
Introduction Model Results Conclusions

Using network topology to optimize molecular production in

an artificial chemistry model

Varun Giri

Department of Physics and Astrophysics,
University of Delhi, Delhi.

in collaboration with Prof. Sanjay Jain

18th August, 2010



Introduction Model Results Conclusions

Outline

1 Introduction

2 Model

3 Results

4 Conclusions



Introduction Model Results Conclusions

Outline

1 Introduction
Origin of Life

2 Model

3 Results

4 Conclusions



Introduction Model Results Conclusions

Introduction

How were various components of life pieced together?

Did it require all of the components that we seen in life to be
built at the same time or were they induced incrementally?

How did the organization in life emerge?

Origin of metabolic networks: From the large set of possible
organic reactions, only a few participate in life.
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Notations

Consider a set F = {m1,m2,m3, . . . ,mf } of f moieties (small
compounds) present abundantly and homogenously in a
pre-biotic niche: Input or ‘Food’ set.

These molecules, and their products can undergo spontaneous
and catalysed reactions of type:

A + B r
C r D

A, B, C, . . . can represent any member of set F or the
product set, P.
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The model

A = (m1)
a1(m2)

a2(m3)
a3 . . . (mf )

af where 0 ≤ ai ≤ n,∑
i ai = n, i = 1, 2, 3, . . . f . n is the maximum number of

moieties a molecule can have.

A molecule can also be represented as a f -tuple of
non-negative integers that defines the molecule, i.e.,
A = (a1, a2, a3, . . . , af ).

Any product can thus be written as
D = AB = (a1 + b1, a2 + b2, . . . , af + bf ), where di = ai + bi

(we only consider composomes).
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Reaction system

For f = 1 reaction system will look as following:

A(1) + A(1) r
r A(2)

A(1) + A(2) r
r A(3)

A(2) + A(2) r
r A(4)

A(1) + A(3) r
r A(4)

A(2) + A(3) r
r A(5)

A(1) + A(4) r
r A(5)

...
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Dynamical equation

Using rate action kinetics one can write a differential equation for
the the change in concentration of each molecule:

A(1) + A(1) r
r A(2)

A(1) + A(2) r
r A(3)

A(2) + A(2) r
r A(4)

A(1) + A(3) r
r A(4)

A(2) + A(3) r
r A(5)

A(1) + A(4) r
r A(5)

...

ẋA(2) = kf x
2
A(1)

−krxA(2)

−
∑
n

kf xA(2)xA(n)

+
∑
n>2

krxA(n)

−φxA(2)
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Dynamical system

For all the molecules, one can write following coupled non-linear
differential equations:

ẋA =
1

2

∑
(B,C)∈lA

κF
B,CxBxC +

∑
B,(ai+bi≤ni )

κR
A,BxAB

−
∑

B,(ai+bi≤ni )

κF
A,BxAxB −

1

2

∑
(B,C)∈lA

κR
B,CxA − φAxA

here, xA = [A], lA = {(B, C) : BC = A}, φ is the decay constant, and,
κF and κR are the rate constant matrices (symmetric), given by,

κF =

0
BBB@

2kf kf kf . . .
kf 2kf kf

kf kf 2kf

...
. . .

1
CCCA ; κR =

0
BBB@

2kr kr kr . . .
kr 2kr kr

kr kr 2kr

...
. . .

1
CCCA
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Dynamical system

kf and kr are the spontaneous forward and backward rate
constants, respectively. When we consider catalyzed reactions,
kf /r can be replaced by k ′

f /r .

k ′
f /r = kf /r (1 + β x [Catalyst])

β is Catalytic Efficiency of the catalyst.

As the members of the set F are replenished continually, any
amount drawn or produced does not affect their
concentrations. It is thus assumed that the concentrations of
members of set F do not change over time.
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Equation in dimensionless variables

Consider a concentration scale ω and a time scale τ .
Re-writing equation in terms of these dimensionless variables gives:

ẋ ′A =
1

2

∑
(B,C)∈lA

κ′FB,Cx ′Bx ′C +
∑

B,(ai+bi≤ni )

κ′RA,Bx ′AB

−
∑

B,(ai+bi≤ni )

κ′FA,Bx ′Ax ′B −
1

2

∑
(B,C)∈lA

κ′RB,Cx ′A − φ′Ax ′A

here,

x ′A =
xA

ω

ẋ ′A =
ẋAτ

ω

κ′F = κFωτ

κ′R = κRτ

φ′ = φτ

β′ = βω
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Time evolution of concentrations
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Steady state concentration v/s Length
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Phase space portrait
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Dynamics with catalysed reactions in the network

Random catalysis: We selected a fraction ρ of reactions from
the network and assigned a catalyst to each one of them
drawn randomly from the set P.

