \circ C_{\widehat{G}}(\widehat{N})$ implies case iii).
- We may assume that N is the only minimal normal subgroup, otherwise $\widehat{N} \leq \widehat{N}_{1} \circ \widehat{N}_{2}$ implies case iii) again.
- If $N \cong C_{r} \times \cdots \times C_{r}$ is (elementary) abelian we get case \mathbf{v}).
- If $N \cong T$ is non-abelian simple we get case $\mathbf{v i}$).
- If $N \cong T \times \cdots \times T$ is non-abelian non-simple we get case iv) . $\#$

Geometric algebra

- Let F be a field, with automorphism $\sigma: F \rightarrow F$ such that $\sigma^{2}=\mathrm{id}$, - and let V be a finitely generated F-vector space.
- A σ-bilinear form is a map $f: V \times V \rightarrow F$ such that
- $f(\lambda u+v, w)=\lambda f(u, w)+f(v, w)$,
- $f(u, \lambda v+w)=\lambda^{\sigma} f(u, v)+f(u, w)$.
- f is called
- symmetric if $\sigma=\operatorname{id}$ and $f(w, v)=f(v, w)$,
- hermitian if $\sigma \neq$ id and $f(w, v)=f(v, w)^{\sigma}$,
- symplectic if $\sigma=$ id and $f(w, v)=-f(v, w)$,
- alternating if $\sigma=$ id and $f(v, v)=0$.
- Any alternating form is symplectic,
- if char $(F) \neq 2$ then any symplectic form is alternating;
- if $\operatorname{char}(F)=2$ then being symmetric or symplectic coincide.
- A quadratic form is a map $q: V \rightarrow F$ such that
- $q(\lambda v+w)=\lambda^{2} q(v)+q(w)+\lambda f(v, w)$,
o where the associated bilinear form $f: V \times V \rightarrow F$ is symmetric.
- If $\operatorname{char}(F) \neq 2$ then q is recovered from f as $q(v)=\frac{1}{2} f(v, v)$,
- if $\operatorname{char}(F)=2$ then f is alternating.

Geometric algebra, II

- A σ-bilinear form f is called non-degenerate, if

$$
\operatorname{rad}(f):=\{w \in V ; f(v, w)=0 \text { for all } v \in V\}=\{0\}
$$

- $v \in V$ is called isotropic if $f(v, v)=0$.
- A map $A \in \mathrm{GL}(V)$ is called an isometry of f, if

$$
f(v A, w A)=f(v, w) \text { for all } v, w \in V
$$

- the set of all isometries is a subgroup of $\mathrm{GL}(V)$.
- A quadratic form q is called non-degenerate, if

$$
\operatorname{rad}(q):=\{v \in \operatorname{rad}(f) ; v \text { singular }\}=\{0\}
$$

- where $v \in V$ is called singular if $q(v)=0$.
- The Witt index is the dimension of a maximal singular subspace;
- by Witt's Theorem this is independent of the subspace chosen.
- A map $A \in \mathrm{GL}(V)$ is called an isometry of q, if

$$
q(v A)=q(v) \text { for all } v \in V
$$

- the set of all isometries is a subgroup of GL (V).
- No classification of non-degenerate forms for arbitrary F is known.

Unitary groups

- Theorem: Any non-degenerate $\varphi_{q^{-}}$-hermitian form over $\mathbb{F}_{q^{2}}$ has an orthonormal $\mathbb{F}_{q^{2}}$-basis,
- that is the associated Gram matrix is E_{n}.
- Thus $g \in \mathrm{GL}_{n}\left(q^{2}\right)$ is an isometry if and only if $g \cdot E_{n} \cdot \bar{g}^{\mathrm{tr}}=E_{n}$. \circ General unitary group $\mathrm{GU}_{n}\left(q^{2}\right):=\left\{g \in \mathrm{GL}_{n}\left(q^{2}\right) ; \bar{g}^{-\mathrm{tr}}=g\right\}$, - that is the fixed points of the concatenation of the graph automorphism (the duality) and a field automorphism of $\mathrm{GL}_{n}\left(q^{2}\right)$.
- Counting the number of ordered orthonormal $\mathbb{F}_{q^{2}}$-bases:
- $\left|\mathrm{GU}_{n}\left(q^{2}\right)\right|=q^{\binom{n}{2}} \cdot \prod_{i=1}^{n}\left(q^{i}-(-1)^{i}\right)=(-q)^{\binom{n}{2}} \cdot \prod_{i=1}^{n}\left((-q)^{i}-1\right)$
- Ennola duality $\left|\mathrm{GU}_{n}\left(q^{2}\right)\right|=\left|\mathrm{GL}_{n}(-q)\right|$
- As in the linear case: $\operatorname{SU}_{n}\left(q^{2}\right), \operatorname{PGU}_{n}\left(q^{2}\right), \operatorname{PSU}_{n}\left(q^{2}\right)$,
- where $Z\left(G U_{n}\left(q^{2}\right)\right) \cong C_{q+1}=C_{|(-q)-1|}$.
- $\left|\operatorname{PSU}_{n}\left(q^{2}\right)\right|=\frac{1}{\operatorname{gcd}(n, q+1)} \cdot \frac{1}{q+1} \cdot\left|\operatorname{GU}_{n}\left(q^{2}\right)\right|=\left|\operatorname{PSL}_{n}(-q)\right|$
- Simplicity of $\operatorname{PSU}_{n}\left(q^{2}\right)$: Apply Iwasawa's Criterion
- to the action on the set of isotropic 1-dimensional subspaces, \circ and use unitary transvections,
- that is $V \rightarrow V: v \mapsto v+\lambda f(v, w) w$, where $w \in V$ is isotropic.
- Exceptions: $\operatorname{PSU}_{2}\left(q^{2}\right) \cong \operatorname{PSL}_{2}(q)$, and $\operatorname{PSU}_{3}\left(2^{2}\right)$ is soluble.

Symplectic groups

- Theorem: Any (necessarily even-dimensional) non-degenerate alternating form over \mathbb{F}_{q} is an orthogonal sum of hyperbolic planes;
- that is the latter have Gram matrix $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.
- Symplectic group $\mathrm{Sp}_{2 n}(q)$
- Counting the number of ordered symplectic \mathbb{F}_{q}-bases:
- $\left|\operatorname{Sp}_{2 n}(q)\right|=q^{n^{2}} \cdot \prod_{i=1}^{n}\left(q^{2 i}-1\right)$
- We have $\operatorname{Sp}_{2 n}(q) \leq \operatorname{SL}_{2 n}(q)$.
- Projective symplectic group $\operatorname{PSp}_{2 n}(q):=\operatorname{Sp}_{2 n}(q) / Z\left(\operatorname{Sp}_{2 n}(q)\right)$,
- where $Z\left(\operatorname{Sp}_{2 n}(q)\right)=\left\{ \pm E_{n}\right\}$.
- $\left|\operatorname{PSp}_{2 n}(q)\right|=\frac{1}{\operatorname{gcd}(2, q-1)} \cdot\left|\operatorname{Sp}_{2 n}(q)\right|$
- Simplicity of $\mathbf{P S p}_{2 n}(q)$: Apply Iwasawa's Criterion
- to the action on the set of 1-dimensional subspaces,
- and use symplectic transvections,
- that is $V \rightarrow V: v \mapsto v+\lambda f(v, w) w$.
- Exceptions: $\mathrm{Sp}_{2}(q) \cong \mathrm{SL}_{2}(q)$, and $\mathrm{Sp}_{4}(2) \cong \mathcal{S}_{6}$.

