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e Aim: Explain the statement of the CFSG:



Classification of finite simple groups (CFSG)

e Cyclic groups of prime order C); p a prime.
e Alternating groups A,; n > 5.

e Finite groups of Lie type:

o Classical groups; ¢ a prime power:
Linear groups PSL,(q); n > 2, (n,q) # (2,2), (2,3).
Unitary groups PSU,(¢*); n > 3, (n,q) # (3,2).
Symplectic groups PSp,, (q); n > 2, (n, q) # (2, 2).
Odd-dimensional orthogonal groups €2,.1(q); n > 3, ¢ odd.
Even-dimensional orthogonal groups PQ3, (¢), PQy,,(¢q); n > 4.

o Exceptional groups; ¢ a prime power, f > 1:
Es(q). E7(q). Es(q). Fi(q). Ga(q); q # 2.
Steinberg groups 2Fg(q?). Steinberg triality groups *Dy(q?).
Suzuki groups 2By(22/*1). Small Ree groups Gy (3%/11).
Large Ree groups 2Fy(22/+1), Tits group 2Fy(2)".

e 26 Sporadic groups: ...



Classification of finite simple groups (CFSG), II

e Sporadic groups:
o Mathieu groups M1, Mis, Moo, Moz, Moy.
o Leech lattice groups:
Conway groups Co1, C'oy, Cos.
McLaughlin group McL. Higman-Sims group HS.
Suzuki group Swuz. Hall-Janko group Js.
o Fischer groups Fiogg, Fligg, Fib,.
o Monstrous groups:
Fischer-Griess Monster M.
Baby Monster B. Thompson group T'h.
Harada-Norton group HN. Held group He.
o Pariahs:
Janko groups Jy, J3, Jy. O'Nan group ON.
Lyons group Ly. Rudvalis group Ru.

e Repetitions:

o PSLy(4) 2 PSLy(5) = As;  PSLy(7) = PSL3(2);
o PSLo(9) = Ag;  PSLy(2) = As;

o PSU4(2) = PSp,(3).



Composition series

o Let GG be a finite group.

e (5 is called simple if GG is non-trivial and does not have any proper
non-trivial normal subgroup.
e Composition series:

o G has a composition series of length n € Nj

{1} =Gy<G1<--- <G, =G,
o where GG;_1 <G, such that G;/G;_1 issimple, foralli € {1,...,n}.

e Jordan-Holder Theorem:
o The set of composition factors G;/G;_1, counting multiplici-

ties, is independent of the choice of a composition series.

e (5 is called soluble if all composition factors G;/G;_1 are abelian,
or equivalently cyclic of prime order.

e Examples:

o {1} < Sy with composition factors Cs.

o {1} < A3 < 83 with composition factors Cy, Cs.

o {1} 1 Cy<Vy <Ay <8y with composition factors Co, Cs, Cy, Cs.
o {1} < A5 < S5 with composition factors Asj, Co.



Some history

e Abel’s Theorem:

o The Galois group of the general polynomial equation of degree
n € N over any field is isomorphic to the symmmetric group S,,.

o The general polynomial equation of degree n € N over a field of
characteristic 0 is solvable by radicals if and only if its Galois
group is soluble, that is if and only if n < 4.

o GALOIS [~1830]: A, simple for n > 5, PSLy(p) for p a prime.
o JORDAN [1870]: ‘Traité des substitutions’, PSL,(p).

o Sylow Theorems [1872]: the first classification tool.

o MATHIEU [1861/1873]: the simple Mathieu groups.

o KILLING [~1890]: classification of complex simple Lie algebras.
o DICKSON [~1900]: finite field analoga of the classical Lie groups.

o CHEVALLEY [1955]: uniform construction of
the classical and exceptional finite groups of Lie type.

o REE, STEINBERG, SUZUKI, TITS [~1960]:
twisted classical and exceptional finite groups of Lie type.

o ~1960: common belief is that all finite simple groups are known.



Some history, 11

o BRAUER, FOWLER [1955]:
Given n € N, there are at most finitely many simple groups contain-
ing an involution with centraliser of order n.

o Feit-Thompson Theorem [1963]:
Any finite group of odd order is soluble.

o Brauer program: Hence any non-abelian finite simple group
contains an involution, thus consider centralisers of central involu-
tions and prove completeness of classification by induction.

o JANKO [1964]: (the first since almost a century)
sporadic group J; with involution centraliser Cy x As.

o THOMPSON [1968]: classification of minimal simple groups.
o JANKO [1975]: the last sporadic group Jy.
o ~1980: common belief is that CFSG is proved.

o GORENSTEIN, LYONS, SOLOMON [>1994]:
revision project of the proof of CFSG.

o ASCHBACHER, SMITH [2004]:
the quasithin case, completing the proof of CFSG.

e Do we really believe that the Four-Colour Theorem, or Fer-

mat’s Last Theorem, or the Poincaré Conjecture, or the
CFSG are proved?



Applications of CFSG

e Let T be a non-abelian finite simple group.

o Then Z(T) = {1} implies T = Inn(T") < Aut(T).

e A group G such that T < G < Aut(T) is called almost simple.
e A perfect group G such that G/Z(G) = T is called quasi-simple.

e Schreier’s Conjecture:

o The outer automorphism group Out(7T') := Aut(T")/Inn(T’) of any
finite simple group 7" is soluble.

e Proof: by inspection; in all cases Out(7T) is ‘very small’. i

e Theorem: Let N < G such that ged(|N|, |G/N|) = 1. Then all
complements of N in G are conjugate.

e Proof: uses the Feit-Thompson Theorem; or alternatively:

o Let G = N: H be a minimal counterexample.

o Easy: NV is non-abelian simple and Cq(N) = {1}

o Hence G = G/Cx(N) < Aut(N) such that N < Inn(N).

o Thus G/N < Out(N) is soluble.

o Hence the assertion follows from Zassenhaus’s Theorem.



Applications of CFSG, 11

e Multiply-transitive permutation groups:

o The finite 2-transitive groups are explicitly known.

o The only finite 6-transitive groups are symmetric and alternating.
o The only finite 4-transitive groups are symmetric and alternating,
and the Mathieu groups M1, Mo, Moz, and Moy.

e Proof:

o Burnside’s Theorem: A minimal non-trivial normal subgroup
of a finite 2-transitive group is either elementary-abelian and regular,
or simple and primitive.

o Hence a 2-transitive group is either affine or almost simple:
o HUPPERT and HERING: soluble and insoluble affine cases;

o MAILLET, CURTIS, KANTOR, SEITZ, HOWLETT:
almost simple cases.

o The higher transitive groups are then found by inspection. f

e Example:

o ASLy(q) = [q9]: SLy4(q), where ¢ is a prime power and n = ¢¢.

d
o PSL4(q), where g is a prime power, d > 2, and n = 2_—_11.



