

Control and Optimization of Lignin Biosynthesis in Plant Cell Walls

Yun Lee and Eberhard O. Voit

Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology Atlanta, GA 30332 www.bst.bme.gatech.edu

ICM Satellite Meeting Hyderabad, August 16-18, 2010

In College I was told that Biology was too complicated to use Math.

We have learned by now that Biology is too complicated *not* to use Math.

Overview

- Context: Sustainable biofuel production
- Plant cell wall composition; role of lignin; monolignols
- Recalcitrance directly related to lignin content and composition (S/G/H)
- Study lignin biosynthesis in:
 - Poplar
 - Alfalfa
 - Switchgrass
- Methods
 - Stoichiometric analysis (static network analysis)
 - Optimization analysis (FBA, MOMA; constrained network analysis)
 - Biochemical Systems Theory (BST; fully kinetic, dynamic analysis)
- Results

Bioenergy.msu.edu; Virginia Tech news; jcwinnie.biz/wordpress/?p=1934

Plant Cell Walls

micro.magnet.fsu.edu

Plant Cell Walls

Lignin is a Natural Polymer ("Wood")

Task: remove or reduce lignin to access cellulose

wikipedia

Task: Develop Mathematical Pathway Model for Lignin Biosynthesis

- Model design
 - Choices of models
 - Stoichiometric
 - Dynamic
- Model analysis
 - Insights into pathways
 - Conversion of stoichiometric into dynamic models
 - Optimization
- Results
 - Suggestions from optimization
 - New postulates

Change in substrate concentrations (S) is a function of fluxes
(R) and of the stoichiometric matrix N; at steady state:

 $d\mathbf{S}/dt = \mathbf{N} \cdot \mathbf{R} = 0$

No unique solution: optimize some criterion (growth rate)

Constraint-Based Flux-Balance Analysis (FBA) Reduce solution space with physico-chemical constraints

FBA and MOMA

- Starting Point: dS/dt = N·R = 0 (No unique solution)
- FBA: optimize some criterion under additional constraints
- MOMA ("Minimization of Metabolic Adjustment"):

Transgenic strain tries to emulate wild type as much as possible; optimum inferior

Stoichiometric and Flux Balance Analysis

Advantages:

No kinetic details needed, just topology and fluxes Linear system: no real size limitation Steady-state solution space given by "kernel" Straightforward optimization Solution optimizes a desirable criterion (*e.g.*, growth rate)

Limitations:

Kinetic information cannot be used No nonlinearities allowed No regulatory signals can be considered, but: Optimal strategies of flux alteration affected by signals Arbitrariness in objective function for optimization

Choice of Dynamic Model Structure

$$\dot{X}_i = \frac{dX_i}{dt} = V_i^+ - V_i^-$$

$$V_i^+ = V_i^+ (X_1, X_2, \dots, X_n, X_{n+1}, \dots, X_{n+m})$$

complicated

inside

outside

Solution with Potential:

$$V_{ik}^{+/-} = \gamma_{i,k} \prod_{j=1}^n X_j^{f_{k,i,j}}$$

"Biochemical Systems Theory" (BST)

Alternative Formulations Within BST

Alternative Formulations

S-system Form:

$$\dot{X}_{i} = \alpha_{i} X_{1}^{g_{i1}} X_{2}^{g_{i2}} \dots X_{n+m}^{g_{i,n+m}} - \beta_{i} X_{1}^{h_{i1}} X_{2}^{h_{i2}} \dots X_{n+m}^{h_{i,n+m}}$$

Advantages of BST Models

Prescribed model design: Rules for translating diagrams into equations; rules can be automated

Direct interpretability of parameters and other features

One-to-one relationship between parameters and model structure simplifies parameter estimation and model identification

Simplified steady-state computations (for S-systems), including steady-state equations, stability, sensitivities, gains

Simplified optimization under steady-state conditions

Efficient numerical solutions and time-dependent sensitivities

In some sense minimal bias of model choice and minimal model size; easy scalability

S-system Steady-State Equations Linear

$$\dot{X}_{i} = \alpha_{i} X_{1}^{g_{i1}} X_{2}^{g_{i2}} \dots X_{n+m}^{g_{i,n+m}} - \beta_{i} X_{1}^{h_{i1}} X_{2}^{h_{i2}} \dots X_{n+m}^{h_{i,n+m}} = 0$$

Define $Y_i = \log(X_i)$:

$$\log \alpha_{i} + g_{i1}Y_{1} + g_{i2}Y_{2} + g_{i,n+m}Y_{n+m}$$
$$= \log \beta_{i} + h_{i1}Y_{1} + h_{i2}Y_{2} + h_{i,n+m}Y_{n+m}$$

$$\mathbf{Y}_D = \mathbf{A}_D^{-1} \cdot \mathbf{b} - \mathbf{A}_D^{-1} \cdot \mathbf{A}_I \cdot \mathbf{Y}_I$$

S-system highly nonlinear, but steady-state equations linear.

Pathway Optimization with S-systems

Optimization under steady-state (batch) conditions becomes

Linear Program

even though (nonlinear) kinetics is taken into account:

maximize log(flux) [or log(variable)]

subject to:

Steady-state conditions in log(variables)

Constraints on log(variables)

Constraints on log(fluxes)

Pathway Optimization (continued)

Great Advantage:

Methods of Operations Research applicable

- very well understood
- applicable for over 1,000 simultaneous variables
- robust and efficient
- incomparably faster than nonlinear methods

Torres, Alvarez, Voit, ...: Applications (*e.g.*, citric acid, ethanol, glycerol, L-carnitine)

Hatzimanikatis, Bailey, Floudas, 1996: Use these features for optimization of pathway structure

Marin-Sanguino, Torres, Polisetty, Gatzke, Voit, ...: Extension to GMA models via iterative methods, branch-and-reduce methods, geometric programming

Example

Citric acid yield:

Optimization prescribes enzyme activity levels that lead to maximal citric acid production while satisfying constraints on metabolites and fluxes.