Doing so yields no significant effect on the concentrations.
Steady state concentrations follow exponential decay with
(approximately) the same γ as when there are no catalysed
reactions.
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Dynamics with catalysed reactions in the network

Let us consider the following set of catalysed reactions in the
network in addition to the spontaneous chemistry.

A(1) + A(1) r
A(2) r A(2)

A(2) + A(2) r
A(4) r A(4)

A(4) + A(4) r
A(8) r A(8)

A(8) + A(8) r
A(16) r A(16)

Set 1
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Time evolution of concentrations
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Steady-state concentrations
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Effect of β on concentrations
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Effect of β on concentrations
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Auto-catalytic sets (ACS)

Definition

Consider a set S ⊂ P of compounds such that for every member,
s, of the set there exists a reaction that:

1 produces s

2 is catalyzed by a member of S, and

3 has reactants drawn from S ∪ F .

Such a set is an ACS.
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Auto-catalytic sets (ACS)

A(1) + A(1) r
A(2) r A(2)

A(2) + A(2) r
A(4) r A(4)

A(4) + A(4) r
A(8) r A(8)

A(8) + A(8) r
A(16) r A(16)

Set 1

Here, S = {A(2),A(4),A(8),A(16)}

One may write several network topologies for a particular S.
Consider two such topologies for Set 1.
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Different network topologies of Set 1

Set 1-1

A(1) + A(1) r
A(16)r A(2)

A(2) + A(2) r
A(8) r A(4)

A(4) + A(4) r
A(4) r A(8)

A(8) + A(8) r
A(2) r A(16)

Set 1-2

A(1) + A(1) r
A(16)r A(2)

A(2) + A(2) r
A(16)r A(4)

A(4) + A(4) r
A(16)r A(8)

A(8) + A(8) r
A(16)r A(16)

S = {A(2), A(4), A(8), A(16)}
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Time evolution of concentrations for different β (Set 1-1)
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Set 1-1 only dominates above a threshold value.



Introduction Model Results Conclusions

Time evolution of concentrations for different β (Set 1-1)

 0

 0.5

 1

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

C
on

ce
nt

ra
tio

n(
t)

Time

β=30000

A(2)
A(4)
A(8)

A(16)

 0

 0.5

 1

 0  100  200  300  400  500  600  700  800  900  1000

C
on

ce
nt

ra
tio

n(
t)

β=31000

A(2)
A(4)
A(8)

A(16)

 0

 0.5

 1

 0  50  100  150  200  250  300

C
on

ce
nt

ra
tio

n(
t)

β=50000

A(2)
A(4)
A(8)

A(16)

 0

 0.5

 1

 46  47

 0

 0.5

 1

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

C
on

ce
nt

ra
tio

n(
t)

Time

β=30000

A(2)
A(4)
A(8)

A(16)

 0

 0.5

 1

 0  100  200  300  400  500  600  700  800  900  1000

C
on

ce
nt

ra
tio

n(
t)

β=31000

A(2)
A(4)
A(8)

A(16)

 0

 0.5

 1

 0  50  100  150  200  250  300

C
on

ce
nt

ra
tio

n(
t)

β=50000

A(2)
A(4)
A(8)

A(16)

 0

 0.5

 1

 46  47

 0

 0.5

 1

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

C
on

ce
nt

ra
tio

n(
t)

Time

β=30000

A(2)
A(4)
A(8)

A(16)

 0

 0.5

 1

 0  100  200  300  400  500  600  700  800  900  1000

C
on

ce
nt

ra
tio

n(
t)

β=31000

A(2)
A(4)
A(8)

A(16)

 0

 0.5

 1

 0  50  100  150  200  250  300

C
on

ce
nt

ra
tio

n(
t)

β=50000

A(2)
A(4)
A(8)

A(16)

 0

 0.5

 1

 46  47

Set 1-1 only dominates above a threshold value.



