

Design and analysis of multiple feedback loops using natural and synthetic genetic constructs

K V Venkatesh Department of Chemical Engineering IIT Bombay, Powai, Mumbai 400 076

Genotype to Phenotype: An Integrated Approach

Genotype to Phenotype: Modeling and Analysis

Logical networks ODE/PDE Delayed ODE Stochastic approach Multiscale

Data mining Estimation theory Nonlinear systems theory Feedback control theory Sensitivity

Key: Identify design principles

Simplicity in Biology

Alon, Nature 446:497 (2007)

- Diversity in genes NOT in motifs of regulatory networks
- These networks are robust (yet fragile)
- Combination of motifs yield new dynamical properties
- Network motifs conserved across organisms (animal, plant)

Analog Motifs in Natural Systems

- Freeman, *Nature*, **408**, 2000

- PI control (plasma calcium homeostasis in mammals)
- Negative feedback (autorepression)
- Positive feedback (growth in cell development)
- Negative/positive feedback (prolong weak signals)
- Feedforward (heat shock response)
- Cascades (insulin signaling pathways)

Engineered Versus Natural System

Engineered system: **bottom-up design** with known functionality of components Natural system: **top down design** with unknown inherent property of various motifs

Engineered Systems : Room Heater

SINGLE INPUT SINGLE OUTPUT (SISO)

Multiple Input Multiple Output: a motif observed in Biological System

Single output is regulating the multiple upstream processes

Tryptophan in E. coli (bacteria)

Ref. Venkatesh K V et al, 2004

Osmotic Stress Pathway in Yeast

Insulin Signaling Pathway in Mamma

¹³

Systems Analysis of the Tryptophan System in *Escherichia coli*

Modeling and Analysis of Tryptophan System in *Escherichia coli*

— Yanofsky and co-workers, 1972, 1984, 1987, 2000; Xie et al., 2003

- Goal: make tryptophan if none available in medium
- stop making tryptophan if available from medium
- Multiple feedback loop motif for autoregulation
- Widely occurring motif in biological systems (parallel cascade)
 - HOG pathway activation during osmotic shock (Hohmann, 2002)
 - Insulin signalling pathway (Sedaghat et al., 2002)
 - p53 regulation in cell cycle and apoptosis (Kohn, 1999)
 - circadian rhythms

F/B Mechanism II: Attenuation

Structural Enzymes

Anthranilate synthase

Phosphoribosyl anthranilate transferase

Indole glycerol phosphate synthase

Tryptophan synthase

F/B Mechanism III: Enzyme Inhibition

Models

- Bliss et al. (1982): repression and inhibition, time delays
- Sinha (1988): detailed repression, tryptophan consumption constant
- Sen and Liw (1990): non-constant tryptophan consumption
- Santillan Mackey (2001): attenuation is modeled
- Xiu et al. (2002): repressor autoregulation dynamics
- Bhartiya et al. (2003): model simplifications, attenuation not modeled
- Ruhela et al. (2004): attenuation modeled

A Systems-Relevant Model for Tryptophan System — Bhartiva, Rawool, Venkatesh, Eur. J. Biochem, 270, 20

Bhartiya, Rawool, Venkatesh, Eur. J. Biochem, 270, 2003
 Ruhela, Bhartiya and Venkatesh, FEBS Letters, 563, 2004

$$\frac{d}{dt}O_{F} = k_{1}O_{t}C_{1}(T_{t}) - k_{d,1}O_{F} - \mu O_{F}$$

Feedback Mechanism I: Genetic Repression

$$C_1(T_t) = \frac{K_1^{1.92}}{K_1^{1.92} + T_t^{1.92}}$$

Tryptophan System Model

Transcription

$$\frac{d}{dt}mRNA = k_2 O_R C_2(T_t) - k_{d,2}mRNA - \mu mRNA$$

Feedback Mechanism II: Attenuation

$$C_2(T_t) = \frac{K_1^{1.72}}{K_1^{1.72} + T_t^{1.72}}$$

Tryptophan System Model

Translation

$$\frac{d}{dt}E = k_3 m R N A - \mu E$$

Synthesis

$$\frac{d}{dt}T_s = k_4 C_3(T_t)E - g \frac{T_s}{k_g + T_s} - \mu T_s$$

Feedback Mechanism III: Enzyme Inhibition

$$C_3(T_t) = \frac{K_1^{1.2}}{K_1^{1.2} + T_t^{1.2}}$$

- Enables delineation of process and regulator
- Does not use delay differential equations

