The origins, consequences, and uses of cell-to-cell variability

Mukund Thattai National Centre for Biological Sciences, Tata Institute of Fundamental Research

ICM Satellite Conference August 2010

What I'm not going to talk about... open loops and closed loops in bacteria

Variability is a fundamental property of living matter at molecular scales...

All life is made of cells Cells are small Small means noisy

... but macroscopic outcomes are precise

Cells contain low numbers of macromolecules

"Noise" arises from the discreteness of molecules and reactions

0

2.5

5.0

t

7.5

continuous

discrete,

What chemistry actually looks like

The rate *k* is the probability of a single event per unit time

inter-event times are exponentially distributed...

$$\mathscr{O}(\Delta t) = k e^{-k\Delta t}$$

...and can be simulated using a uniform random variable

$$\Delta t = \frac{1}{k} \ln \left(\frac{1}{u} \right)$$

mRNA: the Poisson distribution

Deterministic
$$\frac{dy}{dt} = k_R - \gamma_R y \equiv f_y - g_y$$

Data an Oudenaarden, PNAS (2001)

Gene expression: three ways to reduce noise

Dattai & van Oudenaarden, PNAS (2001)

Intrinsic and extrinsic noise

Dzbudak et al., Nature Genet., 2002; Elowitz et al., Science, 2002

Molecule numbers obey a diffusion equation

Fokker-Planck

Langevin

$$\frac{dy}{dt} = f(y) - g(y) + \eta(t)$$
$$\langle \eta(t) \rangle = 0, \quad \langle \eta(t)\eta(t+\tau) \rangle = (f+g)\delta(\tau)$$

Noise can propagate through a cascade

🛄 Thattai & van Oudenaarden, Biophysj, 2002

Negative feedback can reduce fluctuations

But care needed: rapid response can sometimes increase noise

Noise can flip a bistable switch

Dzbudak & Thattai et al., Nature, 2004

Single cells can use noise to hedge bets

🛄 Thattai & van Oudenaarden, Genetics, 2004; Acar, Mettetal & van Oudenaarden, Nature Genet., 2008; Kussell et al., 2005

Beyond gene expression: cell-to-cell variability in cellular activity and morphology

Nuclear

G12,G13

G14,G15

Clathirin ("Tfr") Pathway: Alexa568-Transferrin

Drosophila SR+ cells.

Colour-code indicates mean intensity of internalized FITC-Dextran

[Data from Jitu Mayor's lab]

Dey et al., in preparation

Screening for components of the endocytic machinery

in a Drosophila cell line

shows systematic variation

Population distributions come to the rescue

Rescale by subtracting the mean and dividing by the stddev

Normalization generates reproducible distributions...

Negative control wells

Population distributions come to the rescue

Rescale by subtracting the mean and dividing by the stddev

Normalization generates reproducible distributions...

... while preserving the distinction between negative and positive controls

Negative control wells

Dey et al., in preparation

We can use variability to find molecular players

GO ID (Description)	GO Term	p-value (corrected)
GO:0005665 (transcription)	DNA-directed RNA pol II, core	3.4e-4 (0.015)
GO:0005686 (mRNA processing)	U2 snRNP	5.7e-5 (<0.01)
GO:0030532 (mRNA processing)	snRNP complex	1.1e-4 (<0.01)
GO:0008541 (proteolysis)	proteasome reg. particle, lid	2.0e-4 (<0.01)
GO:0008540 (proteolysis)	proteasome reg. particle, base	2.2e-5 (<0.01)
GO:0045298 (cytoskeleton)	tubulin complex	1.1e-3 (0.06)
GO:0030126 (vesicular traffic)	COPI vesicle coat	5.8e-5 (<0.01)

Origins and consequences of cell-to-cell variability

With: Alexander van Oudenaarden, Ertugrul Ozbudak, Murat Acar (MIT) & Boris Shraiman (KITP)

Exploiting cell-to-cell variability to probe cellular processes

With: Jitu Mayor, Gagan Gupta, Gautam Dey (NCBS)

Mukund Thattai thattai@ncbs.res.in