Symmetric and alternating groups

o Let n € Nj.

e Let S, be the symmetric group on {1,...,n}.

o Let sgn: S, — {£1} = C, be the sign representation.

o Let A, := ker(sgn)<S,, be the alternating groupon {1, ..., n};
o the elements of A, are called even permutations,

o the elements of S, \ A,, are called odd permutations.

e The cycle type of a permutation is the partition of n indicating
the lengths of its distinct cycles, counting multiplicities.

o Example: The identity has cycle type [1"],
a 2-cycle or transposition has cycle type [2,1"7?],
a 3-cycle has cycle type [3,1"79].

o A permutation is even if and only if it has an even number of cycles
of even length.
e The conjugacy classes of S, are parametrised by cycle types.

o A permutation is centralised by no odd permutation if and only
if it is the product of cycles of distinct odd lengths.

o Hence the orbit-stabiliser theorem implies:

o A conjugacy class of §,, contained in A, splits into two conjugacy
classes of A,, if and only if its cycle type has pairwise distinct odd
parts, otherwise it is a single conjugacy class of A,,.



Simplicity of A,

e Theorem: Let n > 5. Then A, is simple.
e Proof: by induction on n; let {1} # N < A,.

e Let n =5, Then N is a union of conjugacy classes.

o The cycle types of even permutations are [1°],[3,17],[2% 1], [5)],
where only type [5] splits into two conjugacy classes.

o The conjugacy class lengths are 1,20, 15,12, 12, respectively.
o No sub-sum of these, strictly including 1, divides 60; thus N = A,,.

e Let n > 5. Then A, _; = Staby, (n) is simple.

oNNA, 1 <A, 1, hencei) A, 1 < Norii) NNA,, ={1}:
i) Then N contains all elements of cycle type [3,1773).

o Any even permutation is a product of 3-cycles; thus N = A,,.
ii) Then any non-trivial element of N acts fixed-point-free.
oIf19=1"foro,7 € N, thenor ' € NN A, 1 = {1}.

o Thus |N| < n.

o But A,, does not have a non-trivial conjugacy class with fewer than
n elements, a contradiction. f



Automorphisms of A,

o Let n > 4. Then Z(A,) = {1}, hence A, = Inn(A,) < Aut(A,);
o and S, acts faithfully by conjugation, hence S,, < Aut(A,).

e Theorem: Let n > 7. Then Aut(A,) = S,.

e Proof: [C. PARKER]

o A, being simple, it cannot possess a proper subgroup of index
k < n, since otherwise there would be an injective map A,, — Aj.

e We show (x): If 4,1 = H < A,, then H = Staby, (i) for some i.

o Let n = 7. H cannot have a non-trivial orbit of less than 6 points.
If H is not a point stabiliser, then H acts transitively on {1,...,7}.
This is a contradiction since 7 f |H| = | Ag|, proving (x) for n = 7.

oLet n>9. A ‘3-cycle’ of H centralises a group = A,,_4.
Since n — 4 > 5 the latter has an orbit of at least n — 4 points.

Thus a ‘3-cycle’ of H moves at most 4 points, thus is a 3-cycle of A,,.

o Let n = 8. A ‘3-cycle’ of H centralises a group = Aj.

Hence there is a V centralising the ‘3-cycle’.

The elements of Ag of cycle type [32,1%] do not centralise a V.
Hence a ‘3-cycle’ of H is a 3-cycle of As.



Automorphisms of A,, II

o Thus for n > 8 the ‘3-cycles’ of H map to 3-cycles of A,,.
o For pairs of 3-cycles we have ((a, b, c), (a,b,d)) = Ay.
o Hence the subgroup

H>~A,_ 1 =(1,2,3),...,(1,2,n—1))
maps to a subgroup

((a,b,¢1),...,(a,b,c,3)) < A,.

o The latter moves n — 1 points.

o Hence H < Stab 4, (7) for some i, proving (x) for n > 8.

e Now:
o Any automorphism permutes the subgroups isomorphic to A,,_1.
o These subgroups are in natural bijection with {1,...,n}.

o Hence any automorphism induces a permutation of {1,... n}.

e We have Aut(A,) =S, for n € {4,5}.
o We have Aut(Ag) = Ag.2°.

o Ag has two conjugacy classes of subgroups isomorphic to As.



Schur covers of S,, and A,

e A finite group H such that Z(H) < H' and H/Z(H) = G is
called an |Z(H)|-fold cover of G.

o Two maximal covers of G are isoclinic.

o If GG is perfect, its unique maximal cover is a universal cover.

e A, has maximal 2-fold covers .%Tn =2.A,, forn > 4,

o except for n € {6, 7} where it has maximal 6-fold covers 6..4,,.

e S, has two maximal 2-fold covers gn and §n, for n > 4,

o both of shape 2.5,,, but we have gn = §n if and only if n = 6.

e The Coxeter presentation of S,,, where n € N, is given as

Sy (s1,... 8,1 | 87 =(sisi01)" = (s;8;)° = 1 for |i — j| > 2),
o where adjacent transpositions (i,7+ 1) — s;.

e For S, and §n, where n > 4, we have [SCHUR, 1911]:

Sp= (S1,-.,8,-1,7 |

2* =1,8 = (sisi41)® = 2, (5i8;)°

= 2)

22 =1,82 = (8iz)? = (si8i:1)° = 1, (8;5;)* = 2)



Subgroups of §,

o Describing all the subgroups of §,,, for all n € Ny, is by
o Cayley’s Theorem equivalent to classifying all finite groups:

o hopeless.

o But there are certainly are interesting prominent subgroups:

e for example, intransitive subgroups.

e Partition the set of n = km points into m blocks of size k.
o The wreath product S;1 S, = §;': S, acts on this partition,

o where the base group 8" = §;. X - - - X8, consists of permutations
of the various blocks,

o and the wreathing S,, permutes the blocks.

o 8 1S, < S, is an imprimitive transitive subgroup, for k,m > 2.

e 518, acts on {1,...,k}™ by the product action, n = k",
o where [my,...,m,] € S acts by [aq, ..., ay) — [a]', ..., a}m],
oand 7t € S, acts by [a1, ..., an] — [air, ..., aps).

0§11 S, < 8, is a primitive subgroup, for k > 3 and m > 2.



Maximal subgroups of S,

o One might try to describe the maximal subgroups of S,;
o the maximal subgroups of A,, are then obtained by intersection:
e O’Nan-Scott Theorem [1979]: Any proper subgroup of S,
different from A, is contained in one of the following subgroups:
i) an intransitive group Sy X S, where n = k + m;
ii) an imprimitive transitive group Si 1S, where n = km;
iii) a primitive wreath product Sy S,,, where n = k™;
iv) an affine group AGL4(p) = p?: GL4(p), where n = p?;
v) a diagonal type group
T (Out(T) x Sp) = (T S,).Out(T),
where T" is a non-abelian simple group,

‘m—l

acting on the cosets of a subgroup of index n = |T . of shape

A(T).(Out(T) x S;) = Aut(T) x Sp;

vi) an almost simple group,

acting on the cosets of a maximal subgroup of index n.

o Describing the groups in class vi) requires complete knowledge of
the maximal subgroups of all almost simple groups:

o reducing an impossible problem to an even harder one.



