
Correlation of metabolic network structure of extremophiles to optimal growth temperature

C Suguna Centre for Cellular and Molecular Biology, Hyderabad

> ICMSat , Hyderabad 16-18 Aug. 2010

long-term exposure to temperatures

Types of Extremophiles

- Acidophile- Low pH values
- Alkaliphile High pH values.
- Anaerobe Absence of oxygen.
- Endolith Inside rocks or grains.
- Halophile High salt concentrations.
- Oligotroph limited nutrient conditions
- Barophiles High hydrostatic pressure.
- Xerophile Low water activity
- Psychrophiles Low temperatures
- Thermophiles & hyperthermophiles High temperatures

Optimal Growth Temperature

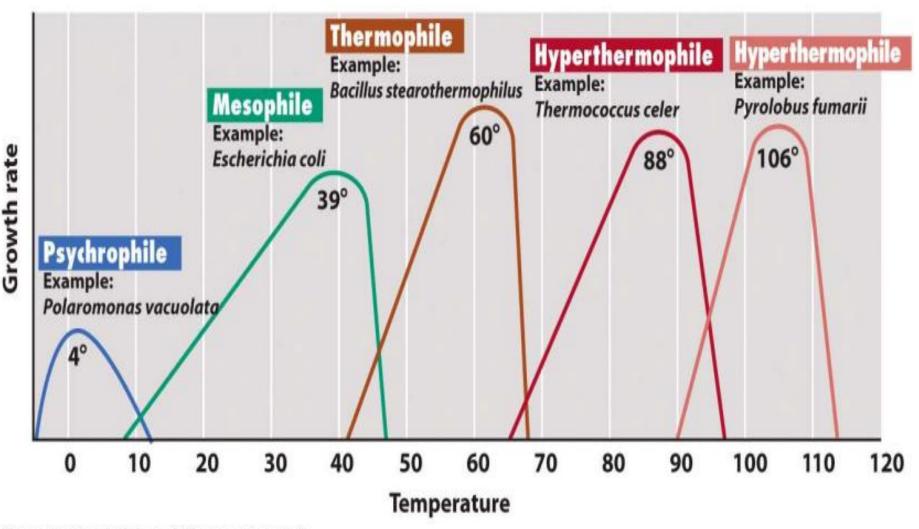


Figure 6-17 Brock Biology of Microorganisms 11/e

NCBI classification based on life-style

- 1. Aquatic live in fresh or seawater and not associated with hosts.
- 2. Host Associated
 - a) Obligate associated with host (intracellular/ extracellular) has little contact with outside world.
 - b) Facultative free living bacteria such as *E. coli* that often associate with a host.
- 3. Multiple multiple different kinds of environments Ex: wide host range or different environments
- 4. Specialized live in specialized environments ex: marine thermal vents.
- 5. Terrestrial live in the soil

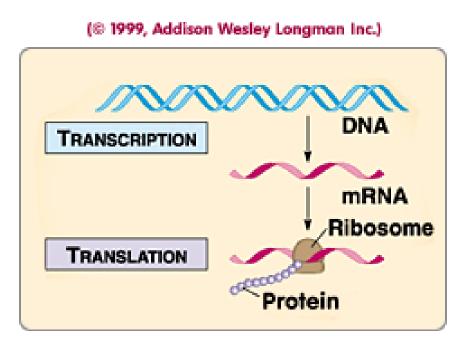
Organisms studied

165 prokaryotes (includes bacteria & archea) living in varying environmental conditions

	Number of Organisms	Range of optimal growth temperature			
		Psychro	Meso	Thermo	Hyperthermo
Α	18	2	8	4	4
HA	50	2	47	0	1
Μ	50	1	43	2	0
S	31	3	7	15	6
Т	16	0	14	4	2
Total	165	8	119	25	13

Construct metabolic network from genome information & analyse using graph theory

Methanococcoides burtonii


Salmonella typhimurium

- Irrespective of the shape, size or environmental conditions all organisms are optimized to function robustly and efficiently.
- Aim to understand the factors which give rise to cellular economy & robustness in presence of noise and wide variety of environmental conditions.

