Study of signalling pathways using constrained-based modelling techniques

Ram Rup Sarkar

Mathematical and Computational Biology Group, Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India

ICM 2010 Satellite Meeting, HICC, Hyderabad

A "get-together"

o Remarkable advances to explain the components of cellular pathways and gene networks

 \circ They provide a snapshot of the complete genetic activity of a cell

- Better understanding of cellular physiology
- Identification of missing links or new pathways and routes
- Identification of target molecules
- Understanding the unicellular metabolism and signalling events

Objective

To study T-cell Receptor and MAPK signalling pathways and hence identify important molecules that are involved in Immune and Cancer cells

Our Work

- Reconstruction of T-cell Receptor and MAPK Signalling Pathways
- Mathematical Modeling of the reconstructed pathways using Boolean formalism
- Application of Constrained-based technique
 - Logical Steady State Analysis
- Identification of optimal intervention points (targets) and optimal / shortest / alternative paths
- Connecting to other pathways related to immune and cancers

Signalling pathways

- The <u>cascade of processes</u> by which an extra-cellular signal (typically *hormone, neurotransmitter, antigen*) interacts with a receptor at the cell surface, causing a change in the level of a secondary messenger (for example, calcium or cyclic AMP)
- Effects a change in the cell's functioning (for example, *Cellular proliferation and differentiation, cytokine production, apoptosis, expression of genes*).

Why model Signal Networks?

- To understand the biochemical processes involved in the cell
- Identify difference of mechanism between species
- Identification and Regulation of Key Species
- Predict the effects of drugs on Signal Transduction
 - e.g. what protein should be disrupted to prevent T-cell Hyperproliferation
- Many disease processes involve changes in the normal pathways
 - e.g. change in signalling pattern in cancer cells

Immune System and the Problem of Cancer

- Cancer: one of the greatest killers in world
 - 15 percent of all human deaths 7.6 million deaths in 2007
- The mechanisms of establishment and destruction of the disease is still not clear and there is a need to address not only preventive measures but also more successful treatment strategies

Mathematical understanding of the problem captures some essential characteristics of cancer cell kinetics

Efforts along these lines are now being investigated through *Tumor-Immune* interaction or *Immunotherapy*

The question is how much we can activate the immune system (specifically CTLs) or increase the production of cytokines to control the tumour progression?

Identification and Modelling of Pathways in Immune (T-cells) and Cancer Cells

Major Pathways

- MAPK Pathway
- TGF-Beta Pathway
- PI3-Kinase Pathway
- Calcium Pathway
- Signal Transduction by Growth Factor Receptors
- Cell Cycle
 - CKI-CDK-RB Pathway
 - ARF-MDM2-p53 Pathway
- mTOR Pathway
- VEGF Pathway
- WNT Pathway
- T Cell Receptor Pathway
- Apoptosis

Mitogen Activated Protein Kinase pathway (MAPK)

- Mitogens Chemical substances that triggers mitosis
- Ser/Thr specific protein kinases
- Occurs in almost all kinds of cells
- Responses like Proliferation, differentiation
- Specific Mutations cause uncontrolled proliferation → Cancer
- Studying this pathway can help understanding the progression of the disease

T-cell Receptor Pathway

- Major Signal transduction pathways in Tcells
- Involved in cytokine production, activation of apoptosis and other pathways
- Identification of T11TS/SLFA3 induce pathway

Basic Network

Signalling Pathway Databases

Signaling Pathways Database Name (Order: alphabetically | by web popularity 0) Availability Standards AfCS - Alliance for Cellular Signaling Molecule Pages Database Free aMAZE - Protein Function and Biochemical Pathways Project Free SBM BioModels - BioModels Database Free CA1Neuron - Pathways of the hippocampal CA1 neuron Free Cancer Cell Map - The Cancer Cell Map Free BioPAX CellML Repository - CellML Model Repository Free CellML COPE - Cytokines Online Pathfinder Encyclopedia Free Free CSNDB - Cell Signaling Networks Database CST - Cell Signaling Technology Pathway Database Free DOQCS - Database of Quantitative Cellular Signaling Free \$ DSM - Dynamic Signaling Maps Free eMIM - Electronic Molecular Interaction Map GeneNet - Genetic Networks Free

Problems

- Single molecule activated by multiple molecules
- Difficulty in targeting molecules produced inside the cell
- Multiple pathways connected through multiple molecules
- Single molecule activates multiple pathways
- To get a comprehensive picture of the entire pathway

Why do we need reconstruction?

