Using network topology to optimize molecular production in an artificial chemistry model

Varun Giri

Department of Physics and Astrophysics, University of Delhi, Delhi.

in collaboration with Prof. Sanjay Jain

18th August, 2010

Introd	

Model

Results

Conclusions 00

Outline

Introdu	iction

Model

Results

Conclusions 00

Outline

2 Mode

Introduction	Model	Results	Conclus
●0	0000000	00000000000000000000	00
Introduction			

• How were various components of life pieced together?

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

Introduction

- How were various components of life pieced together?
- Did it require all of the components that we seen in life to be built at the same time or were they induced incrementally?

Introduction	Model	Results	Conclusions
●O	0000000	00000000000000000000	
Introduction			

- How were various components of life pieced together?
- Did it require all of the components that we seen in life to be built at the same time or were they induced incrementally?
- How did the organization in life emerge?

ヘロト ヘロト ヘヨト ヘヨト

Introduction

- How were various components of life pieced together?
- Did it require all of the components that we seen in life to be built at the same time or were they induced incrementally?
- How did the organization in life emerge?
- Origin of metabolic networks: From the large set of possible organic reactions, only a few participate in life.

Introduction	
00	

Model

Results

イロト イヨト イヨト イヨト

Conclusions 00

Pre-biotic organization

Model

Results

<ロト <回ト < 注ト < 注ト

Conclusions 00

Outline

2 Model

• A model of pre-biotic organization

3 Results

Conclusions

Introduction	Model	Results	Conclusions
	000000		
Notations			

Consider a set \$\mathcal{F} = {m_1, m_2, m_3, \ldots, m_f}\$ of \$f\$ moieties (small compounds) present abundantly and homogenously in a pre-biotic niche: Input or 'Food' set.

Introduction	Model	Results	Conclusions
	000000		
Notations			

- Consider a set \$\mathcal{F} = {m_1, m_2, m_3, \ldots, m_f}\$ of \$f\$ moieties (small compounds) present abundantly and homogenously in a pre-biotic niche: Input or 'Food' set.
- These molecules, and their products can undergo spontaneous and catalysed reactions of type:

$$A + B \subset D$$

Introduction	Model	Results	Conclusions
	000000		
Notations			

- Consider a set \$\mathcal{F} = {m_1, m_2, m_3, \ldots, m_f}\$ of \$f\$ moieties (small compounds) present abundantly and homogenously in a pre-biotic niche: Input or 'Food' set.
- These molecules, and their products can undergo spontaneous and catalysed reactions of type:

$$A + B \subset D$$

• A, B, C, ... can represent any member of set \mathcal{F} or the product set, \mathcal{P} .

Introduction	Model	Results	Conclusions
	000000		
The model			

 A = (m₁)^{a₁}(m₂)^{a₂}(m₃)^{a₃}...(m_f)^{a_f} where 0 ≤ a_i ≤ n, ∑_i a_i = n, i = 1, 2, 3, ... f. n is the maximum number of moieties a molecule can have.

Introduction	Model	Results	Conclusions
00	o●ooooo	00000000000000000000	
The model			

- A = (m₁)^{a₁}(m₂)^{a₂}(m₃)^{a₃}...(m_f)^{a_f} where 0 ≤ a_i ≤ n, ∑_i a_i = n, i = 1, 2, 3, ... f. n is the maximum number of moieties a molecule can have.
- A molecule can also be represented as a *f*-tuple of non-negative integers that defines the molecule, i.e., A = (a₁, a₂, a₃, ..., a_f).

Introduction	Model	Results	Conclusions
00	o●ooooo	000000000000000000000000000000000000	
The model			

- A = (m₁)^{a₁}(m₂)^{a₂}(m₃)^{a₃}...(m_f)^{a_f} where 0 ≤ a_i ≤ n, ∑_i a_i = n, i = 1, 2, 3, ... f. n is the maximum number of moieties a molecule can have.
- A molecule can also be represented as a *f*-tuple of non-negative integers that defines the molecule, i.e., A = (a₁, a₂, a₃, ..., a_f).
- Any product can thus be written as
 D = AB = (a₁ + b₁, a₂ + b₂, ..., a_f + b_f), where d_i = a_i + b_i (we only consider composomes).