Linear groups

o Let IF, be the field with ¢ = p! elements, p a prime, f € N, n € N.

e General linear group GL,(q) :== {g € F*";det(g) # 0}

o Counting the number of ordered IF -bases of [Fy:

n

o |GLu(g)] = (" = V(@ =)+ (¢" = ") = ¢¥) - TTLy(a' = 1)
o Viewing ¢ as an indeterminate,

o this is an order polyomial in Z[q],

o whose irreducible factors are ¢ and cyclotomic polynomials.
e Special linear group SL,(q) := {g € GL,(q);det(g) = 1}

e Projective general linear group PGL,,(q) := GL,(q)/Z(GL,(q)),
o where Z(GL,(q)) =F} - E, = Cy_1.
o [SLu(q)] = [PGLu(q)| = 7 - [GLa(q)

e Projective special linear group PSL,(q) := SL,(q)/Z(SL.(q)),
o where Z(SL,(q)) = {\ - E; \" = 1} = Cyeqng— 1).
o |PSLy(q)| = [SLu(9)] = s 7 - |GLn(q)]

ged(n,g—1)

gcdnq 1)



Simplicity of PSL,(q)

® PSL2<2> = GLQ(Q) = 531
o GLy(2) acts 2-transitively on the three vectors in F5 \ {0}.

o PSL,(3) = Aj:

o GLy(3) acts on the four 1-dimensional F3-subspaces of F2,

0 _O 1] fixes the standard F3-basis,

o hence GLy(3) — Sy, with kernel Z(GLy(3)) = (b,
o thus PGLQ(?)) = 84 and PSLQ(S) = ./44.

o the action is 2-transitive, [

o Note: GLy(3) = 8, and SLy(3) = A,.

e Theorem: Let n > 2 and (n,q) # (2,2), (2, 3).
Then PSL,(q) is simple.

e Proof:

o (G := SLy(q) acts on the set of 1-dimensional subspaces of Iy,
o yielding a 2-transitive, hence primitive, action of PSL,(q).

o Let x := ([1,0,...,0])r, and H := Stabg(z),

o then

x h

H = { [)\ On_ll e GiAelF,, h e GL, 1(q), X - det(h) = 1} :



Simplicity of PSL,(q), II

o Use Iwasawa’s Criterion:

(1 O

o then A < H is abelian, consisting of transvections,

o that is g € G such that tk(g — E,) = 1 and tk((g — E,,)?) = 0.

o Let

o Jordan normal form theorem implies that
e any transvection is G-conjugate to some element of A.
e (5 is generated by transvections:

o Any g € G can be reduced to E, by a sequence of elementary row
operations of the form ‘r; — r; + Ar;’,

o that is multiplying g from the right with a series of transvections.
e (5 is perfect:

o For n > 3 any transvection is a commutator:

100 100 1 00
1 10,{010]f=0 10
001 0 A1 - 01
o For n =2 and q > 4 there is A € F) such that A2 #£ 1, then

”; (1)] | [3 ;L” B [ﬁ(vl— 1) ?]

is an arbitrary element of A. f



Iwasawa’s Criterion

e Theorem: [Iwasawa, 1941]

o Let G be a finite group, acting primitively on a set €2,
o let H := Stabg(z) < G for some x € (2,

o and let A < H such that (49,9 € G) = G.

e Then for any N <G we have

o either N < Stabg(Q2) =, H! Q G,

o or G/N is isomorphic to a quotient of A.

e In particular:

o if A is abelian and G is perfect, then G /Stabg(2) is simple.

e Proof:

o We may assume that N £ H.

o H < G being maximal implies G = HN, thus

o any g € G can be written as g = hn, where h € H and n € N.
o Hence A9 = A" = A" < AN, for any ¢ € G,

o implying G = (A%, g € G) = AN,

o thus G/N = AN/N = A/(ANN).

o Despite its simplicity this is astonishingly powerful.

o Exercise: Use it to prove the simplicity of A,,, for n > 5.



Automorphisms of SL,(q)

e Diagonal automorphisms:
o induced by conjugation with diagonal matrices,

o that is by the conjugation action of GL,(q).
© GLn(Q)/SLn<Q) = q—1; PGLn(Q)/PSLn<Q) = Cgcd(n,q—l)

e Field automorphisms:
o induced by the Frobenius automorphism ¢,: A — A of I,
o where ¢ = p/, hence (p,) = C}.
o Semilinear groups
[Li(q) == GLu(q) : {¢p), PI'Ln(q) :== PGL.(q) : {pp).
YLa(q) :==8SLu(q) : (pp), PELn(g) :=PSLy(q) : (op)-

e Graph automorphisms:

o induced by a graph automorphism of the Dynkin diagram.
o Duality GL,(¢) — GLn(q): g — g

o induces duality on SL,(q), PGL,(q), PSL,(q).

o Note: duality is not inner for n > 3.

e These are all the ‘outer’ automorphisms;

o in particular the outer automorphism group is soluble.



Covers of PSL,(q)

e PSL,,(¢q) has ged(n, ¢ — 1)-fold universal cover
SL ( ) ged(n,g—1)- .PSL ( )

e cxcept:
o PSLy(4)
o PSLy(9)
o PSL3(2)
(2)
(4) ha

12

12

Ag has universal cover 6.PSLy(9);
PSL;y(7) has universal cover 2.PSL3(2);
Ag has universal cover 2.PSL4(2);

112

112

o PSL4(2

o PSL3(4) has universal cover (3 x 4%).PSL3(4).

PSLy(5) = Aj has universal cover 2.PSLy(4);

e Note:

o generic universal covers have order coprime to the
defining characteristic p of the Lie type group,

o while exceptional parts of universal covers are p-groups.



Subgroups of GL,(q)

e Borel subgroup B := {g; g lower triangular} < G := GL,(q),
o the stabiliser of a maximal flag of Fy;

e monomial subgroup N := {g € G; g monomial} < G;

e maximal split torus 7' := BN N = {g € G, g diagonal},

o T =Cp y, and N = Ng(T) for ¢ > 3;

e unipotent subgroup U := {g € G, g lower unitriangular} < B,
o U € Syl,(G), and B = U: T split;

e Weyl group W .= N/T = §,, via [(1) (1)] — (1,2),

o a crystallographic real reflection group:
o the adjacent transpositions act as reflections,
o that is dimg(ker(g — E,,)) = n — 1 and dimg(ker(g + E,)) = 1.

e Flag stabilisers are called parabolic subgroups:

GLk(q) 0 ] . .
oB<P= = Up: Lp maximal parabolic,
S [ . GL, . (q) p: Lp |y
o with unipotent radical Up = [E*k EO ] . and
n—=k
GLk(q) 0

o Levi subgroup Lp = [ ] = GLi(q) x GL,,_1(q).