- Numerous signaling databases present online
- Inconsistent & Incomplete data available on different databases.

Database	Molecules in MAPK signaling pathway	Interactions in MAPK signaling pathway					
KEGG	179	110					
Protein Lounge	120	75					
Cell Signaling	155 (90+35+30)	120 (60+25+35)					
Panther	36	44					
BioModels	34 (26+8)	30 (20+10)					
NPID	80 (45+35)	95 (55+40)					

We studied > 15 databases for T-cell Receptor and MAPK signaling pathways and cross-checked with > 100 published papers

Protein Lounge vs KEGG

Recent Methodologies

Optimization techniques are being applied to pathways to understand the control architecture and functional properties

---- e.g. Flux Balance Analysis (FBA), and similar techniques (LSSA) are also used to study the signalling pathways

Flux Balance Analysis: Creating an *in silico* model in order to describe an organisms metabolism in steady state

Logical Steady State Analysis (LSSA)

- Boolean or logical networks have been extensively used for modelling signaling or gene regulatory networks, including feedback circuits.
- LSSA allows to form a user-defined scenario (consisting of a set of input)

Klamt et al., BMC Bioinformatics (2006)

Procedures followed

Logical Equations & Interaction Graphs

Grh2	DKC	OP		Grb2-SOS PKC											
SOS	FIC					2									
				1	<u> </u>		6)							
0	0	0	0	RAS PI3K											
0	1	1	0		ト			Grb2-SOS: Growth factor receptor- bound protein – Son of Sevenless (GEF)							
1	0	1	0	6	4										
1	1	1	1	Gap1m				PKC: Protein Kinase C							
Activators = Grh2-SOS + PKC]		Gap1m: RAS GTP-ase activating protein									
			! = NOT (or Inhibition)				Rac' GTP-ases								
Activa	Gap1	OR	AND												
tors	m							PI3K: Phosphoinositide 3 kinase							
				Inter	action	Graph	l	Interaction Hyper-graph							
0	0→1	1	0	1(+)	2(+)	3(-)	4(+	-)	(1	+2)&14	3				
0		0	0	1	0	0	0		(-						
0	170	0	0		U	U	U	Grb2-SUS		-1	0	Grb2-SOS			
1	$0 \rightarrow 1$	1	1	0	-1	0	0	РКС		-1	0	РКС			
1	1 -> 0	1	0	0	0	1	0	РІЗК		0	1	РІЗК			
1 1 7 0		1	U	0	0	0	-1	Gap1m		-1	0	Gap1m			
RAS = Activators.!Gap1m															

Logical equations and Interaction graphs

ZAP70	c(CBL — TC	Rbind		A)			XKT pathw	ay 3		 BAD	>
ZAP70 —	→ c(CBL TC +	Rbind ! CBL		PII	23	[AKT 1	1)			~
		! = NOT		B) Int	eracti	on gra	որհ	[4 🔪 G	 SK3	8)	
ZAP70	cCBL	TCRbind + !cCBL	ZAP70	1(- -1	+) 2(+ 0	-) 3(-) 0	0 4(-)	PIP3	c) Inter: 1&2	actio	n hyp 4	er-graph
0	0	1 + 1	1	0	-1	0	0	PDPk1	-1	0	0	PIP3
1	1	0 + 0	0	1	1	-1	-1	AKT1	-1	0	0	PDPk1
				0	0	1	0	BAD	1	-1	-1	AKT1
TCRbind: T-	Cell Recept	or bound complex (T	CR		0	•	1	CCV29	0	1	0	BAD
+MHCpeptid Kinase of 70	le), ZAP70: 7) kDa, cCBL	Zeta-Chain (TCR) Ass : cbl oncogene, E3 u	sociated Protei biquitin ligase	ר ע	U	U	1	GOR39	0	0	1	GSK38