Introduction	Model	Results	Conclusions
00	o●ooooo	000000000000000000000000000000000000	
The model			

- A = (m₁)^{a₁}(m₂)^{a₂}(m₃)^{a₃}...(m_f)^{a_f} where 0 ≤ a_i ≤ n, ∑_i a_i = n, i = 1, 2, 3, ... f. n is the maximum number of moieties a molecule can have.
- A molecule can also be represented as a *f*-tuple of non-negative integers that defines the molecule, i.e., A = (a₁, a₂, a₃, ..., a_f).
- Any product can thus be written as $D = AB = (a_1 + b_1, a_2 + b_2, \dots, a_f + b_f)$, where $d_i = a_i + b_i$ (we only consider composomes).

Introduction	Model	Results	Conclusions
00	oo●oooo	0000000000000000000	00
Reaction system			

For f = 1 reaction system will look as following:

$$\begin{array}{c|c}
A(1) + A(1) & \longrightarrow & A(2) \\
A(1) + A(2) & \longrightarrow & A(3) \\
A(2) + A(2) & \longrightarrow & A(4) \\
A(1) + A(3) & \longrightarrow & A(4) \\
A(2) + A(3) & \longrightarrow & A(5) \\
A(1) + A(4) & \longmapsto & A(5)
\end{array}$$

Introduction	Model	Results	Conclusions
00	ooo●ooo	00000000000000000000	00
Dynamical equat	ion		

 $\begin{array}{rcl} A(1) + A(1) & \rightleftharpoons & A(2) \\ A(1) + A(2) & \rightleftharpoons & A(3) \\ A(2) + A(2) & \longleftarrow & A(4) \\ A(1) + A(3) & \longleftarrow & A(4) \\ A(2) + A(3) & \longleftarrow & A(5) \\ A(1) + A(4) & \longleftarrow & A(5) \end{array}$

Introduction	Model	Results	Conclusions
00	ooo●ooo	00000000000000000000	00
Dynamical equat	ion		

 $\begin{array}{rcl} A(1) + A(1) & & & & A(2) \\ A(1) + A(2) & & & & A(3) \\ A(2) + A(2) & & & & A(4) \\ A(1) + A(3) & & & & A(4) \\ A(2) + A(3) & & & & A(5) \\ A(1) + A(4) & & & & A(5) \end{array}$

Introduction	Model	Results	Conclusions
00	ooo●ooo	0000000000000000000	
Dynamical equation	on		

э

Introduction	Model	Results	Conclusions
00	ooo●ooo	0000000000000000000	
Dynamical equation	on		

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Introduction	Model	Results	Conclusions
00	ooo●ooo	0000000000000000000	
Dynamical equation	on		

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Introduction	Model	Results	Conclusions
00	ooooooo	0000000000000000000	00
Dynamical system			

For all the molecules, one can write following coupled non-linear differential equations:

$$\dot{x}_{A} = \frac{1}{2} \sum_{(B,C)\in I_{A}} \kappa_{B,C}^{F} x_{B} x_{C} + \sum_{B,(a_{i}+b_{i}\leq n_{i})} \kappa_{A,B}^{R} x_{AB}$$
$$- \sum_{B,(a_{i}+b_{i}\leq n_{i})} \kappa_{A,B}^{F} x_{A} x_{B} - \frac{1}{2} \sum_{(B,C)\in I_{A}} \kappa_{B,C}^{R} x_{A} - \phi_{A} x_{A}$$

here, $x_A = [A]$, $l_A = \{(B, C) : BC = A\}$, ϕ is the decay constant, and, κ^F and κ^R are the rate constant matrices (symmetric), given by,