0 GLn_k<q)

e Axiomatic: BN-pairs [T1TS, 1962]



Maximal subgroups GL,(q)

e Aschbacher-Dynkin Theorem: [1984/1952]

o Any proper subgroup of GL,(q) different from SL,(q) is contained
in one of the following subgroups:

i) a reducible group ¢*™: (GLj(q) x GL,,(q)), where n = k + m,
the stabiliser of a k-dimensional IFj-subspace;

ii) an imprimitive group GL(q) ! S, where n = km,

the stabiliser of a direct sum decomposition into m k-subspaces;
iii) a tensor product GLx(q) o GL,,(q), where n = km,

the stabiliser of a tensor product decomposition IF’; @F;

iv) a wreathed tensor product,

the preimage in GL,(q) of PGL(q) ! S, where n = k™,

the stabiliser of a tensor product decomposition IF’; R ® IF’; ;
v) the preimage in GL,(q) of r**: Spy,(r), where n = r*,
or of 22¥.GOS,.(2), for r = 2 and ¢ = € (mod 4);

vi) an almost quasi-simple group acting irreducibly.

e ASCHBACHER: looks more closely at case vi) ,

o in particular considers subfields and extension fields of IF,.



Proof of the Aschbacher-Dynkin Theorem

e Proof:

o Let PSL,(q) £ H < G :=PGL,(q),

o and let H < G := GL,(q) be its preimage.

e We may assume that H acts irreducibly, otherwise case i) .
o Let N < H be the socle of H,

o that is the product of its minimal non-trivial normal subgroups.
o By Clifford theory N acts completely reducibly.

e We may assume that N has only one isotypic component,
otherwise case ii) .

e We may assume that N acts irreducibly,

otherwise H < N o C@(ﬁ ) implies case iii) .

e We may assume that /N is the only minimal normal subgroup,
otherwise N < ]/\\71 o Ng implies case iii) again.

o [f N=C, x--- xC,is (elementary) abelian we get case v) .
e If N = T is non-abelian simple we get case vi) .

o [f N=T x---x T is non-abelian non-simple we get case iv) . f



Geometric algebra

o Let F be a field, with automorphism o: F — F such that o? = id,
o and let V' be a finitely generated F'-vector space.

e A o-bilinear form is amap f: V x V — F such that
o f(Au+v,w) = Af(u,w)+ f(v,w),
o flu, W+ w) =\ f(u,v) + f(u,w).

o f is called

o symmetric if ¢ = id and f(w,v) = f(v, w),

o hermitian if ¢ # id and f(w,v) = f(v,w),
o symplectic if ¢ = id and f(w,v) = — f(v, w),

o alternating if 0 = id and f(v,v) = 0.

o Any alternating form is symplectic,
o if char(F') # 2 then any symplectic form is alternating;

o if char(F') = 2 then being symmetric or symplectic coincide.

e A quadratic form is a map q: V' — F' such that
o q(\v +w) = Ng(v) + g(w) + A f(v,w),

o where the associated bilinear form f: V x V — F'is symmetric.

o If char(F') # 2 then g is recovered from f as g(v) = 3 f(v, v),

o if char(F') = 2 then f is alternating.



Geometric algebra, 11

e A o-bilinear form f is called non-degenerate, if

rad(f) :={w € V; f(v,w) =0 for allv € V} = {0}.

o v € V is called isotropic if f(v,v) = 0.
o A map A € GL(V) is called an isometry of f, if
fwA,wA) = f(v,w) for all v,w € V;

o the set of all isometries is a subgroup of GL(V).

e A quadratic form ¢ is called non-degenerate, if

rad(q) := {v € rad(f); v singular} = {0},

o where v € V' is called singular if ¢(v) = 0.

o The Witt index is the dimension of a maximal singular subspace;
o by Witt’s Theorem this is independent of the subspace chosen.
o A map A € GL(V) is called an isometry of g, if

q(vA) =q(v) for all v € V;

o the set of all isometries is a subgroup of GL(V).

e No classification of non-degenerate forms for arbitrary F'is known.



Unitary groups

e Theorem: Any non-degenerate y,-hermitian form over F 2 has
an orthonormal I o-basis,

o that is the associated Gram matrix is £,,.

e Thus g € GL,(¢?) is an isometry if and only if g - E, - g% = E,,.
o General unitary group GU,(¢°) := {g € GL,(¢*); % = ¢},
o that is the fixed points of the concatenation of the graph auto-

morphism (the duality) and a field automorphism of GL,,(¢?).

e Counting the number of ordered orthonormal IF 2-bases:

o [GUA¢A)] =¥ - TIL (g = (=1)) = (=) - T ((—0) = 1)
o Ennola duality |GU,(¢?)| = |GL,(—q)|

e As in the linear case: SU,(¢?), PGU,(¢%), PSU,(¢%),

o where Z(GU,(¢%)) = CqH Cl(—¢

o [PSU,(¢%) 1y 71 1GUs ( 2)! = |PSL,(—q)|

‘ - ged(n,g+1)

e Simplicity of PSU, (¢%): Apply Iwasawa’s Criterion

o to the action on the set of isotropic 1-dimensional subspaces,

o and use unitary transvections,

othatis V — V: v v+ Af(v,w)w, where w € V is isotropic.
o Exceptions: PSUy(¢?) = PSLy(q), and PSU3(2?) is soluble.



Symplectic groups

e Theorem: Any (necessarily even-dimensional) non-degenerate al-
ternating form over I, is an orthogonal sum of hyperbolic planes;

o that is the latter have Gram matrix [_O | (1)] .

e Symplectic group Sp,,(q)

o Counting the number of ordered symplectic F-bases:
n2 n 1

o [Span(@)] = ¢ - TTizy (¢ — 1)

o We have Sp,,,(q) < SLa,(q).

e Projective symplectic group PSp,,(q) := Sps,(9)/Z(Spa,(q)),

o where Z(Spy,(q)) = {+En}.

o [PSp2,(9)] = goama=yy * 1SP2n ()]

e Simplicity of PSp,,(q): Apply Iwasawa’s Criterion
o to the action on the set of 1-dimensional subspaces,

o and use symplectic transvections,

othatis V — V:v— v+ Af(v,w)w.

o Exceptions: Spy(q) = Slo(q), and Spy(2) = Sg.