Introduction Model Results Conclusions

Time evolution of concentrations for different β (Set 1-1)

 0

 0.5

 1

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

C
on

ce
nt

ra
tio

n(
t)

Time

β=30000

A(2)
A(4)
A(8)

A(16)

 0

 0.5

 1

 0  100  200  300  400  500  600  700  800  900  1000

C
on

ce
nt

ra
tio

n(
t)

β=31000

A(2)
A(4)
A(8)

A(16)

 0

 0.5

 1

 0  50  100  150  200  250  300

C
on

ce
nt

ra
tio

n(
t)

β=50000

A(2)
A(4)
A(8)

A(16)

 0

 0.5

 1

 46  47

 0

 0.5

 1

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

C
on

ce
nt

ra
tio

n(
t)

Time

β=30000

A(2)
A(4)
A(8)

A(16)

 0

 0.5

 1

 0  100  200  300  400  500  600  700  800  900  1000

C
on

ce
nt

ra
tio

n(
t)

β=31000

A(2)
A(4)
A(8)

A(16)

 0

 0.5

 1

 0  50  100  150  200  250  300

C
on

ce
nt

ra
tio

n(
t)

β=50000

A(2)
A(4)
A(8)

A(16)

 0

 0.5

 1

 46  47

 0

 0.5

 1

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

C
on

ce
nt

ra
tio

n(
t)

Time

β=30000

A(2)
A(4)
A(8)

A(16)

 0

 0.5

 1

 0  100  200  300  400  500  600  700  800  900  1000

C
on

ce
nt

ra
tio

n(
t)

β=31000

A(2)
A(4)
A(8)

A(16)

 0

 0.5

 1

 0  50  100  150  200  250  300

C
on

ce
nt

ra
tio

n(
t)

β=50000

A(2)
A(4)
A(8)

A(16)

 0

 0.5

 1

 46  47

Set 1-1 only dominates above a threshold value.



Introduction Model Results Conclusions

Steady state concentrations
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γbackground v/s β
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γbackground v/s β
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Phase portrait
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Network topology and ACS domination

As discussed above the phase space structure depends on the
network topology.

When a large molecule is a catalyst for production of smaller
molecules it can create a bottleneck. And hence require
bigger β for domination of ACS.

How does ACS domination depends on topology of catalysed
network?
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Network topology and ACS domination

Define length of an ACS as the length of the largest molecule
in the ACS. Consider the topology of catalytic network in
which the largest molecule of the ACS acts as the catalyst for
all the reactions that produce members of the ACS.

For example, consider following topology of S (Set 1-2),
wherein all the reactions are catalysed by the same catalyst
(the largest molecule of the set):

A(1) + A(1) r
A(16)r A(2)

A(2) + A(2) r
A(16)r A(4)

A(4) + A(4) r
A(16)r A(8)

A(8) + A(8) r
A(16)r A(16)
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Length of ACS v/s Catalytic efficiency required for it to
dominate
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Concentrating bigger ACSs

Set A

A(1) + A(1) r
A(64)r

A(2)

A(2) + A(2) r
A(64)r

A(4)

A(4) + A(4) r
A(64)r

A(8)

A(8) + A(8) r
A(64)r

A(16)

A(16) + A(16) r
A(64)r

A(32)

A(32) + A(32) r
A(64)r

A(64)

ACS is {A(2), A(4), A(8), A(16), A(32),
A(64)}.

Set B

A(1) + A(1) r
A(10)r

A(2)

A(1) + A(2) r
A(10)r

A(3)

A(2) + A(3) r
A(10)r

A(5)

A(5) + A(5) r
A(10)r

A(10)

ACS is {A(2), A(3), A(5), A(10)}.
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Big and small ACS
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Summary of results

Molecular species produced in an autocatalytic networks can
outperform other species.

This behaviour is dependent on the strength/efficiency of the
catalysts and the topology of the catalytic-reaction network.

System can also exhibit bistability.

A cascade of ACSs can be used to produce large molecules in
sufficient numbers with reasonable catalytic efficiencies.

Similar results are observed for two input species (f = 2).
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Conclusions

This model presents a simple mechanism via which pre-biotic
organization could have arisen.

Provides a mechanism via which long molecules could have
been produced in sufficient numbers.

Biochemistry is a very sparse subset of organic chemistry.
This provides a mechanistic way via which a small subset of
chemistry could have been chosen.
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Thank you.
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