$$\kappa^{F} = \begin{pmatrix} 2k_{f} & k_{f} & k_{f} & \dots \\ k_{f} & 2k_{f} & k_{f} & \\ k_{f} & k_{f} & 2k_{f} & \\ \vdots & & \ddots \end{pmatrix}; \kappa^{R} = \begin{pmatrix} 2k_{r} & k_{r} & k_{r} & \dots \\ k_{r} & 2k_{r} & k_{r} & \\ k_{r} & k_{r} & 2k_{r} & \\ \vdots & & \ddots \end{pmatrix}$$

Introduction	Model	Results	Conclusions
	0000000		
Dynamical system	m		

k_f and k_r are the spontaneous forward and backward rate constants, respectively. When we consider catalyzed reactions, k_{f/r} can be replaced by k'_{f/r}.

$$k'_{f/r} = k_{f/r}(1 + \beta x [Catalyst])$$

 β is Catalytic Efficiency of the catalyst.

Introduction	Model	Results	Conclusions
00	oooooooo	000000000000000000000000000000000000	00
Dynamical system			

• k_f and k_r are the spontaneous forward and backward rate constants, respectively. When we consider catalyzed reactions, $k_{f/r}$ can be replaced by $k'_{f/r}$.

$$k'_{f/r} = k_{f/r}(1 + \beta \times [Catalyst])$$

 β is Catalytic Efficiency of the catalyst.

• As the members of the set \mathcal{F} are replenished continually, any amount drawn or produced does not affect their concentrations. It is thus assumed that the concentrations of members of set \mathcal{F} do not change over time.

Introduction	Model 00000		odel >>>>>	del Results 0000● 00000000		Conclusions 00	
_							

Equation in dimensionless variables

Consider a concentration scale ω and a time scale τ .

Re-writing equation in terms of these dimensionless variables gives:

$$\begin{split} \dot{x}'_{A} &= \frac{1}{2} \sum_{(\mathrm{B},\mathrm{C}) \in I_{\mathrm{A}}} \kappa'^{F}_{\mathrm{B},\mathrm{C}} x'_{\mathrm{B}} x'_{\mathrm{C}} + \sum_{\mathrm{B},(a_{i}+b_{i} \leq n_{i})} \kappa'^{R}_{\mathrm{A},\mathrm{B}} x'_{\mathrm{A}B} \\ &- \sum_{\mathrm{B},(a_{i}+b_{i} \leq n_{i})} \kappa'^{F}_{\mathrm{A},\mathrm{B}} x'_{\mathrm{A}} x'_{\mathrm{B}} - \frac{1}{2} \sum_{(\mathrm{B},\mathrm{C}) \in I_{\mathrm{A}}} \kappa'^{R}_{\mathrm{B},\mathrm{C}} x'_{\mathrm{A}} - \phi'_{\mathrm{A}} x'_{\mathrm{A}} \end{split}$$

here,

$$\begin{aligned} x'_{A} &= \frac{x_{A}}{\omega} \\ \dot{x}'_{A} &= \frac{\dot{x}_{A}\tau}{\omega} \\ \kappa'^{F} &= \kappa^{F}\omega\tau \\ \kappa'^{R} &= \kappa^{R}\tau \\ \phi' &= \phi\tau \\ \beta' &= \beta\omega \end{aligned}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Model 0000000 Results

<ロト <回ト < 注ト < 注ト

Conclusions 00

Outline

2 Mode

3 Results

- Dynamics of uncatalysed network
- Dynamics with catalysed reactions in the network

4 Conclusions

Introduction Model Results Conclusion

Time evolution of concentrations

 $f = 1, n_1 = 100, \phi = 0.1, k_f = k_r = 0.05, x_{A(1)} = 1$

Time evolution of concentrations when there are only spontaneous reactions in the

the system.