Orthogonal groups

e Theorem: Any (2n + 1)-dimensional non-degenerate quadratic
form over T, is equivalent to X¢ + > X; X ;.

e Theorem: Any 2n-dimensional non-degenerate quadratic form
over IF, is equivalent

o either to > | X;X_;, having maximal Witt index n,
o or to, where 7% + T + a € F[T] is irreducible,

(Xg + XoX_o+ GXEO) + Z X X_;,
having non-maximal Witt index n — 1.

e General orthogonal groups GOs,,1(q), GO3 (q), GO3,(q)

e Counting the number of isotropic vectors,

o which are acted on transitively by GO, (q), and induction:
0 [GO5,(a)] = 209 - (" = ) - T/ (¢* — 1)

0 |GO(9)] = 24" - TTLa(a* — 1),

e As in the linear case: SO,(q), PGO,(q), PSO,(q),

o where Z(CO,(g)) = {+£E,}.

o and where g - J - g% = J, for J being the Gram matrix,

o implies det(g)* = 1 for all g € GO,(q).

e But: PSO,(q) is in general not perfect.



Orthogonal groups in odd characteristic

o Let ¢ be odd.

e Spinor norm v: GO,(q) — F;/F;* = Cy:

o write g € GO,(q) as a product of reflections
ory:V—=V.v—uv— % -w, where w € V' is non-singular,
o and let v(r,) = q(w) - F;* € F /F>.

o Note the similarity to the definition of the sign of a permutation.

o Let Q,(q) :=ker(v) NSO, (q) and PQ,(q) := .(q)/Z(Q2.(q)),
o then GO, (q)/ ker(v) = SO,(q)/Qn(q) = Cs.

® SO2,11(q) = PSOg,41(q) and Qg,11(q) = PQopnyi(q),
o hence [Q2,11(q)| = § - |GO2n11(q)l.

o — [, €9, (q) if and only if ¢" = ¢ (mod 4),
o hence [P, (q)] = GOy, (q)].

2-ged( 4 ,q"—e€)
e Simplicity of PQ,(q): Apply Iwasawa’s Criterion
o to the action on the set of 1-dimensional singular subspaces,

o and use Siegel transformations.

o Exceptions: GO5(q) = Do), and PQ3(3) = PSLy(3) = A4, and
PQI(C]) = PSLQ(Q) X PSLQ(Q)

o Note: [Qon11(q)| = |PSpa,(q)], but Qap41(q) 7 PSpay, ().



Orthogonal groups in characteristic 2

o Let ¢ = 2/.
o GO,(q) = SO,(q) = PGO,(q) = PSO,(q)

e Theorem: GO»,1(q) = Sp,,(q)

o Hence only consider the even-dimensional case:

e Quasideterminant v: GOS, (q) — {£1} = Cy:

o write g € GO;, (¢) as a product of orthogonal transvections
oty V—=V:iv—uv+ f(v,w) w, where w € V|

o and let v(t,) == —1.

o KANTOR: Then v(g) is the sign of the permutation induced by ¢
on the set of maximal isotropic subspaces.

o Let Q5 (q) = ker(v),
o Then the order formulae and the simplicity proof are still valid;

o the latter with the exceptions GO5(¢q) = Dsy,—q), and PQy () =
PSLs(gq) x PSLa(q), and P€5(2) = Sp,(2) = S.

e Note: For arbitrary ¢ we have, using Klein correspondence,
o GO5(q) = Dyg—e), PS23(q) = PSLy(q),

o PQy(q) = PSL2( ) x PSLa(q), P2 (q) = PSLa(g®),

o PQs(q) = PSpy(q), PQg (q) = PSLa(q), PQg (q) = PSU4(q).



Structure of classical groups

e Subgroups:

o groups with BN-pairs,

o tori, Borels, and parabolics described in terms of geometry;
o entailing a generic ‘Iwasawa type’ simplicity argument.

o Moreover:

e Automorphisms:

o diagonal, field, and graph automorphisms

e Covers:

o generic p'-fold covers, and finitely many p-power-fold exceptions

e Maximal subgroups:
o DYNKIN [1952]: complex classical groups
o ASCHBACHER [1984]: finite classical groups

o KLEIDMAN, LIEBECK [1990]: explicit lists



Modern view of classical groups

e Linear and classical groups: described in terms of
o geometry,
o Lie theory,

o algebraic groups.

e Example: SL,(q) is described by
o its natural faithful action on the n-dimensional space Fy;

o the conjugation action on the (n*—1)-dimensional Lie algebra
sh(q) == {A € F"; Tr(A) = 0},

yielding an action of PSL,,(q¢) = SL,,(q)/Z(SL,(q));

o polynomial equations defining the algebraic group
SL,(F) .= {A e F"""; det(A) = 1},

where F, C [F is an algebraic closure with Frobenius morphism

F=¢,;F—TF: A=\,
yielding the set of fixed points
SLn(q) = SL,(F)" == {g € SL,(F); F(g) = g}.

e Starting point: Classification of simple complex Lie algebras

o by Dynkin types An; BTM Cn; Dn; E67 E77 E87 F47 GQ'



Chevalley groups

e CHEVALLEY [1955]:
o integral forms of simple complex Lie algebras
o yield simple Lie algebras L over any field F

o consider adjoint representation

ad: L — Endp(L): x — (L — L: y~— [2,7]),

o and integrate suitable roots x € L,

o obtain one-parameter subgroups of Aut(L), given by

l

exp(A - ad(x)) = Z% -ad(x)" € GLp(L).

e Chevalley group
Gn(F) = (exp(A-ad(x));x € L root, A € F) < Aut(L)

e This uniformly yields finite field analoga of
o the classical Lie groups,

o and the exceptional groups Go, F}, Eg, E7, Eg.

e G,(F) is a group with BN-pair.



Chevalley group of type A;

o slo(F) = (f, h,e)p, with Chevalley basis

- ) B

o Adjoint action of e is nilpotent:

01 0 00 =2
ad(e)= [0 0 —=2|, ad(e)*=1(00 0|, ad(e)’=0-FEs.
00 O 00 0

o Integration A - ad(e) and A - ad(f) is well-defined:

e 1A —X2
exp(A-ad(e)) = B3+ A -ad(e) + 5 ad(e)*= [0 1 2)\]
0 0

32 10 0
exp()\-ad(f)):E3+)\-ad(f)+?-ad(f)2: 20 1 0
1

o SLo(F) = (z(N\),y(A); A € F'), with transvections

o= 1] =3

o Adjoint action of SLy(F') on sly(F') is conjugation:
t(N): fr—= f+Ah—=Xe, h—h—2\e, e e;
y\): f— f, hh+2ke, er— Nf —Ah+e.

e Thus we have SLy(F) — Ay (F'), implying
A1 (F) = (exp(A-ad(e)),exp(A-ad(f)); A € F) = PSLy(F).