Orthogonal groups

- Theorem: Any $(2 n+1)$-dimensional non-degenerate quadratic form over \mathbb{F}_{q} is equivalent to $X_{0}^{2}+\sum_{i=1}^{n} X_{i} X_{-i}$.
- Theorem: Any 2n-dimensional non-degenerate quadratic form over \mathbb{F}_{q} is equivalent
- either to $\sum_{i=1}^{n} X_{i} X_{-i}$, having maximal Witt index n, o or to, where $T^{2}+T+a \in \mathbb{F}_{q}[T]$ is irreducible,

$$
\left(X_{0}^{2}+X_{0} X_{-0}+a X_{-0}^{2}\right)+\sum_{i=1}^{n-1} X_{i} X_{-i}
$$

having non-maximal Witt index $n-1$.

- General orthogonal groups $\mathrm{GO}_{2 n+1}(q), \mathrm{GO}_{2 n}^{+}(q), \mathrm{GO}_{2 n}^{-}(q)$
- Counting the number of isotropic vectors, - which are acted on transitively by $\mathrm{GO}_{n}(q)$, and induction:
- $\left|\mathrm{GO}_{2 n}^{\epsilon}(q)\right|=2 q^{\binom{n}{2}} \cdot\left(q^{n}-\epsilon\right) \cdot \prod_{i=1}^{n-1}\left(q^{2 i}-1\right)$
- $\left|\mathrm{GO}_{2 n+1}(q)\right|=2 q^{n^{2}} \cdot \prod_{i=1}^{n}\left(q^{2 i}-1\right)$,
- As in the linear case: $\mathrm{SO}_{n}(q), \mathrm{PGO}_{n}(q), \mathrm{PSO}_{n}(q)$,
- where $Z\left(\mathrm{GO}_{n}(q)\right)=\left\{ \pm E_{n}\right\}$,
- and where $g \cdot J \cdot g^{\operatorname{tr}}=J$, for J being the Gram matrix,
- implies $\operatorname{det}(g)^{2}=1$ for all $g \in \mathrm{GO}_{n}(q)$.
- But: $\mathrm{PSO}_{n}(q)$ is in general not perfect.

Orthogonal groups in odd characteristic

- Let q be odd.
- Spinor norm $\nu: \mathrm{GO}_{n}(q) \rightarrow \mathbb{F}_{q}^{*} / \mathbb{F}_{q}^{* 2} \cong C_{2}$:
- write $g \in \mathrm{GO}_{n}(q)$ as a product of reflections
$\circ r_{w}: V \rightarrow V: v \mapsto v-\frac{f(v, w)}{q(w)} \cdot w$, where $w \in V$ is non-singular,
\circ and let $\nu\left(r_{w}\right):=q(w) \cdot \mathbb{F}_{q}^{* 2} \in \mathbb{F}_{q}^{*} / \mathbb{F}_{q}^{* 2}$.
- Note the similarity to the definition of the sign of a permutation.
- Let $\Omega_{n}(q):=\operatorname{ker}(\nu) \cap \mathrm{SO}_{n}(q)$ and $\mathrm{P} \Omega_{n}(q):=\Omega_{n}(q) / Z\left(\Omega_{n}(q)\right)$, - then $\mathrm{GO}_{n}(q) / \operatorname{ker}(\nu) \cong \mathrm{SO}_{n}(q) / \Omega_{n}(q) \cong C_{2}$.
- $\mathrm{SO}_{2 n+1}(q) \cong \mathrm{PSO}_{2 n+1}(q)$ and $\Omega_{2 n+1}(q) \cong \mathrm{P} \Omega_{2 n+1}(q)$,
- hence $\left|\Omega_{2 n+1}(q)\right|=\frac{1}{4} \cdot\left|\mathrm{GO}_{2 n+1}(q)\right|$.
- $-E_{2 n} \in \Omega_{2 n}^{\epsilon}(q)$ if and only if $q^{n} \equiv \epsilon(\bmod 4)$,
- hence $\left|P \Omega_{2 n}^{\epsilon}(q)\right|=\frac{1}{2 \cdot \operatorname{gcd}\left(4, q^{n}-\epsilon\right)} \cdot\left|\mathrm{GO}_{2 n}^{\epsilon}(q)\right|$.
- Simplicity of $\mathbf{P} \Omega_{n}(q)$: Apply Iwasawa's Criterion
- to the action on the set of 1-dimensional singular subspaces,
- and use Siegel transformations.
- Exceptions: $\mathrm{GO}_{2}^{\epsilon}(q) \cong D_{2(q-\epsilon)}$, and $\mathrm{P} \Omega_{3}(3) \cong \mathrm{PSL}_{2}(3) \cong \mathcal{A}_{4}$, and $\mathrm{P}_{4}^{+}(q) \cong \mathrm{PSL}_{2}(q) \times \mathrm{PSL}_{2}(q)$.
- Note: $\left|\Omega_{2 n+1}(q)\right|=\left|\operatorname{PSp}_{2 n}(q)\right|$, but $\Omega_{2 n+1}(q) \neq \operatorname{PSp}_{2 n}(q)$.