An exponential decay in concentrations is observed when there are no catalysed reactions in the network: $x_{A(i)} \propto exp(\gamma \times i); \gamma = -0.952127$

Introduction	Model	Results	Conclusions
00	0000000	oo●oooooooooooooooo	00
Phase space portra	it		

 γ versus k_f and ϕ , keeping $k_r = 1$ and $x_{A(1)} = 1$

<ロト <回ト < 注ト < 注ト

00	0000000	000000000000000000000000000000000000000	00
Dynamics with	atalysed read	tions in the network	

- Random catalysis: We selected a fraction ρ of reactions from the network and assigned a catalyst to each one of them drawn randomly from the set \mathcal{P} .
- Doing so yields no significant effect on the concentrations. Steady state concentrations follow exponential decay with (approximately) the same γ as when there are no catalysed reactions.

(日)、(同)、(日)、(日)

- Random catalysis: We selected a fraction ρ of reactions from the network and assigned a catalyst to each one of them drawn randomly from the set \mathcal{P} .
- Doing so yields no significant effect on the concentrations. Steady state concentrations follow exponential decay with (approximately) the same γ as when there are no catalysed reactions.

Let us consider the following set of catalysed reactions in the network in addition to the spontaneous chemistry.

Introduction on Model Results Conclusions of Concentrations

 $f = 1, n_1 = 100, \phi = 0.1, k_f = k_r = 0.05, x_{A(1)} = 1, \beta = 1000$

・ロト ・四ト ・ヨト ・ヨト

Introduction	Model	Results
		000000000000000000000000000000000000000

Conclusions 00

Steady-state concentrations

The molecules produced in Set 1 outperform other species. Blue curve is the fitted exponential calculated by ignoring input molecule and the members produced in Set 1. $\gamma_{background} = -0.115635$

Introduction	Model	Results	Conclusions
00	0000000	००००००००००००००००	00
Effect of β on con	centrations		

00	0000000	000000000000000000000000000000000000000	00

Model 0000000 Results

(日) (同) (日) (日)

Conclusions 00

Auto-catalytic sets (ACS)

Definition

Consider a set $\mathcal{S} \subset \mathcal{P}$ of compounds such that for every member,

- s, of the set there exists a reaction that:
 - produces s
 - $\ensuremath{ 2 \ }$ is catalyzed by a member of $\ensuremath{ \mathcal{S} },$ and
 - **③** has reactants drawn from $\mathcal{S} \cup \mathcal{F}$.

Such a set is an ACS.

 Introduction
 Model
 Results
 Conclusions

 oo
 oo
 oo
 oo

$$A(1) + A(1) \stackrel{A(2)}{\longleftarrow} A(2)$$

$$A(2) + A(2) \stackrel{A(4)}{\longleftarrow} A(4)$$

$$A(4) + A(4) \stackrel{A(8)}{\longleftarrow} A(8)$$

$$A(8) + A(8) \stackrel{A(16)}{\longleftarrow} A(16)$$

 $\begin{array}{l} \mbox{Set 1} \\ \mbox{Here, } \mathcal{S} = \{ \mathrm{A}(2), \mathrm{A}(4), \mathrm{A}(8), \mathrm{A}(16) \} \end{array}$

<ロト <回ト < 注ト < 注ト

 Introduction
 Model
 Results
 Conclusions

 OO
 OO
 OO
 OO

 Auto-catalytic sets (ACS)
 Conclusions
 OO

$$A(1) + A(1) \stackrel{A(2)}{\longleftarrow} A(2)$$

$$A(2) + A(2) \stackrel{A(4)}{\longleftarrow} A(4)$$

$$A(4) + A(4) \stackrel{A(8)}{\longleftarrow} A(8)$$

$$A(8) + A(8) \stackrel{A(16)}{\longleftarrow} A(16)$$
Set 1
Here, $S = \{A(2), A(4), A(8), A(16)\}$

One may write several network topologies for a particular \mathcal{S} . Consider two such topologies for Set 1.