Control and Optimzation in Cells

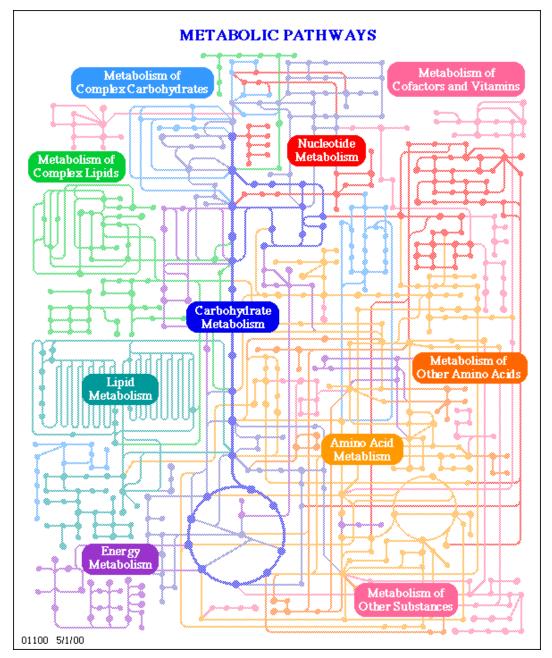
Pathways controlled through enzymatic regulation, through positive & negative feedback Only enzymes required for survival synthesized Only in required amounts and only when required

Structural proteins

basic building blocks (ex: collagen)

Transmembrane

- regulating cell volume,
- generation of ionic gradients (ex: sodium/potassium pump).

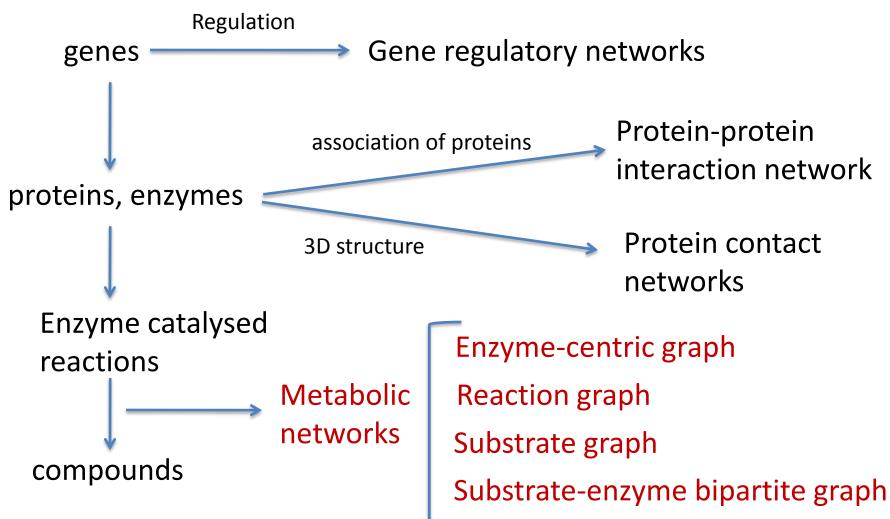

Enzymes

•Catalyze biochemical reactions of different metabolic pathways (ex: glycolysis pathway).