Orthogonal groups in characteristic 2

- Let $q=2^{f}$.
$\circ \mathrm{GO}_{n}(q)=\mathrm{SO}_{n}(q)=\mathrm{PGO}_{n}(q)=\mathrm{PSO}_{n}(q)$
- Theorem: $\mathrm{GO}_{2 n+1}(q) \cong \operatorname{Sp}_{2 n}(q)$
- Hence only consider the even-dimensional case:
- Quasideterminant $\nu: \mathrm{GO}_{2 n}^{\epsilon}(q) \rightarrow\{ \pm 1\} \cong C_{2}$:
- write $g \in \mathrm{GO}_{2 n}^{\epsilon}(q)$ as a product of orthogonal transvections $\circ t_{w}: V \rightarrow V: v \mapsto v+f(v, w) \cdot w$, where $w \in V$, \circ and let $\nu\left(t_{w}\right):=-1$.
- KAntor: Then $\nu(g)$ is the sign of the permutation induced by g on the set of maximal isotropic subspaces.
- Let $\Omega_{2 n}^{\epsilon}(q):=\operatorname{ker}(\nu)$.
- Then the order formulae and the simplicity proof are still valid; - the latter with the exceptions $\mathrm{GO}_{2}^{\epsilon}(q) \cong D_{2(q-\epsilon)}$, and $\mathrm{P}_{4}^{+}(q) \cong$ $\mathrm{PSL}_{2}(q) \times \mathrm{PSL}_{2}(q)$, and $\mathrm{P} \Omega_{5}(2) \cong \mathrm{Sp}_{4}(2) \cong \mathcal{S}_{6}$.
- Note: For arbitrary q we have, using Klein correspondence,
- $\mathrm{GO}_{2}^{\epsilon}(q) \cong D_{2(q-\epsilon)}, \mathrm{P} \Omega_{3}(q) \cong \mathrm{PSL}_{2}(q)$,
- $\mathrm{P}_{4}^{+}(q) \cong \mathrm{PSL}_{2}(q) \times \mathrm{PSL}_{2}(q), \mathrm{P}_{4}^{-}(q) \cong \mathrm{PSL}_{2}\left(q^{2}\right)$,
- $\mathrm{P}_{5}(q) \cong \mathrm{PSp}_{4}(q), \mathrm{P}_{6}^{+}(q) \cong \mathrm{PSL}_{4}(q), \mathrm{P}_{6}^{-}(q) \cong \mathrm{PSU}_{4}(q)$.

Structure of classical groups

- Subgroups:

- groups with $B N$-pairs,
- tori, Borels, and parabolics described in terms of geometry;
- entailing a generic 'Iwasawa type' simplicity argument.
- Moreover:

- Automorphisms:

- diagonal, field, and graph automorphisms

- Covers:

- generic p^{\prime}-fold covers, and finitely many p-power-fold exceptions
- Maximal subgroups:
- Dynkin [1952]: complex classical groups
- AsCHBACHER [1984]: finite classical groups
- Kleidman, Liebeck [1990]: explicit lists

Modern view of classical groups

- Linear and classical groups: described in terms of - geometry,
- Lie theory,
\circ algebraic groups.
- Example: $\mathrm{SL}_{n}(q)$ is described by
- its natural faithful action on the n-dimensional space \mathbb{F}_{q}^{n};
- the conjugation action on the $\left(n^{2}-1\right)$-dimensional Lie algebra

$$
\mathfrak{s l}_{n}(q):=\left\{A \in \mathbb{F}_{q}^{n \times n} ; \operatorname{Tr}(A)=0\right\},
$$

yielding an action of $\operatorname{PSL}_{n}(q)=\operatorname{SL}_{n}(q) / Z\left(\mathrm{SL}_{n}(q)\right)$;
\circ polynomial equations defining the algebraic group

$$
\mathrm{SL}_{n}(\overline{\mathbb{F}}):=\left\{A \in \overline{\mathbb{F}}^{n \times n} ; \operatorname{det}(A)=1\right\},
$$

where $\mathbb{F}_{q} \subseteq \overline{\mathbb{F}}$ is an algebraic closure with Frobenius morphism

$$
F:=\varphi_{q}: \overline{\mathbb{F}} \rightarrow \overline{\mathbb{F}}: \lambda \mapsto \lambda^{q},
$$

yielding the set of fixed points

$$
\mathrm{SL}_{n}(q)=\mathrm{SL}_{n}(\overline{\mathbb{F}})^{F}:=\left\{g \in \mathrm{SL}_{n}(\overline{\mathbb{F}}) ; F(g)=g\right\} .
$$

- Starting point: Classification of simple complex Lie algebras - by Dynkin types $A_{n}, B_{n}, C_{n}, D_{n}, E_{6}, E_{7}, E_{8}, F_{4}, G_{2}$.

Chevalley groups

- Chevalley [1955]:
- integral forms of simple complex Lie algebras
- yield simple Lie algebras L over any field F;
- consider adjoint representation

$$
\operatorname{ad}: L \rightarrow \operatorname{End}_{F}(L): x \mapsto(L \rightarrow L: y \mapsto[x, y]),
$$

\circ and integrate suitable roots $x \in L$,

- obtain one-parameter subgroups of $\operatorname{Aut}(L)$, given by

$$
\exp (\lambda \cdot \operatorname{ad}(x)):=\sum_{i \geq 0} \frac{\lambda^{i}}{i!} \cdot \operatorname{ad}(x)^{i} \in \mathrm{GL}_{F}(L) .
$$

- Chevalley group

$$
G_{n}(F):=\langle\exp (\lambda \cdot \operatorname{ad}(x)) ; x \in L \text { root }, \lambda \in F\rangle \leq \operatorname{Aut}(L)
$$

- This uniformly yields finite field analoga of - the classical Lie groups,
- and the exceptional groups $G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$.
- $G_{n}(F)$ is a group with $B N$-pair.

Chevalley group of type A_{1}

- $\mathfrak{s l}_{2}(F)=\langle f, h, e\rangle_{F}$, with Chevalley basis

$$
f:=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad h:=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad e:=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] .
$$

- Adjoint action of e is nilpotent:

$$
\operatorname{ad}(e)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & -2 \\
0 & 0 & 0
\end{array}\right], \quad \operatorname{ad}(e)^{2}=\left[\begin{array}{ccc}
0 & 0 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \operatorname{ad}(e)^{3}=0 \cdot E_{3}
$$

- Integration $\lambda \cdot \operatorname{ad}(e)$ and $\lambda \cdot \operatorname{ad}(f)$ is well-defined:

$$
\begin{gathered}
\exp (\lambda \cdot \operatorname{ad}(e))=E_{3}+\lambda \cdot \operatorname{ad}(e)+\frac{\lambda^{2}}{2} \cdot \operatorname{ad}(e)^{2}=\left[\begin{array}{ccc}
1 & \lambda & -\lambda^{2} \\
0 & 1 & -2 \lambda \\
0 & 0 & 1
\end{array}\right] \\
\exp (\lambda \cdot \operatorname{ad}(f))=E_{3}+\lambda \cdot \operatorname{ad}(f)+\frac{\lambda^{2}}{2} \cdot \operatorname{ad}(f)^{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 \lambda & 1 & 0 \\
-\lambda^{2} & -\lambda & 1
\end{array}\right]
\end{gathered}
$$

- $\mathrm{SL}_{2}(F)=\langle x(\lambda), y(\lambda) ; \lambda \in F\rangle$, with transvections

$$
x(\lambda):=\left[\begin{array}{ll}
1 & \lambda \\
0 & 1
\end{array}\right], \quad y(\lambda):=\left[\begin{array}{ll}
1 & 0 \\
\lambda & 1
\end{array}\right] .
$$

- Adjoint action of $\mathrm{SL}_{2}(F)$ on $\mathfrak{s l}_{2}(F)$ is conjugation:

$$
\begin{aligned}
& x(\lambda): f \mapsto f+\lambda h-\lambda^{2} e, \quad h \mapsto h-2 \lambda e, \quad e \mapsto e ; \\
& y(\lambda): f \mapsto f, \quad h \mapsto h+2 \lambda e, \quad e \mapsto \lambda^{2} f-\lambda h+e
\end{aligned}
$$