 $S = \{A(2), A(4), A(8), A(16)\}$

(日)、

・ロト ・ 一下・ ・ ヨト ・

э

・ロト ・ 一下・ ・ ヨト ・

э

Introduction	Model

Results

Conclusions 00

Steady state concentrations

Introduction	Model	Results	Conclusions
00	ooooooo	○○○○○○○○○○○○○○○○○	
$\gamma_{\it background} \; {\sf v/s} \; eta$			

Introduction	Model	Results	Conclusions
00	0000000	000000000000000000000000000000000000	00
$\gamma_{ extsf{background}} extsf{v/s} eta$			

Set 1-1

Set 1-2

(日) (四) (日) (日) (日)

Introduction	Model	Results	Conclusion:
00	ooooooo	000000000000000000000000000000000000	00
Phase portrait			

 $\gamma_{background}$ versus k_f and ϕ for a fixed β (=10,000), keeping $k_r = 1$ and $x_{A(1)} = 1$

(日) (四) (日) (日) (日)

Network topol	ogy and ACS do	mination	
Introduction	Model	Results	Conclusions
00	0000000	○○○○○○○○○○○○○○○○○○	00

• As discussed above the phase space structure depends on the network topology.

・ロト ・四ト ・ヨト ・ヨト

Notwork topology	and ACS dominat	ion	
Introduction	Model	Results	Conclusions
00	0000000	○○○○○○○○○○○○○○○○○○	

- As discussed above the phase space structure depends on the network topology.
- When a large molecule is a catalyst for production of smaller molecules it can create a bottleneck. And hence require bigger β for domination of ACS.

Introduction	Model	Results	Conclusions
00	0000000	000000000000000000000000000000000000	00
Network topology a	and ACS dominat	ion	

- As discussed above the phase space structure depends on the network topology.
- When a large molecule is a catalyst for production of smaller molecules it can create a bottleneck. And hence require bigger β for domination of ACS.
- How does ACS domination depends on topology of catalysed network?

• Define length of an ACS as the length of the largest molecule in the ACS. Consider the topology of catalytic network in which the largest molecule of the ACS acts as the catalyst for all the reactions that produce members of the ACS.

Introduction	Model	Results	Conclusions
00	ooooooo	000000000000000000000000000000000000	00
Network topology a	and ACS dominat	ion	

- Define length of an ACS as the length of the largest molecule in the ACS. Consider the topology of catalytic network in which the largest molecule of the ACS acts as the catalyst for all the reactions that produce members of the ACS.
- For example, consider following topology of S (Set 1-2), wherein all the reactions are catalysed by the same catalyst (the largest molecule of the set):

$$A(1) + A(1) \xrightarrow{A(16)} A(2)$$

$$A(2) + A(2) \xrightarrow{A(16)} A(4)$$

$$A(4) + A(4) \xrightarrow{A(16)} A(8)$$

$$A(8) + A(8) \xrightarrow{A(16)} A(16)$$

IntroductionModelResultsConclusionooACS v/s Catalytic efficiency required for it todominate

A STILL OF STILL

Introduction	Model	Results	Conclusions
00	ooooooo	○○○○○○○○○○○○○○	00
Concentrating bigg	er ACSs		

Set A $A(1) + A(1) \stackrel{\underline{A(64)}}{\longleftarrow} A(2)$ $A(2) + A(2) \stackrel{\underline{A(64)}}{\longleftarrow} A(4)$ $A(4) + A(4) \stackrel{\underline{A(64)}}{\longleftarrow} A(8)$ $A(8) + A(8) \stackrel{\underline{A(64)}}{\longleftarrow} A(16)$ $A(16) + A(16) \stackrel{\underline{A(64)}}{\longleftarrow} A(32)$ $A(32) + A(32) \stackrel{\underline{A(64)}}{\longleftarrow} A(64)$

ACS is {A(2), A(4), A(8), A(16), A(32), A(64)}.