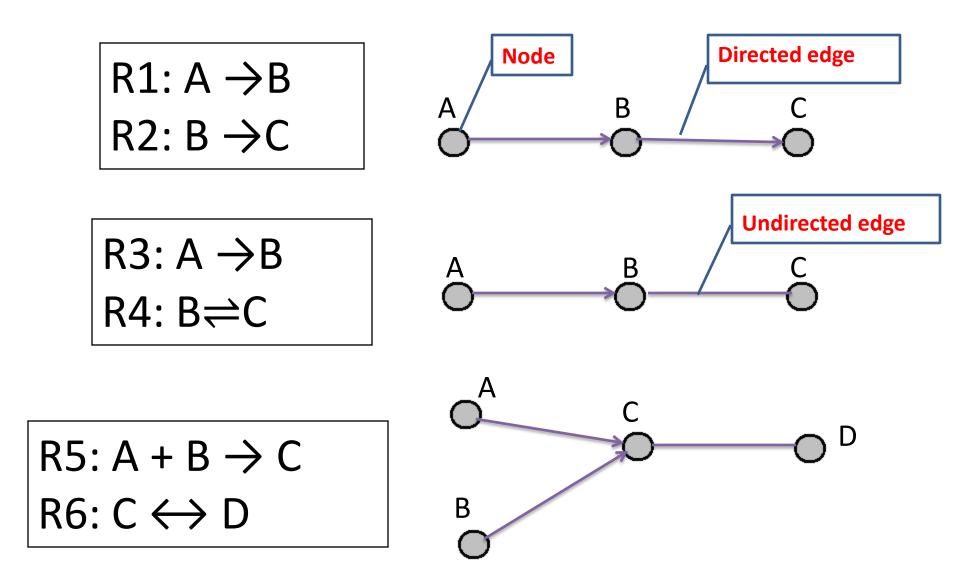
•Very specific and generally catalyze only a single type of reaction.

•Same enzyme can play role in more than one pathway.

METABOLIC PATHWAYS



1.Carbohydrate Metabolism 2.Lipid Metabolism 3.Nucleotide Metabolism 4.Metabolism of Other Amino acids 5. Energy Metabolism 6. Metabolism of Complex Lipids. 7. Metabolism of Other substances. 8. Metabolism of cofactors and vitamins.


9.Amino Acid Metabolism

Highly interconnected with complex regulatory processes

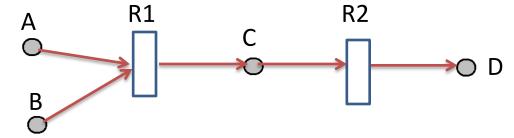
Information in Genome Databases Used to Construct Cellular Networks of Different Types

Graphical Representation of Metabolic Reactions

Metabolic Pathway Graph Representations

$$R1:A + B \xrightarrow{E1} C \qquad R2:C \xrightarrow{E2} D$$

Substrate graph: Nodes – compounds Edges between compound & product (directed)


<u>**Reaction graph:**</u> nodes – reactions share common metabolite Two reactions connected if they share compound that is product of one reaction& substrate of other.

Enzyme-centric graph: nodes - enzymes.

Two enzymes connected if they share compound that is product of one enzyme catalyzed reaction and substrate of reaction catalyzed by the other enzyme.

<u>Substrate-enzyme bipartite graph</u>: two sets of nodes one corresponds to compounds, while the other corresponds to reactions

A reaction is connected with its substrates and products - only nodes in different sets can be connected

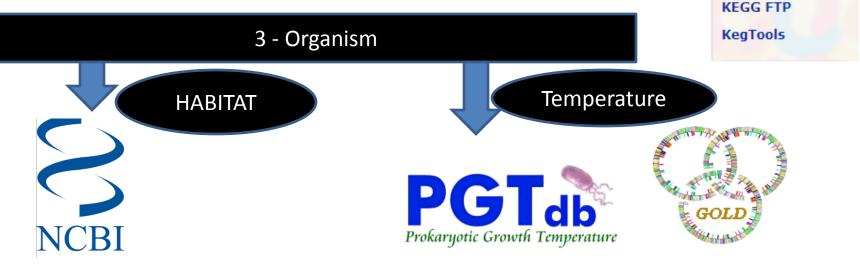
В

(]

R2

F2

R1


F1

DATABASES

1.Kyoto Encyclopedia of Genes and Genomes(KEGG) Rel. 40.0

2.Hongwu Ma, and An-Ping Zeng Bioreaction Database. Reconstruction of metabolic networks from genome Reconstruction of metabolic networks from genome data and analysis of their global structure for various organism, BMC Bioinformatics, <u>19</u>, 2003, 270(requested) KEGG API