- Thus we have $\mathrm{SL}_{2}(F) \rightarrow A_{1}(F)$, implying

$$
A_{1}(F):=\langle\exp (\lambda \cdot \operatorname{ad}(e)), \exp (\lambda \cdot \operatorname{ad}(f)) ; \lambda \in F\rangle \cong \mathrm{PSL}_{2}(F)
$$

Twisted groups

- Generalise the construction of unitary groups from linear groups, - as fixed point sets under suitable graph automorphisms:
- completes the list of classical groups;
- yields twisted exceptional groups
${ }^{\circ}{ }^{2} E_{6}\left(q^{2}\right)$ and ${ }^{3} D_{4}\left(q^{3}\right)$ [STEINBERG, 1959];
- yields 'sporadic' twisted exceptional groups
- ${ }^{2} B_{2}\left(2^{2 f+1}\right)$ [SuzUKI, 1962],
- ${ }^{2} G_{2}\left(3^{2 f+1}\right)$ [REE, 1961],
- ${ }^{2} F_{4}\left(2^{2 f+1}\right)$ [REE, Tits, 1961/1964].
- These also are groups with $B N$-pair.
- Are there geometrical interpretations of these groups?
- Mostly there are, elucidating more of the group structure;
- and leading to natural representations
o smaller than the adjoint representations.
- For $E_{7}(q)$ the smallest representation has dimension 56, - while the adjoint representation has dimension 133.
- For $E_{8}(q)$ the adjoint representation is smallest, of dimension 248 .

Classical Dynkin types

- Six series of classical groups:

- Classical Chevalley groups:

- Type $A_{n}: \operatorname{PSL}_{n+1}(q)$, for $n \geq 1$

- Type $B_{n}: \Omega_{2 n+1}(q)$, for $n \geq 3$
- Type $C_{n}: \operatorname{PSp}_{2 n}(q)$, for $n \geq 2$
- Type $D_{n}: \mathrm{P}_{2 n}^{+}(q)$, for $n \geq 4$

- Twisted classical groups:
- Type ${ }^{2} A_{n}: \operatorname{PSU}_{n+1}(q)$, for $n \geq 2$

- Type ${ }^{2} D_{n}: ~ \mathrm{P} \Omega_{2 n}^{-}(q)$, for $n \geq 4$

Exceptional Dynkin types

- Ten series of exceptional groups:
- Exceptional Chevalley groups:
- Type E_{n}, for $n \in\{6,7,8\}$
- Type F_{4}
- Type G_{2}

- Twisted exceptional groups:
- Type ${ }^{2} E_{6}\left(q^{2}\right)$

- Type ${ }^{3} D_{4}\left(q^{3}\right)$
- Type ${ }^{2} B_{2}\left(2^{2 f+1}\right)$
- Type ${ }^{2} G_{2}\left(3^{2 f+1}\right)$
- Type ${ }^{2} F_{4}\left(2^{2 f+1}\right)$

Suzuki groups

- Let $q:=2^{2 f+1}$ for $f \in \mathbb{N}_{0}$.
- Consider the exceptional isomorphism $\mathcal{S}_{6} \cong \operatorname{Sp}_{4}(2)=B_{2}(2)$:
- Natural permutation representation of \mathcal{S}_{6} over $F:=\mathbb{F}_{q}$
- has \mathcal{S}_{6}-invariant form $f\left(\left[x_{1}, \ldots, x_{6}\right],\left[y_{1}, \ldots, y_{6}\right]\right):=\sum_{i=1}^{6} x_{i} y_{i}$.
- Then $V:=\langle v\rangle_{F}^{\perp} /\langle v\rangle_{F}$, where $v:=[1, \ldots, 1]$,
- has \mathcal{S}_{6}-invariant non-degenerate alternating form,
- hence we have $\mathcal{S}_{6} \leq \operatorname{Sp}_{4}(q)$; now compare orders for $q=2$.
- V has hyperbolic basis

$$
\begin{aligned}
& e_{1}:=[1,1,0,0,0,0], \quad f_{1}:=[0,1,1,0,0,0] \\
& e_{2}:=[0,0,0,1,1,0], f_{2}:=[0,0,0,0,1,1] .
\end{aligned}
$$

- Exterior square $V^{\prime}:=\Lambda^{2}(V)$ has
- non-degenerate symplectic form f^{\prime} (Klein correspondence)
- given by $f^{\prime}(a \wedge b, c \wedge d)=1$ if and only if $\operatorname{dim}\left(\langle a, b, c, d\rangle_{F}\right)=4$.
- $\left\langle v^{\prime}\right\rangle \frac{\perp}{F} /\left\langle v^{\prime}\right\rangle_{F}$, where $v^{\prime}:=e_{1} \wedge f_{1}+e_{2} \wedge f_{2}$, has hyperbolic basis

$$
e_{1}^{\prime}:=e_{1} \wedge e_{2}, \quad f_{1}^{\prime}:=f_{1} \wedge f_{2}, \quad e_{2}^{\prime}:=e_{1} \wedge f_{2}, \quad f_{2}^{\prime}:=e_{2} \wedge f_{1}
$$

- $\gamma: e_{i} \mapsto e_{i}^{\prime}, f_{i} \mapsto f_{i}^{\prime}$ defines a graph automorphism of $\operatorname{Sp}_{4}(q)$
o such that $\gamma^{2}=\varphi_{2}$, hence $\left(\gamma \varphi_{2}^{f}\right)^{2}=\varphi_{2}^{1+2 f}=\mathrm{id}$.
- Suzuki group $S z(q):={ }^{2} B_{2}(q):=C_{\operatorname{Sp}_{4}(q)}\left(\gamma \varphi_{2}^{f}\right)$ [ONO, 1962]
- Note: γ extends $\mathcal{A}_{6}<\mathcal{S}_{6} \cong \operatorname{Sp}_{4}(2)$ to $\mathrm{PGL}_{2}(9) \nsubseteq \mathcal{S}_{6}$.

Suzuki groups, II

- $S z(q)$ acts 2-transitively on the Tits oval [Suzuki, 1962], - a certain set of $q^{2}+1$ many 1 -dimensional subspaces of V, - with point stabiliser $q^{1+1}: C_{q-1}$,
- whose central involutions are commutators and generate $S z(q)$.
- This yields $|S z(q)|=\left(q^{2}+1\right) q^{2}(q-1)$,
- and Iwasawa's Criterion implies simplicity,
- with the exception $S z(2) \cong 5: 4$.
- Automorphisms: only field automorphisms
- Covers: generically trivial,
- with the exception $2^{2} . S z(8)$.
- Maximal subgroups, for $f \geq 1$: [Suzuki]
- $q^{1+1}: C_{q-1}$,
- $D_{2(q-1)}$,
- $C_{q+\sqrt{2 q}+1}: 4$,
- $C_{q-\sqrt{2 q}+1}: 4$,
- $S z\left(q^{\prime}\right)$, where $q=\left(q^{\prime}\right)^{r}$ for r a prime and $q^{\prime} \neq 2$.
- Note: If $2 f+1$ is a prime, $S z(q)$ is a minimal simple group.