PDPK1: 3-phosphoinositide dependent protein kinase-1, PIP3: Phosphatidylinositol (3,4,5)-trisphosphate, Akt1: PKB protein kinase B. BAD: BcI-2-associated death promoter (BAD) protien, GSK3B: Glycogen synthase kinase 3 beta

The signed graph can be stored by an $m \times q$ incidence matrix B in which the columns correspond to the q arcs (interactions) and the rows to the m nodes (species).

For the k-th arc $\{i, j, s\}$ a (-1) is stored in the k-th column of B for the tail vertex (1) and (+1) for the head vertex (j) of arc k.

 $B_{i,k} = -1$ and $B_{j,k} = 1$ and $B_{l,k} = 0$ ($l \neq i, j$). For storing the signs, a *q*-vector s is introduced whose k-th element is (+1) if arc k is positive and (-1) if k is negative.

Effect on Transcription factors varying PTEN

Logical Interpretation and Analysis

i has activating and inhibiting effect on j i is an independent inhibitor of j

Identification of Key Species

- Interactions with more number of molecules
- Influencing low number but crucial molecules
- Transcription factors leading to important pathways/cellular responses

CD28:Cluster of Determinants 28, ATF2: Activating Transcription Factor-2, TCRphos:T-Cell Receptor phosphorylated, FYN: Src family tyrosine kinase, LCK: leukocyte-specific protein tyrosine kinase, FOS: Cellular Oncogene Fos, CREB: Cyclic AMP Reponse element(CRE) binding protein, TRIM: T-Cell Receptor Interacting Molecule etc.

VAV: uanine nucleotide exchange factors for Rho family GTPase, RAC: GTP-binding proteins members of the Rho family, LAT: Linker for Activation of T-Cells, PAK: p21/CDC42/Rac1-Activated Kinase-1, DAG: Diacylglycerol, IP3: Inositol Triphosphate

PI3K: Phosphoinositide-3-Kinase-Class-3, CTLA4: cytotoxic T-lymphocyte-associated protein 4, SHP2: SH2-containing Protein tyrosine Phosphatase-2

Transcription factors leading to significant effects on Functional Response and other pathways

Conclusion

> This study is important to identify important molecules, related subpathways for further experimental study and Identifies possible alternative pathways and optimal intervention points (targets)

Signalling networks for T-Cell Receptor pathway that gets activated by various external molecules (B7-1,B7-2,MHC-peptide,CD58, etc) on binding with their respective receptors (CD28,CTLA4,TCR,CD2) are analysed using LSSA.

>TNF α produced by T-Cell binds to the death receptors in the glioma cells and induce apoptosis in them. FAS ligand (activated by IL2) also binds to the death receptor and induce apoptosis.

Study of MAPK pathways also reveal few key molecules, IL-1, B-Raf, which can act as better target for controlling cancer.

> LAT could be an effective drug target for the auto-immune disease where hyper proliferation of T-Cell occurs. LAT is a trans-membrane protein, which could be easily targeted from the exterior of the cell and could be used as immuno – suppressant.

 Our study helps to identify the target species in the entire T-Cell receptor and MAPK pathway, and could be helpful for potential drug targeting.
The entire approach constitutes a primary study of system level understanding of the immune and cancer cells.

Emerging area to study the entire system

Acknowledgement

INSA-IAS-NASI Summer Students

M. Rahuman Sheriff Naveen Joshi Sonia Chothani

Dr. Somdatta Sinha (Group Leader)

T_c Cell vs. Cancer cell

Thank You