Tryptophan System in *Escherichia coli*: Regulator and Process — Venkatesh, Bhartiya and Ruhela,

 $T_{ext} \longrightarrow T_0 = f(T_{ext}, T_t)$

 FEBS Letters, 563, 2004

 Activation/Transcription
 Translation

Model Simulation and Validation

Network Structure: Multiple feedback loops for regulation of Processes-in-series

 $C_1C_2C_3$ active : Triple feedback loop

Results

Nominal performance

Robust performance

Frequency Response Analysis

System Response Under Different Nutritional Levels -Chaudhary, Bhartiya and Venkatesh, IET Systems Biology, 1, 2007

System Response Under Different Nutritional Levels -Chaudhary, Bhartiya and Venkatesh, IET Systems Biology, 1, 2007

Characterization of Nutritional Status

Studies with Nonlinear Model

Network Goal: Robust rise time necessary for survival during starvation

Nominal Performance

- Rapid tryptophan synthesis in severely to mildly starved conditions
- Under starvation, rise time of 5 minutes regardless of initial state
- Under well-fed conditions, sluggish shut-off of synthesis
- Identified three regions of nutrition

Results

Nominal performance

Robust performance

Frequency Response Analysis

Perturbations

$C_1C_2C_3$ active v/s C_1 active Design

 $C_1C_2C_3$ active : Triple feedback loop

Are Multiple feedbacks loops a regulatory overkill? (Freeman, Nature, 2003).

Starvation: $C_1C_2C_3$ active v/s C_1 active design

Starvation: Improve C_1 active mutant performance by retuning

 Retuning of single loop not sufficient to yield performance as in multiple loop design

 Multiple feedback architecture is key to meet physiological needs

• Settling time = 30 min

[•] Rise time = 5 min

Robust Performance Metrics

Network Goals

- Rise time (time needed to first attain 5% of final value)
- Root mean square error (error relative to nominal performance)

$$I(p,s) = \frac{1}{\sqrt{t_f}} \sqrt{\int_{0}^{t_f} \left[O(t,p,s) - O^*(t,p^*,s^*)\right]^2} dt$$

• Perturb one parameter at a time (co-ordinate directions only)

Robust Performance: $C_1C_2C_3$ active v/s C_1 active design; Metric: Rise time

Bhartiya, Chaudhary, Venkatesh and Doyle, Royal Society Interface, 2006

Robust Performance: $C_1C_2C_3$ active v/s C_1 active design; Metric: I(p,s)

Robust Performance: $C_1 C_2 C_3$ active v/s C_1 active design

- Multiple loop design yields superior dynamic performance
- Multiple loop design is robust thus making parameter values irrelevant (non-model based)
- Multiple loop design advantage for both *trp* physiological system as well as linearized system
- Robust to parameters yet fragile to structural mutations (HOT, RYF)

Results

Nominal performance

Robust performance

Frequency Response Analysis

Frequency Response of Linearized *Trp* system $C_1C_2C_3$ active versus C_1 active mutant

Noise Simulation with in vivo regulators: Injected at en transcription- A Langevin Approach

Simulation with Sub-Sensitive Regulation

- η_H for $C_{1,} C_2$ and C_3 is 0.5
- Multiple feedback is more noisy

 Observation: Is ultrasensitivity is responsible for noise mitigation?