Octonion algebras

- Let F be a field such that $\operatorname{char}(F) \neq 2$.
- Hamilton quaternions $\mathbb{H}(F)=\langle 1, i, j, k\rangle_{F}[1843]$
- are obtained from F by adjoining three orthogonal $\sqrt{-1}$'s,
- such that $i \cdot j=k, j \cdot k=i, k \cdot i=j$.
- $\mathbb{H}(F)$ is a skew-field such that $\operatorname{dim}_{F}(\mathbb{H}(F))=4$.
- Letting $\mathbb{H}(F)^{\prime}:=\langle i, j, k\rangle_{F}=\langle 1\rangle_{F}^{\perp}$,
- with respect to the natural symmetric form,
- we have $\operatorname{dim}_{F}\left(\mathbb{H}(F)^{\prime}\right)=3$,
- yielding $\operatorname{Aut}(\mathbb{H}(F))=\operatorname{Aut}\left(\mathbb{H}(F)^{\prime}\right) \cong \mathrm{SO}_{3}(F) \cong \mathrm{PGL}_{2}(F)$.
- Cayley octonions $\mathbb{O}(F)$ [Cayley, Graves, 1845/1843] \circ are obtained from F by adjoining seven orthogonal $\sqrt{-1}$'s
$\circ\left\{i_{0}, \ldots, i_{6}\right\}$, where any triple $\left[i_{t}, i_{t+1}, i_{t+3}\right]$
- fulfills the multiplication rules of $i, j, k \in \mathbb{H}(F)$.
- $\mathbb{O}(F)$ is a non-associative algebra such that $\operatorname{dim}_{F}(\mathbb{O}(F))=8$.
- Letting $\mathbb{O}(F)^{\prime}:=\left\langle i_{0}, \ldots, i_{6}\right\rangle_{F}=\langle 1\rangle_{F}^{\perp}$,
- with respect to the natural symmetric form,
- we have $\operatorname{dim}_{F}\left(\mathbb{O}(F)^{\prime}\right)=7$.
- Replacing by a suitable form yields a characteristic-free definition:

Octonion algebras, II

- Chevalley group

$$
G_{2}(F) \cong \operatorname{Aut}(\mathbb{O}(F))=\operatorname{Aut}\left(\mathbb{O}(F)^{\prime}\right)<\mathrm{SO}_{7}(F)
$$

- The geometric approach yields, for example,

$$
\left|G_{2}(q)\right|=q^{6}\left(q^{6}-1\right)\left(q^{2}-1\right) ;
$$

- $G_{2}(F)$ has a 7-dimensional natural representation,
- while the adjoint representation has dimension 14 .
- Exception to simplicity: $G_{2}(2) \cong \operatorname{PSU}_{3}(3): 2$
- Small Ree group ${ }^{2} G_{2}\left(3^{2 f+1}\right)<G_{2}\left(3^{2 f+1}\right)$:
- fixed points under a suitable graph automorphism, - similar to $S z\left(2^{2 f+1}\right) \cong{ }^{2} B_{2}\left(2^{2 f+1}\right)<B_{2}\left(2^{2 f+1}\right) \cong \operatorname{Sp}_{4}\left(2^{2 f+1}\right)$.
- Exception to simplicity: ${ }^{2} G_{2}(3) \cong \operatorname{PSL}_{2}(8): 3$
- Steinberg triality group $G_{2}(q)<{ }^{3} D_{4}\left(q^{3}\right)<\mathrm{P} \Omega_{8}^{+}\left(q^{3}\right)$:
- automorphism group of twisted octonions.
- Note: ${ }^{3} D_{4}\left(q^{3}\right)<D_{4}\left(q^{3}\right) \cong \mathrm{P} \Omega_{8}^{+}\left(q^{3}\right)$ fixed points under

- Steinberg's triality automorphism,

- which hence can be understood in terms of octonions.

Albert algebras

- Let F be a finite field such that $\operatorname{char}(F) \notin\{2,3\}$.
- Jordan product $A \circ B:=\frac{1}{2}(A B+B A)$ on an associative algebra \circ is commutative, non-associative, and fufills the Jordan identity

$$
((A \circ A) \circ B) \circ A=(A \circ A) \circ(B \circ A)
$$

- A Jordan algebra is a commutative, non-associative algebra fullfing the Jordan identity.
- Any simple Jordan F-algebra arises from an associative F-algebra,
- except the Albert algebra

$$
\mathbb{A}(F):=\left\{A \in \mathbb{O}(F)^{3 \times 3} ; A^{\operatorname{tr}}=\bar{A}\right\}
$$

- where ${ }^{-}: \mathbb{O}(F) \rightarrow \mathbb{O}(F)$ denotes octonion conjugation;
- we have $\operatorname{dim}_{F}(\mathbb{A}(F))=27$.
- Letting $\mathbb{A}(F)^{\prime}:=\{A \in \mathbb{A}(F) ; \operatorname{Tr}(A)=0\}=\left\langle E_{3}\right\rangle^{\perp}$,
- with respect to the natural symmetric form,
- we have $\operatorname{dim}_{F}\left(\mathbb{A}(F)^{\prime}\right)=26$.
- Replacing by a suitable form yields a characteristic-free definition:

Albert algebras, II

- Chevalley group $F_{4}(q) \cong \operatorname{Aut}\left(\mathbb{A}\left(\mathbb{F}_{q}\right)\right)$:
- has a 26-dimensional natural representation,
- while the adjoint representation has dimension 52 .
- Large Ree group ${ }^{2} F_{4}\left(2^{2 f+1}\right)<F_{4}\left(2^{2 f+1}\right)$:
- fixed points under a suitable graph automorphism;
- similar to ${ }^{2} G_{2}\left(3^{2 f+1}\right)<G_{2}\left(3^{2 f+1}\right)$.
- Exception to simplicity: Tits group ${ }^{2} F_{4}(2)^{\prime}$
- Chevalley group $E_{6}(q)$: [Dickson, 1901]
- leaves invariant a cubic 'determinant' form on $\mathbb{A}\left(\mathbb{F}_{q}\right)$;
- $E_{6}(q)$ has a 27-dimensional natural representation,
- while the adjoint representation has dimension 78 .
- Steinberg group ${ }^{2} E_{6}\left(q^{2}\right)<E_{6}(q)$:
- fixed points under a suitable graph automorphism;
- twisting the symmetric form on $\mathbb{A}\left(\mathbb{F}_{q}\right)$ yields a hermitian form,
- similar to $\mathrm{PSU}_{n}(q)<\mathrm{PSL}_{n}(q)$.