Maximal increase: ~ 12 fold

Notable Results

Citric acid system contains ~ 20 accessible enzymes / genes

Optimize by allowing changes in all enzymes: Yield increased ~ 12 fold

- Q: If only a single enzyme may be changed, which one should it be? How much could yield be increased?
- A: No matter which enzyme is changed, yield does not really increase!
- Q: Change 2, 3, ... enzymes. Yield improvement?
- A: 2: none; 3: none, 4-6: almost none; 7 needed for ~3 fold yield!

Interpretation: Standard techniques have found the easy solutions!

Applications of BST

Pathways: purines, glycolysis, citric acid, TCA, red blood cell, trehalose, sphingolipids, lignin, ...

Genes: circuitry, regulation, expression patterns, ...

Signaling: MAPK, BMP4 (atherosclerosis)

Growth, immunology, pharmaceutical science, forestry, ...

Metabolic engineering: optimize yield in microbial pathways

Dynamic labeling analyses possible

Math: recasting, function classification, bifurcation analysis,...

Statistics: S-system representation, S-distribution, trends; applied to seafood safety, marine mammals, health economics

Lignin Biosynthesis in Populus

Need for a Model:

Multiple use of the same enzyme

Modeling Lignin Biosynthesis in Populus

Five Modeling Steps:

- Convert FBA model into dynamic BST model, using additional literature information and default assumptions
 dynamic model structure
- 3. "Train" model with some data (transgenic lines)
- 5. Use BST model, for instance, to propose optimized strains

Dynamic BST Modeling of Lignin Biosynthesis in Populus

- Convert FBA model into dynamic BST model
- Optimization of the pathway toward higher xylose production by minimization of the S/G ratio

No. of Enzymes	Modified Enzymes	S/G Ratio
Wild-type	N/A	1.8
1	CAld5H (76%)	↓38% 1.34 ↓↓25%
2	COMT (96%), CAld5H (71%)	1.29
3	C4H (431%), CAD (167%), CAld5H (134%)	1.11

- According to the optimization results, one could achieve ~40% reduction in the S/G ratio by modifying three enzymes and ~25% by modifying just one enzyme (CAld5H)
- The set of two enzymes is not a subset of the set of three enzymes!
- CAld5H: Scenario 1: decrease; Scenario 2: increase!

Optimization of Lignin Biosynthesis

Mathematical Modeling of Lignin Biosynthesis in Alfalfa (*Medicago sativa L*.)

- Lignin pathway important:
 - Model of biofuel production; issues of recalcitrance
 - Enormously important feedstock; digestibility hindered by lignin

Modeling Development

Steps of Analysis:

- Use gene/enzyme-modulation data from R. Dixon's group (Noble Center, Oklahoma)
- 2. Consider differences among internodes
- 3. Train and validate MOMA model with data
- 4. Analyze S/G trends during growth
- 5. Interpret results; formulate postulates
- 6. Convert FBA model into BST model; propose optimized strains (not yet done)

Data: Enzyme (Gene) Knock-Downs Α phenylalanine cinnamic 🔶 Wild-type PAL 0.9 acid ↓с4н ---▲---COMT↓ 0.8 *p*-coumaroyl-0.7 $\longrightarrow p$ -coumaryl $\longrightarrow p$ -coumaryl Γ p-coumaric н CCR2 aldehyde CAD alcohol CoA acid 0.6 (ບັ ເງິ 0.5 ∫нст Cell wall Cytoplasm p-coumaroyl-0.4 shikimate 0.3 ∫сзн 0.2 0. caffeoylshikimate 0∟ 1-2 4 5 6 ∫нст Internode number caffeoyl-CoA -→ caffeoyl ccr2 aldehyde Β 1.4 —**—**PAL↓ **CCoAOMT** COMT 1.2 ---**≜**---C4H↓ feruloyl-CoA -→ coniferyl G coniferyl CCR1 CAD alcohol aldehyde 0.8 F5H F5H s/g 0.6 5-hydroxy 5-hydroxy coniferyl coniferyl 0.4 alcohol aldehyoe 0.2 сомт COM sinapyl S sinapyl CAD 1-2 3 4 5 6 7 aldehyde alcohol Internode number

Critical Questions

Is the pathway correct as presently assumed?
Are there independent pathways to G and S lignin?

Revisedly path ptag pathway

Answer: NO

First Result: Dynamic Flux Distributions

Representation of Model Results

Postulate: Additional Processes

Model-Based Resolution of a Puzzle

Puzzle: Down-regulation of CCoAOMT results in different S/G ratio than wild type, even though alteration occurs before common precursors

Some cinnamic acid derivative X controls "S-channel" and "G-channel"

Next Steps

Experimental verification / refutation of postulates

Conversion of FBA/MOMA model into dynamic BST model

Optimization of BST model toward reduced S/G ratio

Experimental verification / refutation of knock-down combinations suggested by optimization

Execute similar analysis for switchgrass and other bioenergy crops

Summary

- o Pathways of lignin biosynthesis are not fully understood
- Intuitive predictions are problematic because of multiple uses of the same enzymes and because of regulation
- o Modeling can add genuine value to experimental data
- o Kinetic pathway information in the literature is scarce
- o Gene modulation data are of tremendous benefit
- Principles and methods shown here also apply to modeling of lignin degradation
- o We are very grateful for DOE-BESC support

www.bst.bme.gatech.edu