Twisted groups

o Generalise the construction of unitary groups from linear groups,

o as fixed point sets under suitable graph automorphisms:

e completes the list of classical groups;

e viclds twisted exceptional groups

o “Eg(q?) and *Dy(¢®) [STEINBERG, 1959];
e yields ‘sporadic’ twisted exceptional groups
o 2B, (24/*1) [Suzuki, 1962],

o Gy (3%/11) [REE, 1961],

o 21y (2% 1Y) [REE, TITs, 1961/1964].

e These also are groups with BN-pair.

e Are there geometrical interpretations of these groups?
o Mostly there are, elucidating more of the group structure;
o and leading to natural representations

o smaller than the adjoint representations.

e For F7(q) the smallest representation has dimension 56,
o while the adjoint representation has dimension 133.

e For Fg(q) the adjoint representation is smallest, of dimension 248.



Classical Dynkin types

o Six series of classical groups:

e Classical Chevalley groups:

o Type A,: PSL,41(q), for n > 1 o o o ---
o Type By: Qonsi(q), for n > 3 o o o - --

o Type Cy: PSpy,(q), for n > 2 o o o ..

o Type D,: PQ3 (q), for n > 4

e Twisted classical groups:

o Type ?A,: PSU,.1(q), forn>2 o —e—e— - - .

o Type °D,,: P (q), for n > 4

n-2



Exceptional Dynkin types

o Ten series of exceptional groups:

e Exceptional Chevalley groups:

1 2 3 n-2 n-

o Type E,, forn € {6,7,8} In
1 2 3 4
o Type F} o—0——0 0
1 2
o Type G —=0

e Twisted exceptional groups:

o Type “Eg4(q*)

o Type 3D4(q3) \_/4

o Type 2By(22/+1) *——o
o Type Go(32/+1h) o - o

o Type 2F,(22/+1) o o9 o



Suzuki groups

o Let ¢ .= 2%/*! for f € N,.

e Consider the exceptional isomorphism Sg = Spy(2) = Bs(2):

o Natural permutation representation of Sg over F' := I,

o has Sg-invariant form f([zy, ..., ze), [y, .-, y6]) == S0 Tili.
o Then V := (v)3/{v)p, where v :=[1,...,1],

o has Sg-invariant non-degenerate alternating form,

o hence we have Sg < Sp,(q); now compare orders for g = 2.

e I/ has hyperbolic basis

e = 1[1,1,0,0,0,0], fi:=[0,1,1,0,0,0],

es = [0,0,0,1,1,0], fo:=0,0,0,0,1,1].
o Exterior square V' := A?(V) has
o non-degenerate symplectic form f’ (Klein correspondence)
o given by f'(a Ab,c A d) =1 if and only if dim({a, b, ¢, d)r) = 4.
o (v)%/(v')p, where v/ := €1 A fi + €3 A f, has hyperbolic basis

epi=e1Ney, fli=finfo, eyi=eNfy, fri=eAfi.

o v: e — e fi— f! defines a graph automorphism of Sp,(q)
o such that v? = s, hence (fygog ) = gpé”f = id.
e Suzuki group Sz(q) := *Ba(q) = Csp, () (75) [ONO, 1962]

o Note: v extends Ag < Sg = Spy(2) to PGLy(9) 2 Sg.



Suzuki groups, II

e 5z(q) acts 2-transitively on the Tits oval [SUZUKI, 1962],

o a certain set of ¢ + 1 many 1-dimensional subspaces of V,

o with point stabiliser ¢'*!: C,_,

o whose central involutions are commutators and generate Sz(q).
o This yields [Sz(q)| = (¢* + 1)¢*(q — 1),

o and Iwasawa’s Criterion implies simplicity,

o with the exception Sz(2) = 5: 4.
e Automorphisms: only field automorphisms

e Covers: generically trivial,

o with the exception 22.5z(8).

e Maximal subgroups, for f > 1: [SUZUKI]|

o C]1+13 Cq—l;

o Dy4—1),
©) q_|_\/27q_'_1: 4,
@) q—\/%%—l : 4,

o Sz(q'), where ¢ = (¢')" for r a prime and ¢’ # 2.

o Note: If 2f + 1 is a prime, Sz(gq) is a minimal simple group.



Octonion algebras

o Let F' be a field such that char(F') # 2.

e Hamilton quaternions H(F') = (1,4, j, k) p [1843]

o are obtained from F by adjoining three orthogonal v/—1’s,
osuchthati-g=%k j-k=1k-i=7.

o H(F) is a skew-field such that dimpg(H(F)) = 4.

o Letting H(E) = (i,7,k)r = (1) 7,

o with respect to the natural symmetric form,

o we have dimp(H(F)") = 3,

e yielding Aut(H(F)) = Aut(H(F)") = SO3(F') = PGLy(F).

e Cayley octonions O(F') [CAYLEY, GRAVES, 1845/1843]
o are obtained from F' by adjoining seven orthogonal v/—1’s

o {ig, ..., i}, where any triple [i¢, 4711, 614 3]

o fulfills the multiplication rules of i, j, k € H(F).

o O(F) is a non-associative algebra such that dimp(OQ(F)) = 8.
o Letting O(F) := (ig,...,i6)r = (1),

o with respect to the natural symmetric form,

o we have dimp(O(F)") =T.

e Replacing by a suitable form yields a characteristic-free definition:



Octonion algebras, 11

e Chevalley group
Go(F) 2 Aut(O(F)) = Aut(O(F)") < SO7(F)
o The geometric approach yields, for example,

G2(q)] = ¢°(¢" — 1)(¢" — 1);

o G5(F') has a 7-dimensional natural representation,
o while the adjoint representation has dimension 14.

o Exception to simplicity: Go(2) = PSU;3(3): 2

e Small Ree group Gy(3%*1) < Gy(32/+1):

o fixed points under a suitable graph automorphism,

o similar to Sz(22f+1) o 2B2(22f+1) < B2(22f+1) ) Sp4(22f+1).

o Exception to simplicity: Go(3) = PSLy(8): 3

e Steinberg triality group Gs(q) < *Dy(¢*) < PQg (¢%):
o automorphism group of twisted octonions.

o Note: *Dy(q®) < Dy(q®) = P (¢°) fixed points under

o Steinberg’s triality automorphism,

o which hence can be understood in terms of octonions.