Golay codes

- A Steiner system $S(t, k, v)$ on the set $\{1, \ldots, v\}$

○ is a set of k-subsets, called blocks, such that

- any subset of size t is contained in precisely one block.
- Hence there are $|S(t, k, v)|=\binom{v}{t} /\binom{k}{t}$ blocks.
- Example: The finite projective plane of order q
- is a Steiner system $S\left(2, q+1, q^{2}+q+1\right)$,
- the blocks being the projective lines.
- Theorem: There is a unique Steiner system $S(5,8,24)$.
- Existence: Three successive one-point extensions of $S(2,5,21)$
- coming from the projective plane of order 4 [WITT, 1938];
- or: the blocks are the 759 words of weight 8 of the
o self-dual extended binary Golay $[24,12,8]_{2}$-code $\mathcal{G}_{24}<\mathbb{F}_{2}^{24}$.
- Words of weight 8 are called octads [Todd, 1966].
- Computational combinatorial tool: [Curtis, 1976]
- Miracle Octad Generator (MOG)
- Weight enumerator $T^{24}+759 \cdot T^{16}+2576 \cdot T^{12}+759 \cdot T^{8}+1$, - the 2576 words of weight 12 are called dodecads.

Golay codes, II

- Given a dodecad,
- $S(5,8,24)$ induces a Steiner system $S(5,6,12)$ on it,
- being unique up to isomorphism,
- having 132 blocks, called hexads.
- Attaching signs, the blocks yield the words of weight 6 of the o self-dual extended ternary Golay $[12,6,6]_{3}$-code $\mathcal{G}_{12}<\mathbb{F}_{3}^{12}$;
- weight enumerator $2 \cdot\left(12 \cdot T^{12}+220 \cdot T^{9}+132 \cdot T^{6}+1\right)$.
- Any word of weight 4 determines a coset in the \circ Golay cocode (Todd module) $\mathbb{F}_{2}^{24} / \mathcal{G}_{24}$,
- where 6 mutually disjoint words determine the same coset.
- Hence any word of weight 4 yields a sextet,
- a partition of $\{1, \ldots, 24\}$ into 6 subsets of size 4 ,
- the union of any two of which is an octad;
- there are $\frac{1}{6} \cdot\binom{24}{4}=1771$ sextets.

Mathieu groups [1861/1873]

- Mathieu group $M_{24}:=\operatorname{Aut}(S(5,8,24)) \cong \operatorname{Aut}\left(\mathcal{G}_{24}\right)$, - acts 5 -transitively on $\{1, \ldots, 24\}$:
- Mathieu group $M_{23}:=\operatorname{Stab}_{M_{24}}(1) \cong \operatorname{Aut}\left(\mathcal{G}_{23}\right)$,
- where $\mathcal{G}_{23}<\mathbb{F}_{2}^{23}$ is the perfect binary Golay $[23,12,7]_{2}$-code;
- Mathieu group $M_{22}:=\operatorname{Stab}_{M_{24}}(1,2)$;
- $M_{21}:=\operatorname{Stab}_{M_{24}}(1,2,3) \cong \operatorname{PSL}_{3}(4)$, in natural 2-transitive action.
- $\left|M_{24}\right|=24 \cdot 23 \cdot 22 \cdot 21 \cdot 20 \cdot 48=2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 23$
- Simplicity of M_{24} : Apply Iwasawa's Criterion
- to the transitive action on the sextets, with stabiliser $2^{6}:\left(3 \cdot \mathcal{S}_{6}\right)$.
- M_{24} acts transitive on the dodecads, with point stabiliser
- Mathieu group $M_{12} \cong \operatorname{Aut}(S(5,6,12)), \operatorname{Aut}\left(\mathcal{G}_{12}\right) \cong 2 . M_{12}$;
- $\left|M_{12}\right|=\frac{\left|M_{24}\right|}{2576}=95040=2^{6} \cdot 3^{3} \cdot 5 \cdot 11$.
- M_{12} acts sharply 5 -transivitely on $\{1, \ldots, 12\}$:
- Mathieu group $M_{11}:=\operatorname{Stab}_{M_{12}}(1), \operatorname{Aut}\left(\mathcal{G}_{11}\right) \cong 2 \times M_{11}$,
- where $\mathcal{G}_{11}<\mathbb{F}_{3}^{11}$ is the perfect ternary Golay $[11,6,5]_{3}$-code;
- $M_{10}:=\operatorname{Stab}_{M_{12}}(1,2) \cong \mathcal{A}_{6} .2$,
- where $\operatorname{Aut}\left(\mathcal{A}_{6}\right) \cong \mathcal{A}_{6} .2^{2}$ and $\mathcal{S}_{6} \neq \mathcal{A}_{6} .2 \neq \operatorname{PGL}_{2}(9)$.

Leech lattice

- $2^{12}: M_{24}$ afforded by the Golay code \mathcal{G}_{24},
- acts monomially on
- Leech lattice $\mathcal{L}:$ [Leech, Witt, 1967/1940]
- the set of all $x:=\left[x_{1}, \ldots, x_{24}\right] \in \mathbb{Z}^{24}$ such that
- $x_{i} \equiv \frac{1}{4} \sum_{i=1}^{24} x_{i} \equiv m(\bmod 2)$, for some m,
- and $\left\{i ; x_{i} \equiv k(\bmod 4)\right\} \in \mathcal{G}_{24}$, for each k;
- with scalar product $\langle x, y\rangle:=\frac{1}{8} \cdot \sum_{i=1}^{24} x_{i} y_{i} \in \mathbb{Z}$.
- Theorem: \mathcal{L} is the unique unimodular even lattice in \mathbb{R}^{24} - without roots, that is vectors of norm 2 .
- $\mathcal{L}_{n}:=\{x \in \mathcal{L} ;\langle x, x\rangle=n\}$, for $n \in 2 \mathbb{N}_{0}$.
- Weight function $\Theta_{\mathcal{L}}:=\sum_{n \in \mathbb{N}_{0}}\left|\mathcal{L}_{2 n}\right| \cdot T^{n} \in \mathbb{Z}[[T]]$:

$$
\Theta_{\mathcal{L}}=1+196560 \cdot T^{2}+16773120 \cdot T^{3}+398034000 \cdot T^{4}+\cdots
$$

- \mathcal{L}_{8} falls into classes of 48 mutually orthogonal vectors, - called coordinate frames,
- hence there are $\frac{398034000}{48}=8292375$ coordinate frames.