Extraction of Enzymatic/Nonenzymatic Reactions

<u>Genome-enzyme</u>	REACTION		
eco:b0002 ec:2.7.2.4 eco:b0003 ec:2.7.1.39 eco:b0008 ec:2.2.1.2 eco:b0025 ec:2.7.1.26 eco:b0025 ec:2.7.7.2 eco:b0356 ec:1.1.1.1 eco:b0026 ec:6.1.1.5	ENTRY R00754 DEFINITION Ethanol + NAD+<=> Acetaldehyde + NADH + H+ EQUATION C00469 + C00003 <=> C00084 + C00004 + C00080 ENZYME 1.1.1.1 PATHWAY map00010 Glycolysis		
Genome-pathwaeco:b0104path:eco0eco:b0109path:eco0eco:b0109path:eco0eco:b0114path:eco0eco:b0114path:eco0eco:b0114path:eco0eco:b0114path:eco0	00230 R00750: 00643: C00084 + C00022 <=		

KEGG Data curated using Ma's Bioreaction database(2003) –based on Kegg rel. <u>20.0</u>

R00008

R00068

R01022

New Reaction Id

MA's Data used	
Kegg Ligand	
database rel	
20.0 and at	
present Kegg	
release <u>42.0</u>	

SOME PATHWAY IDS CHANGED ex: Mapoo272 A Mapoo270 (Cysteine and methionine metabolism) [not mentioned in KEGG]

OLD Reaction Id

R00007

R00035

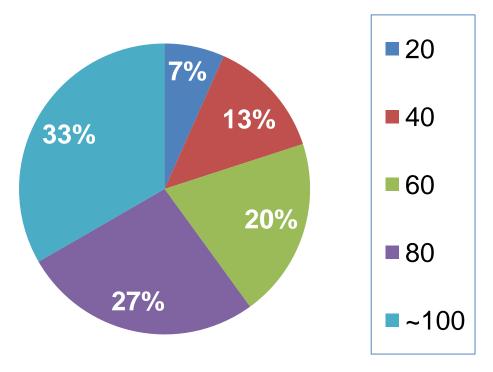
R00040

Changes	No of Reactions
(1) Changed Reaction Id	148
(2) Changed Compound Id	900
(3) Current Metabolites	1200

CURRENCY METABOLITE

Transfer electrons and other functional groups

- Phosphate group transfer- ATP/ADP/AMP.
- Hydrogen transfer NADH/NAD, NADPH/NADP, FADH/FAD.
- Acetyl group transfer Acetyl-Coenzyme-A.


 Others - CO2,NH3,O2,H2O2, H2CO3 H2S, H2SO3, NO2, Sulfate etc.

Currency metabolites are abundant in cell and present in many reactions

Remove current metabolites since connections through them produces biologically meaningless results

Results :

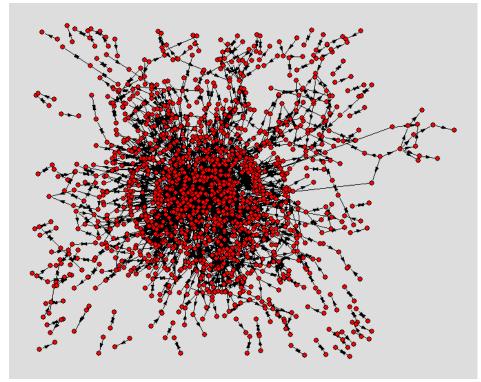
Pathway Presence in Organisms

Exception: Nanoarecheum equitans depends entirely on host for all its nutritional requirements and has only DNA processing pathways

Pathways present in almost all organisms

Glycolysis / Gluconeogenesis

Pentose phosphate pathway Oxidative phosphorylation Purine metabolism Pyrimidine metabolism Cysteine and methionine metabolism Valine, leucine and