Albert algebras

o Let F be a finite field such that char(F) ¢ {2,3}.

e Jordan product Ao B := $(AB+BA) on an associative algebra

o is commutative, non-associative, and fufills the Jordan identity

(AocA)oB)oA=(AoA)o(BoA).

o A Jordan algebra is a commutative, non-associative algebra
fullfing the Jordan identity.

e Any simple Jordan F-algebra arises from an associative F-algebra,

e cxcept the Albert algebra
A(F) = {A c O(F)>; A" = A},
o where ~: O(F) — O(F') denotes octonion conjugation;

o we have dimp(A(F)) = 27.

o Letting A(F) = {A € A(F); Tr(A) = 0} = (E3)*,
o with respect to the natural symmetric form,

o we have dimp(A(F)") = 26.

e Replacing by a suitable form yields a characteristic-free definition:



Albert algebras, 11

e Chevalley group Fi(q) = Aut(A(F,)):
o has a 26-dimensional natural representation,

o while the adjoint representation has dimension 52.

e Large Ree group %,(2%/ 1) < (2% *1):
o fixed points under a suitable graph automorphism;
o similar to Gy(32/ 1) < Go(3%/11),

o Exception to simplicity: Tits group F(2)’

e Chevalley group FEg(q): [DICKSON, 1901]
o leaves invariant a cubic ‘determinant’ form on A(F,);
o Fg(q) has a 27-dimensional natural representation,

o while the adjoint representation has dimension 78.

e Steinberg group *Es(¢°) < Eg(q):
o fixed points under a suitable graph automorphism;

o twisting the symmetric form on A(FF,) yields a hermitian form,

o similar to PSU,,(¢) < PSL,(q).



Golay codes

e A Steiner system S(t, k,v) on the set {1,...,v}
o is a set of k-subsets, called blocks, such that

o any subset of size ¢ is contained in precisely one block.

o Hence there are |S(t, k,v)| = (“)/(f) blocks.

t

e Example: The finite projective plane of order ¢
o is a Steiner system S(2,q +1,¢* +q + 1),
o the blocks being the projective lines.

e Theorem: There is a unique Steiner system S(5, 8, 24).

o Existence: Three successive one-point extensions of S(2,5,21)

o coming from the projective plane of order 4 [W1TT, 1938];

o or: the blocks are the 759 words of weight 8 of the
o self-dual extended binary Golay [24, 12, 8]o-code Goy < F34.

e Words of weight 8 are called octads [ToDD, 1966].
o Computational combinatorial tool: [CURTIS, 1976]
o Miracle Octad Generator (MOG)

e Weight enumerator 72* 4 759 - T16 + 2576 - T'2 4+ 759 - T8 41,
o the 2576 words of weight 12 are called dodecads.



Golay codes, II

e Given a dodecad,
o 5(5,8,24) induces a Steiner system S(5,6,12) on it,
o being unique up to isomorphism,

o having 132 blocks, called hexads.

e Attaching signs, the blocks yield the words of weight 6 of the
o self-dual extended ternary Golay [12,6, 6]3-code G5 < Fi2:
o weight enumerator 2 - (12 - T +220 - T? + 132 - T + 1).

e Any word of weight 4 determines a coset in the

o Golay cocode (Todd module) F3!/G,,,

o where 6 mutually disjoint words determine the same coset.
o Hence any word of weight 4 yields a sextet,

o a partition of {1,...,24} into 6 subsets of size 4,

o the union of any two of which is an octad;

e there are % - (244) — 1771 sextets.



Mathieu groups [1861/1873]

e Mathieu group My, := Aut(5(5,8,24)) = Aut(Ga),
o acts b-transitively on {1,...,24}:

e Mathieu group M3 := Staby,, (1) = Aut(Gas),

o where Goz < IF3? is the perfect binary Golay [23, 12, 7]o-code;
e Mathieu group My, := Stabyy, (1, 2);

o My = Stabyp,(1,2,3) = PSLs(4), in natural 2-transitive action.
o M| =24-23-22-21-20-48=210.33.5.7.11-23

e Simplicity of My,: Apply Iwasawa’s Criterion

o to the transitive action on the sextets, with stabiliser 2°: (3.Sg).

o My, acts transitive on the dodecads, with point stabiliser
e Mathieu group M;s = Aut(S(5,6,12)), Aut(Gra) = 2.Mis;

M
o [Myo| = 024 = 95040 = 26 3% . 5.- 11.

o Mjs acts sharply b-transivitely on {1,...,12}:
e Mathieu group M, = Staby,,(1), Aut(Gi1) = 2 x My,

o where Gy; < Fi! is the perfect ternary Golay [11,6, 53-code;

o M10 = StabM12(1, 2) = A6.2,
o where Aut(Ag) = Ag.2° and Sg % Ag.2 % PGLy(9).



Leech lattice

e 212: My, afforded by the Golay code Gau,

o acts monomially on

e Leech lattice L: [Leech, Witt, 1967/1940]

o the set of all z := [x1, ..., x94] € Z*! such that
ox; =1 >t x;=m (mod 2), for some m,

o and {i;x; = k (mod 4)} € Gy, for each k;
o with scalar product (z,y) := % : Z?il Yy € 2.

e Theorem: £ is the unique unimodular even lattice in R*

o without roots, that is vectors of norm 2.

o L, ={xe€Ll;(x,x) =n} forn e 2Nj.
o Weight function O, = )" |Lop| - T € Z|[T]]:

neNy

Or = 14196560 - T% 4 16773120 - T + 398034000 - T* + - - -

e [ falls into classes of 48 mutually orthogonal vectors,
o called coordinate frames,

o hence there are %?%4000 = 8292375 coordinate frames.



Conway groups [1969]

e Conway group 2.Co; := Aut(L)

o |Coy| =1 -8292375- 212+ |Myy| =221 . 3% 5* - 72 . 11 - 13 - 23

o Simplicity: Apply Iwasawa’s Criterion to

o the transitive action on coordinate frames, with stabiliser 2'2: May.

o Smallest representation of dimension 24 is globally irreducible.

o Sublattice groups: 2.Co; acts transitively on £4 and Lg.

e Conway group Coy 1= Staby ¢, (v) where v € Ly;

e Conway group Cos := Staby ¢, (w) where w € L.

o 2.C'oy acts transitively on {[v,v'] € L4 x Ly;v+ 0" € Lg}
e McLaughlin group [1969] McL := Staby ¢y, (v,v').

o 2.C'oy acts transitively on {[w,w'] € Lg X Lg;w + w' € L4},

e Higman-Sims group [1968] HS = Staby ¢y, (w, w'’).

e Higman-Sims graph on {z € L4, (z,w) = 3, (z,w") = =3},
o vertices z, 2’ being adjacent if (z,2") =1,
o size n = 100, regular of valency k = 22;

o HS primitive of rank 3, with stabiliser Moys.



Suzuki chain

o Let 3D € Coy [ATLAS]
o have order 3 and centraliser Cc,, (3D) = 3 X Aj.

o Letting
Ag > Ag > A7 > Ag > As > Ay > Az > Ay

o yields corresponding centralisers Cey, (A;)

83 <8Si < PSL3(2) < PSU3(3) < Jo < G2(4) < 3.5uz < Co;.

e Suzuki group [1969] Suz
e Hall-Janko group [1968] J,

o has two classes of involutions and C/j,(2A4) = 21 Aj.

e 6.5uz < 2.C'o; induces a complex structure L¢ on L,

o such that 6.Suz = Aut(Lc¢) acts irreducibly.