Conway groups [1969]

- Conway group 2.Co $o_{1}:=\operatorname{Aut}(\mathcal{L})$
- $\left|C o_{1}\right|=\frac{1}{2} \cdot 8292375 \cdot 2^{12} \cdot\left|M_{24}\right|=2^{21} \cdot 3^{9} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 23$
- Simplicity: Apply Iwasawa's Criterion to
- the transitive action on coordinate frames, with stabiliser $2^{12}: M_{24}$.
- Smallest representation of dimension 24 is globally irreducible.
- Sublattice groups: 2.Co o_{1} acts transitively on \mathcal{L}_{4} and \mathcal{L}_{6}.
- Conway group $C o_{2}:=\operatorname{Stab}_{2 . C o_{1}}(v)$ where $v \in \mathcal{L}_{4}$;
- Conway group $C o_{3}:=\operatorname{Stab}_{2 . C o_{1}}(w)$ where $w \in \mathcal{L}_{6}$.
- 2.Co o_{1} acts transitively on $\left\{\left[v, v^{\prime}\right] \in \mathcal{L}_{4} \times \mathcal{L}_{4} ; v+v^{\prime} \in \mathcal{L}_{6}\right\}$,
- McLaughlin group [1969] $M c L:=\operatorname{Stab}_{2 . C o_{1}}\left(v, v^{\prime}\right)$.
$\circ 2 . C o_{1}$ acts transitively on $\left\{\left[w, w^{\prime}\right] \in \mathcal{L}_{6} \times \mathcal{L}_{6} ; w+w^{\prime} \in \mathcal{L}_{4}\right\}$,
- Higman-Sims group [1968] $H S:=\operatorname{Stab}_{2 . C o_{1}}\left(w, w^{\prime}\right)$.
- Higman-Sims graph on $\left\{z \in \mathcal{L}_{4},\langle z, w\rangle=3,\left\langle z, w^{\prime}\right\rangle=-3\right\}$, - vertices z, z^{\prime} being adjacent if $\left\langle z, z^{\prime}\right\rangle=1$,
- size $n=100$, regular of valency $k=22$;
- $H S$ primitive of rank 3, with stabiliser M_{22}.

Suzuki chain

- Let $3 D \in C o_{1}$ [AtLas]
- have order 3 and centraliser $C_{C o s_{1}}(3 D) \cong 3 \times \mathcal{A}_{9}$.
- Letting

$$
\mathcal{A}_{9}>\mathcal{A}_{8}>\mathcal{A}_{7}>\mathcal{A}_{6}>\mathcal{A}_{5}>\mathcal{A}_{4}>\mathcal{A}_{3}>\mathcal{A}_{2}
$$

- yields corresponding centralisers $C_{C o_{1}}\left(\mathcal{A}_{i}\right)$

$$
\mathcal{S}_{3}<\mathcal{S}_{4}<\operatorname{PSL}_{3}(2)<\operatorname{PSU}_{3}(3)<J_{2}<G_{2}(4)<3 . S u z<C o_{1} .
$$

- Suzuki group [1969] Suz
- Hall-Janko group [1968] J_{2}
- has two classes of involutions and $C_{J_{2}}(2 A) \cong 2_{-}^{1+4}: \mathcal{A}_{5}$.
- 6.Suz <2. Co $_{1}$ induces a complex structure $\mathcal{L}_{\mathbb{C}}$ on \mathcal{L}, - such that $6 . S u z=\operatorname{Aut}\left(\mathcal{L}_{\mathbb{C}}\right)$ acts irreducibly.
- $2 . \mathcal{A}_{5}<\mathbb{H}(\mathbb{R})$ binary icosahedral group [Hamilton, 1857], - hence $2 . \mathcal{A}_{5} \circ 2 . J_{2}<2 . \mathcal{A}_{4} \circ 2 . G_{2}(4)<2 . C o_{1}$ - induces a quaternionic structure $\mathcal{L}_{\mathbb{H}}$ on \mathcal{L}, - such that $2 . J_{2}<2 . G_{2}(4)=\operatorname{Aut}\left(\mathcal{L}_{\text {HII }}\right)$ act irreducibly; - note: this yields the exceptional 2 -fold cover 2.G $G_{2}(4)$.

Fischer groups

- A finite group G generated by
- a conjugacy class of involutions, called 3-transpositions,
- such that the product of two transpositions has order at most 3,
- $G^{\prime}=G^{\prime \prime}$, and any normal 2- or 3-subgroup is central,
- is called a 3-transposition group.
- Theorem: [Fischer, 1968/1971]

Let G be a 3-transposition group. Then $G / Z(G)$ is isomorphic to:

- $\mathcal{S}_{n} ; \mathrm{PSU}_{n}\left(2^{2}\right), \mathrm{Sp}_{2 n}(2), \mathrm{GO}_{2 n}^{\epsilon}(2) ; \mathrm{P}_{2 n}^{\epsilon}(3): 2, \Omega_{2 n+1}(3), \mathrm{SO}_{2 n+1}(3)$; - or one of the Fischer groups $F i_{22}, F i_{23}, F i_{24}^{\prime} \cdot 2$.
- Key tool: Transposition graph Δ,
- with vertices corresponding to the 3-transpositions,
- being adjacent if the 3-transpositions commute.
- Hence Δ is regular, and $G \leq \operatorname{Aut}(\Delta)$ is vertex-transitive.
- $F i_{22}: n=3510, k=693, H \cong 2 . \operatorname{PSU}_{6}(2)$;
- $F i_{23}: n=31671, k=3510, H \cong 2 . F i_{22}$;
- $F i_{24}^{\prime} \cdot 2: n=306936, k=31671, H \cong 2 \times F i_{23}$
- Simplicity: Apply Iwasawa's Criterion
o to the above primitive rank 3 actions on the vertices of Δ.

The Monster

- 3-transposition groups $2^{2} . \operatorname{PSU}_{6}\left(2^{2}\right)<2 . F i_{22}<F i_{23}<F i_{24}^{\prime} .2$
o embedding 2.Fi $i_{22}<2^{2} .{ }^{2} E_{6}\left(2^{2}\right): 2$ into a 4 -transposition group
- $2^{11} . M_{24}<F i_{24}^{\prime}$ Todd action, $2^{11}: M_{24}<C o_{1}$ Golay action
- Fischer, Conway [1968]:

$$
2^{2} \cdot{ }^{2} E_{6}\left(2^{2}\right): 2 \stackrel{?}{<} 2 . B \stackrel{?}{<} M \stackrel{?}{<} ?
$$

- Fischer-Griess Monster (Friendly Giant) M [1973]: - a 6-transposition group of order

808017424794512875886459904961710757005754368000000000

$$
\begin{gathered}
=2^{46} \cdot 3^{20} \cdot 5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \\
\sim 8 \cdot 10^{53}
\end{gathered}
$$

- Smallest representation V has dimension 196883,
- carrying structure of non-associative Griess algebra [1980].
- Construction needs a thorough analysis of \mathcal{L} and \mathcal{G}_{24}.
- The Leech lattice and Fischer groups are involved in M.