Introduction	Model	Results	Conclusions
00	ooooooo	००००००००००००००००	00
Concentrating bigger ACSs			

Set A

 $\begin{array}{rcl} A(1) + A(1) & \underbrace{A(64)}{} & A(2) \\ A(2) + A(2) & \underbrace{A(64)}{} & A(4) \\ A(4) + A(4) & \underbrace{A(64)}{} & A(8) \\ A(8) + A(8) & \underbrace{A(64)}{} & A(16) \\ A(16) + A(16) & \underbrace{A(64)}{} & A(32) \\ A(32) + A(32) & \underbrace{A(64)}{} & A(64) \end{array}$

ACS is {A(2), A(4), A(8), A(16), A(32), A(64)}.

Set B $A(1) + A(1) \stackrel{\underline{A(10)}}{\frown} A(2)$ $A(1) + A(2) \stackrel{\underline{A(10)}}{\frown} A(3)$ $A(2) + A(3) \stackrel{\underline{A(10)}}{\frown} A(5)$ $A(5) + A(5) \stackrel{\underline{A(10)}}{\frown} A(10)$

ACS is $\{A(2), A(3), A(5), A(10)\}.$

(日)、

Introduction 00

Model 000000 Results

<ロト <回ト < 注ト < 注ト

Conclusions 00

Big and small ACS

 $k_f = k_r = \phi = 1, \beta_{A10} = 800, \beta_{A64} = 50000$

Introd	

Model

Results

Conclusions

Outline

Introduction	Model	Results	Conclusions
00	000000	00000000000000000000	●0
Summary of res	ults		

• Molecular species produced in an autocatalytic networks can outperform other species.

・ロト ・聞ト ・ヨト ・ヨト

Introduction	Model	Results	Conclusions
00	ooooooo	0000000000000000000	●0
Summary of results			

- Molecular species produced in an autocatalytic networks can outperform other species.
- This behaviour is dependent on the strength/efficiency of the catalysts and the topology of the catalytic-reaction network.

Introduction	Model	Results	Conclusions
00	0000000	000000000000000000000000000000000000	●0
Summary of results			

- Molecular species produced in an autocatalytic networks can outperform other species.
- This behaviour is dependent on the strength/efficiency of the catalysts and the topology of the catalytic-reaction network.
- System can also exhibit bistability.

Introduction	Model	Results	Conclusions
00	0000000	000000000000000000000000000000000000	●0
Summary of results	5		

- Molecular species produced in an autocatalytic networks can outperform other species.
- This behaviour is dependent on the strength/efficiency of the catalysts and the topology of the catalytic-reaction network.
- System can also exhibit bistability.
- A cascade of ACSs can be used to produce large molecules in sufficient numbers with reasonable catalytic efficiencies.

Cummon of ro	aulta		
			•0
Introduction	Model	Results	Conclusions

- Molecular species produced in an autocatalytic networks can outperform other species.
- This behaviour is dependent on the strength/efficiency of the catalysts and the topology of the catalytic-reaction network.
- System can also exhibit bistability.

Juillia

- A cascade of ACSs can be used to produce large molecules in sufficient numbers with reasonable catalytic efficiencies.
- Similar results are observed for two input species (f = 2).

<ロト <回ト < 注ト < 注ト

Conclusions

• This model presents a simple mechanism via which pre-biotic organization could have arisen.

Conclusions

- This model presents a simple mechanism via which pre-biotic organization could have arisen.
- Provides a mechanism via which long molecules could have been produced in sufficient numbers.

Conclusions

- This model presents a simple mechanism via which pre-biotic organization could have arisen.
- Provides a mechanism via which long molecules could have been produced in sufficient numbers.
- Biochemistry is a very sparse subset of organic chemistry. This provides a mechanistic way via which a small subset of chemistry could have been chosen.

(日) (四) (日) (日) (日)

Thank you.