- Quasi-linearisation: Approximation of a nonlinear system by a linear one, which depend on some properties of the input
- Describing Functions: quasi-linear approximating functionsdescribe the transfer characteristics of a nonlinearity
- The graphical method described by Gelb and Vander Velde (1968) used to plot frequency response
- The tryptophan system is quasi-linearised around steady state concentration $T=4.21\ \mu M$
- Since the Hill equation represents an asymmetric nonlinearity, we divide it into two regions

Role Of Ultrasensitivity in Multiple Loop

Design Bavdekar, Venkatesh and Bhartiya, AIChE Annual Meeting, Indianapolis, 2005

•Subsensitive Design: η_H for $C_{1,} C_2$ and C_3 is 0.5

•<u>Observation</u>: ultrasensitivity results in higher roll-off as well as retain higher bandwidth

Conclusions

- Tryptophan System
 - Multiple feedback loops give bacterium a niche for survival during severe starvation
 - Nonlinear regulators counter the effect of fluctuations in nutritional environment
 - A prototype for analysis of naturally evolved systems

Implementation of multiple feed back loop strategy in a synthetic network

Designed and Implemented a synthetic genetic network with multiple feedbacks

Modeling –

Detailed molecular
mechanisms based model
Stochastic modeling
Control analysis

Modeling and Experiments for characterization of the network

<u>Experiments</u>
Protein expression by FACS
Characterization of phenotype in the synthetic constructs

Approach

Linking protein expression to growth

Components of Synthetic Constructs

• Use of existing bio-bricks

• Four promoter sites used for the constructs: pTet, pLac, pMB1 and pLacOP.

Portion replication pMB1 and pLacOP : promoters for plasmid replication.

• To characterize amount of LacI: LacI-CFP fusion protein.

• To characterize plasmid copy number: **YFP** expression.

Lacl-CFP

Promoter site

Characteristics of promoters used for Plasmid Replication

LacI regulation in pTet and pLac

Constructs

Molecular Map of the Construct

Modeling Methodologies

- <u>Detailed Dynamic Modeling</u> using all known molecular interactions
- <u>Stochastic Analysis</u> on a simplified model using Langevin approach
- <u>Frequency response analysis</u> on the linearised model

Prediction of Steady State Expression of Y (Plasmid Copy Number)

Control Analysis to Characterize System Behavio

Block diagram for the Linearised LacI system

Frequency Response Analysis

Stochastic Modeling on Growth Rate

For perturbation of the kinetic parameters around the mean value, we see MIMO has the least variance compared to open loop or a single feedback system

Experimental Validation

- Experiments with various IPTG concentrations were conducted.
- Protein expression measured as YFP using FACS to quantify plasmid copy number.
- Mean and Variance obtained from the distribution.

Experimental YFP expression (characterizing Plasmid Copy Number)

 Open Loop and SISO_LacI: No increase in YFP with inducer
 SISO_CN and MIMO: expression increase with inducer

Higher variance in open loop

Characterization of LacI expression

- An indirect measure of LacI was obtained by measuring β -galactosidase from the *lacZ* of the host.
- Further the growth rate of the four transformants were also enumerated.

Experimental Results

Noise in protein expression propagates to growth

The variance in specific growth rate is less compared to that observed in protein expression.

Agar Plate Experiments

Strains were grown on agar plate with different lactose concentrations.

Colony Forming Units in the agar plates were counted.

Variance in Open Loop is 40 % and MIMO is 10%. Agar Plate Experiment (without IPTG)

Recapitulating...

- Robustness in protein expression which leads to low variance in specific growth rate.
- The noise in protein expression is filtered leading to a decrease in the variance in growth rate. This may be due to metabolism and division process.
- The transformants with the synthetic network yields distinct phenotypic response.

Collaborators / Students

Prof. Sharad Bhratiya (IITB)
Dr. Mukund Thattai (NCBS)
Nikhil Chaudhary (PhD, IITB)
iGEM team 2009
Pushkar Malakar (PhD, IITB)

Thank you!!