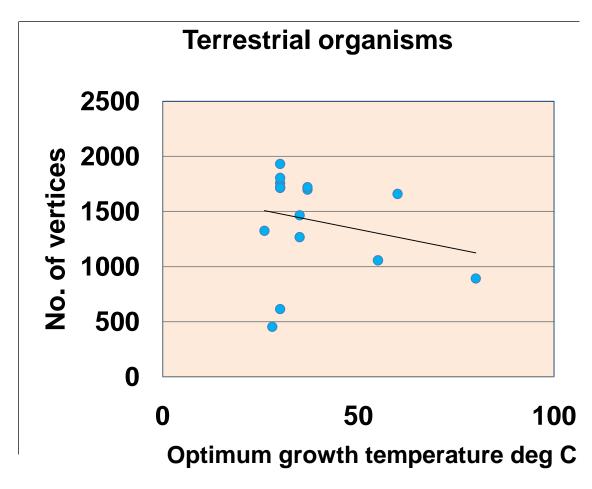

isoleucine biosynthesis

Reconstructed metabolic network

Shewanella baltica

Substrate Graph of *Shewanella baltica* metabolic pathway

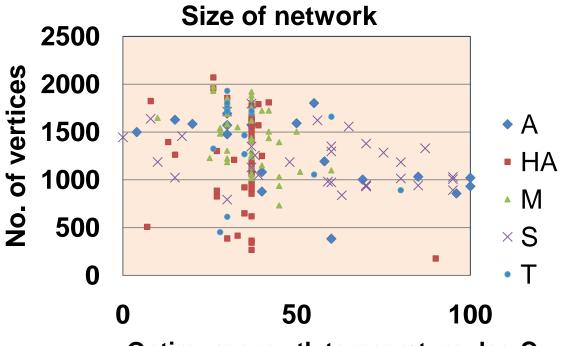
Nodes – metabolites Edges – educt-product pairs •arrows indicate direction of reaction •Orphan clusters : nodes not connected to main cluster



<u>Analysis</u>

Important nodes - Degree "hubs" (most highly connected nodes)

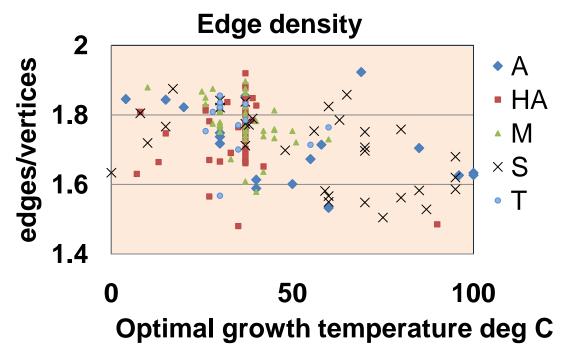
- Degree distribution & scale-free exponent
- Clustering coefficient
- •K-cores and k-core hubs


Size of metabolic networks

Organisms at normal temperature range (30-37 ° C) show most variability in size

Mostly Host associated (both pathogen & symbiont)

Other factors also affect the network structure

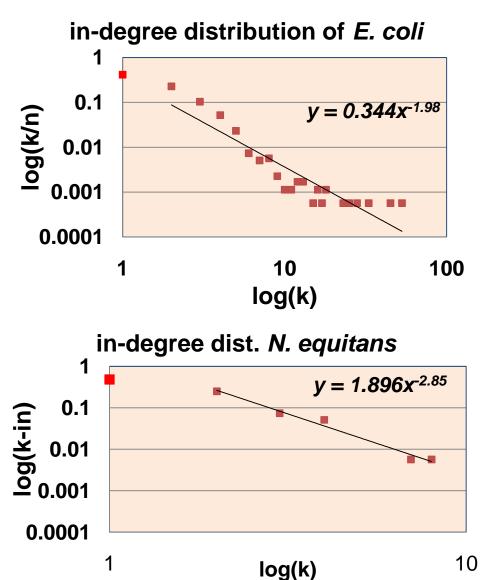

Optimum growth temperature deg C

Life-style	e-style Organisms		p-val
A	18	-0.61	0.007
НА	50	-0.22	0.12
M	50	-0.49	0.003
S	31	-0.38	0.03
Т	16	-0.23	0.38
Total	165	-0.32	0.00003