¢ 2. A5 < H(R) binary icosahedral group [HAMILTON, 1857],
o hence 2.4502.J5 < 2.4, 02.Go(4) < 2.Coy

o induces a quaternionic structure Ly on L,

o such that 2.J; < 2.G5(4) = Aut(Ly) act irreducibly;

o note: this yields the exceptional 2-fold cover 2.G5(4).



Fischer groups

e A finite group G generated by

o a conjugacy class of involutions, called 3-transpositions,

o such that the product of two transpositions has order at most 3,
o G' = G”, and any normal 2- or 3-subgroup is central,

o is called a 3-transposition group.

e Theorem: [FISCHER, 1968/1971]

Let G be a 3-transposition group. Then G/Z(G) is isomorphic to:
0 S,; PSU,(2?), Spy,(2), GOS, (2); PQS,.(3) : 2, Q9,11(3), SO2,41(3);

o or one of the Fischer groups Fis, Figg, Fil,.2.

e Key tool: Transposition graph A,
o with vertices corresponding to the 3-transpositions,
o being adjacent if the 3-transpositions commute.

e Hence A is regular, and G < Aut(A) is vertex-transitive.
o Figy: m = 3510, k = 693, H = 2.PSU(2);

o Fligg: n = 31671, k = 3510, H = 2. Fi99;

o Fi5,.2: n = 306936, k = 31671, H = 2 X Fiag

e Simplicity: Apply Iwasawa’s Criterion

o to the above primitive rank 3 actions on the vertices of A.



The Monster

o 3-transposition groups 22.PSU(2%) < 2.Figy < Fligg < Fih,.2
o embedding 2. Fligy < 22.2F4(2%): 2 into a 4-transposition group
o 21 My, < Fi%,, Todd action, 211 My, < Cop Golay action

o FISCHER, CONWAY [1968]:

? ? ?
22 F5(2%):2<2.B< M < ?

e Fischer-Griess Monster (Friendly Giant) M [1973]:

o a 6-transposition group of order
808017424794512875886459904961710757005754368000000000
—210.320.59.76.112.13% . 17-19-23-29-31 - 41 - 47- 59 - 71
~ 8- 107

o Smallest representation V' has dimension 196883,
o carrying structure of non-associative Griess algebra [1980)].

o Construction needs a thorough analysis of £ and Gay.

o The Leech lattice and Fischer groups are involved in M.



Monstrous Moonshine

e McKAy, THOMPSON [1979]:

o Fourier expansion of the elliptic modular j-function

J— T44 = 7' + 196884 - ¢ + 21493760 - ¢° + 864299970 - ¢° + - -

o has coefficients being character degrees of M.

e Moonshine Conjectures: [CONWAY, NORTON, 1979]
o There is an infinite-dimensional graded M-module
o inducing a relation between conjugacy classes of M

o and modular functions of genus 0.

e FRENKEL, LEPOWSKY, MEURMAN [1988]:
o construction of moonshine module,

o using vertex operators from conformal field theory.

e BORCHERDS [1992]:
o M-invariant vertex algebra on moonshine module,

o proving the Moonshine Conjectures.



How to construct a Monster?
[GRIESS, CONWAY, 1980/1985]

e G = Cy(2B) = 2172 Co,,

o where 22 = £/2£ and G1/Z(G,) = 22: Co;.

e Let Gy be the universal cover of (1, then Z(él) =V,

o giving rise to groups G5 # G = G of shape 2£L+24.C'01,

o with smallest faithful representations of dimension 2'? and 24 - 212,
o Vg, = 98304 6 98280 & 299, where

0 98304 = 4096 ® 24 = 2'? ® L, acted on by G5 and 2.Coy;

0 22|y, = [1,22, 1] uniserial, 2**: Coy having linear character 17,

08280 2 (11 ) 1

24 . .
27.Co1 monomial action;

01 @299 = S%(L) < L® L, acted on by Coy.

e Restrict to Gy > Gp =2 21124 (21 Myy) = 2201422 (2 % M),
e triality symmetry yields G5 < Gy = 2271122 (S5 % Myy).
o Vg, = 147456 @ 48576 & 828 @ 23

o 98304]032 = 49152 & 49152 and 552‘@12 = 276 © 276

Gy | 98304 08280 299
l N o
Gio| 98304 49152 48576 552 276 23
[ I N T T
Gy | 147456 48576 828 23




Monstrous groups

e Cy(2B) 2217 Co,

o C1/(34) = 3.Fil,

e Baby Monster B: [FISCHER, 1973]

o a 4-transposition group, arising as Cy;(24) = 2.B.

o Smallest representation has dimension 4371,
o is irreducible except in characteristic 2,
o and contains a vector with stabiliser 2.2E5(22): 2, yielding

o smallest permutation representation on 13571 955000 points

o [LEON, SiMs, 1980].

e Thompson group [1973] Th:
o 3C € M preimage of 3D with respect to 2i+24.C'01 — Coy
o gives rise to Cy(3C) = 3 x Th.

o CTh(QA) = 2}r+8../49

o Smallest representation has dimension 248,
o is globally irreducible,
o and yields an embedding Th < FEg(3).



Monstrous groups, 11

e Harada-Norton group [1973] HN:
o bA € M preimage of 5B with respect to 2£L+24.C'01 — Coy
o gives rise to Cpr(hA) =5 x HN.

o Cpn(2B) =2 2178 (A5 x A5).2

o Smallest representation has dimension 133 over Q[v/5],
o is irreducible except in characteristic 2,

o and does not yield an embedding into F7(5).

e Held group [1968] He:
o arises as Cy(TA) =7 x He.

o Any simple group having an involution centraliser 2170: PSL3(2)

o is isomorphic to PSL5(2), My, or He.



Pariahs

o There are just six sporadic groups not involved in M.

o WILSON: ‘The behaviour of these six groups is so bizarre that
any attempt to describe them ends up looking like a disconnected
sequence of unrelated facts — it is simply the nature of the subject.’

e Janko group [1965] J;:

o (', (24) = 2 x As;

o J; < Go(11),

o|Ji] =11-(11° —1)(11 + 1).

o WILSON [1986]: J; is not a subgroup of M.

e Janko group [1968] J;:
o has a single class of involutions and C',(24) = 21+ Aj;

o while Jy has two classes of involutions and C,(24) = C1,(24).

e Rudvalis group [1972] Ru



Pariahs, II

e O’Nan group [1973] ON:
o PARKER, RYBA [1988]: 3.0N < Glys(F7)
o SOICHER [1990]: action on 122760 points

e Lyons group [1969] Ly:

o Cr,(2A4) = 2. Ay,

o MEYER, NEUTSCH, PARKER [1985]: Ly < GLq111(F5)

e Janko group [1975] J;:

o Cy,(2A) = 2172 (3. Myy: 2)

o NORTON, PARKER, THACKRAY [1980]: J; < GL115(F),

o the original motivation to develop the MeatAxe.

Computational techniques
play an important role in the
construction and analysis of
the sporadic simple groups.