Monstrous Moonshine

- McKay, Thompson [1979]:
- Fourier expansion of the elliptic modular j-function
$j-744=q^{-1}+196884 \cdot q+21493760 \cdot q^{2}+864299970 \cdot q^{3}+\cdots$,
- has coefficients being character degrees of M.
- Moonshine Conjectures: [Conway, Norton, 1979]
- There is an infinite-dimensional graded M-module
- inducing a relation between conjugacy classes of M
- and modular functions of genus 0 .
- Frenkel, Lepowsky, Meurman [1988]:
- construction of moonshine module,
- using vertex operators from conformal field theory.
- Borcherds [1992]:
- M-invariant vertex algebra on moonshine module,
- proving the Moonshine Conjectures.

How to construct a Monster?

[Griess, Conway, 1980/1985]

- $G_{1}:=C_{M}(2 B) \cong 2_{+}^{1+24} . C o_{1}$,
- where $2^{24} \cong \mathcal{L} / 2 \mathcal{L}$ and $G_{1} / Z\left(G_{1}\right) \cong 2^{24}: C o_{1}$.
- Let \widetilde{G}_{1} be the universal cover of G_{1}, then $Z\left(\widetilde{G}_{1}\right) \cong V_{4}$,
- giving rise to groups $G_{1}^{s} \not \not G_{1}^{t} \cong G_{1}$ of shape 2_{+}^{1+24}. $C o_{1}$,
- with smallest faithful representations of dimension 2^{12} and $24 \cdot 2^{12}$.
- $\left.V\right|_{G_{1}} \cong 98304 \oplus 98280 \oplus 299$, where
- $98304 \cong 4096 \otimes 24=2^{12} \otimes \mathcal{L}$, acted on by G_{1}^{s} and $2 . C o_{1}$;
$\left.\circ 2^{24}\right|_{C o_{2}}=[1,22,1]$ uniserial, $2^{24}: C o_{2}$ having linear character 1^{-}, $98280 \cong\left(1_{2^{24} . C o_{2}}^{-}\right) \uparrow^{2^{24} . C o_{1}}$ monomial action;
- $1 \oplus 299 \cong S^{2}(\mathcal{L})<\mathcal{L} \otimes \mathcal{L}$, acted on by $C o_{1}$.
- Restrict to $G_{1}>G_{12} \cong 2_{+}^{1+24}$. $\left(2^{11}: M_{24}\right) \cong 2^{2+11+22} .\left(2 \times M_{24}\right)$,
- triality symmetry yields $G_{12}<G_{2} \cong 2^{2+11+22}$. $\left(\mathcal{S}_{3} \times M_{24}\right)$.
- $\left.V\right|_{G_{2}} \cong 147456 \oplus 48576 \oplus 828 \oplus 23$
$\left.\circ 98304\right|_{G_{12}^{\prime}} \cong 49152 \oplus 49152$ and $\left.552\right|_{G_{12}^{\prime}} \cong 276 \oplus 276$

G_{1}	98304		98280			299
	\downarrow		\downarrow			\downarrow
G_{12}	98304	49152	48576	552	276	23
	\uparrow		\uparrow			\uparrow
G_{2}	147456		48576		828	23

Monstrous groups

- $C_{M}(2 B) \cong 2_{+}^{1+24} . C o_{1}$
- $C_{M}(3 A) \cong 3 . F i_{24}^{\prime}$
- Baby Monster B: [Fischer, 1973]
- a 4 -transposition group, arising as $C_{M}(2 A) \cong 2 . B$.
- Smallest representation has dimension 4371,
\circ is irreducible except in characteristic 2,
- and contains a vector with stabiliser $2 .{ }^{2} E_{6}\left(2^{2}\right): 2$, yielding
o smallest permutation representation on 13571955000 points
- [Leon, Sims, 1980].
- Thompson group [1973] Th:
- $3 C \in M$ preimage of $3 D$ with respect to $2_{+}^{1+24} . C o_{1} \rightarrow C o_{1}$
- gives rise to $C_{M}(3 C) \cong 3 \times T h$.
- $C_{T h}(2 A) \cong 2_{+}^{1+8} \cdot \mathcal{A}_{9}$
- Smallest representation has dimension 248,
\circ is globally irreducible,
- and yields an embedding $T h<E_{8}(3)$.

Monstrous groups, II

- Harada-Norton group [1973] $H N$:

$\circ 5 A \in M$ preimage of $5 B$ with respect to $2_{+}^{1+24} . \mathrm{Co}_{1} \rightarrow \mathrm{Co}_{1}$

- gives rise to $C_{M}(5 A) \cong 5 \times H N$.
- $C_{H N}(2 B) \cong 2_{+}^{1+8} .\left(\mathcal{A}_{5} \times \mathcal{A}_{5}\right) .2$
- Smallest representation has dimension 133 over $\mathbb{Q}[\sqrt{5}]$,
\circ is irreducible except in characteristic 2 ,
- and does not yield an embedding into $E_{7}(5)$.
- Held group [1968] He:
- arises as $C_{M}(7 A) \cong 7 \times H e$.
- Any simple group having an involution centraliser $2^{1+6}: \mathrm{PSL}_{3}(2)$ ○ is isomorphic to $\operatorname{PSL}_{5}(2), M_{24}$, or He .

Pariahs

- There are just six sporadic groups not involved in M.
- WILSON: 'The behaviour of these six groups is so bizarre that any attempt to describe them ends up looking like a disconnected sequence of unrelated facts - it is simply the nature of the subject.'
- Janko group [1965] J_{1} :
- $C_{J_{1}}(2 A) \cong 2 \times \mathcal{A}_{5}$;
- $J_{1}<G_{2}(11)$,
- $\left|J_{1}\right|=11 \cdot\left(11^{3}-1\right)(11+1)$.
- Wilson [1986]: J_{1} is not a subgroup of M.

- Janko group [1968] J_{3} :

- has a single class of involutions and $C_{J_{3}}(2 A) \cong 2_{-}^{1+4}: \mathcal{A}_{5}$;
- while J_{2} has two classes of involutions and $C_{J_{2}}(2 A) \cong C_{J_{3}}(2 A)$.
- Rudvalis group [1972] Ru

Pariahs, II

- O'Nan group [1973] ON:
- Parker, Ryba [1988]: $3 . O N<\mathrm{GL}_{452}\left(\mathbb{F}_{7}\right)$
- Soicher [1990]: action on 122760 points
- Lyons group [1969] Ly:
- $C_{L y}(2 A) \cong 2 . \mathcal{A}_{11}$
- Meyer, Neutsch, Parker [1985]: $L y<\mathrm{GL}_{111}\left(\mathbb{F}_{5}\right)$
- Janko group [1975] J_{4} :
- $C_{J_{4}}(2 A) \cong 2_{+}^{1+12}$. $\left(3 . M_{22}: 2\right)$
- Norton, Parker, Thackray [1980]: $J_{4}<\mathrm{GL}_{112}\left(\mathbb{F}_{2}\right)$,
\circ the original motivation to develop the MeatAxe.

Computational techniques
play an important role in the construction and analysis of the sporadic simple groups.