Negatively correlated to growth temperature Aquatic, multiple & specialized organisms show better correlation

Host-associated & terrestrial organisms show less correlation to growth temperature

Edge density



Negatively correlated to growth temperature

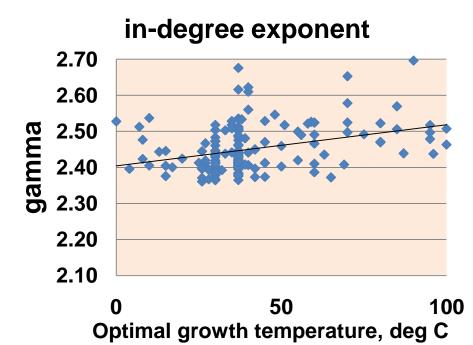
Host associated mesophiles have relatively higher densities

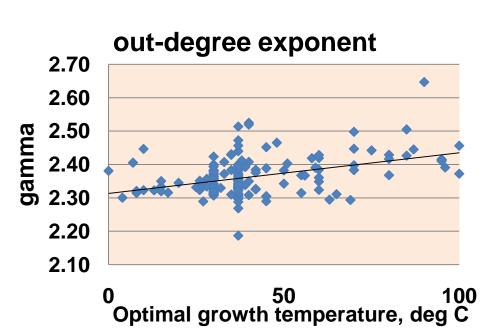
Life-style	Organisms	r	p-val
А	18	-0.46	0.05
HA	50	-0.17	0.23
Μ	50	-0.45	0.0009
S	31	-0.51	0.003
Т	16	0.43	0.09
Total	165	-0.37	0.000001

Degree Distribution

Many low-degree nodes Few high-degree nodes

 $P(k) \sim k^{-\gamma}$


 γ - degree exponent


Similar out-degree distribution

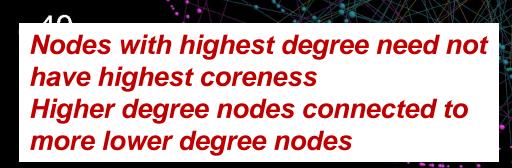
Metabolic networks have evolved in accordance with requirement of organism & not randomly

Growth of network through preferential attachment

Robust to random deletion of nodes

Life style	Org	r (gamma-in)	p-val
A	18	0.19	0.45
HA	50	0.39	0.004
Μ	50	0.35	0.01
S	31	0.25	0.17
Т	16	0.38	0.14
Total	165	0.34	0.000006

Life style	Org	r (out)	p-val
Α	18	0.35	0.154
HA	50	0.50	0.0002
Μ	50	0.18	0.22
S	31	0.41	0.02
Т	16	0.42	0.101
Total	165	0.46	<0.000001


Networks of organisms at lower optimal growth temperatures have more heterogenous structure

k-cores of E. coli

. 3

•10

Metabolite	Core-	In	
	ness	degree	
D-Fructose 6-	4	11	
phosphate	4	11	
D-Glyceraldehyde 3-	4	17	
phosphate	4	17	
D-Xylulose 5-	4	ο	
phosphate	4	8	
D-Erythrose 4-	4	8	
phosphate	4	0	
beta-D-Fructose 6-	4	12	
phosphate	4		
Sedoheptulose 7-	4	8	
phosphate	4	0	
S-Adenosyl-L-	3	4	
methionine	3	4	
Pyruvate	3	53	
L-Glutamate	3	45	
2-Oxoglutarate	3	33	
		1	

Inferences

Metabolic network topology of prokaryotes

•Correlated to environmetal conditions.

•Has evolved in accordance to their environmental and nutrional requirements.

•Scale free – robust to random deletion of nodes while targeted attack on several nodes can lead to breakdown in network structure.

•Network structure of prokaryotes at lower temperatures are more heterogeneous than those of thermophiles & hyperthermophiles.

•Nodes which have high degree centrality may have lower coreness; they are connected to lower degree nodes.

Acknowledgement

Radhika Khandelwal MBN Chakravarthy Roopali Upadhyay