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Outline

* A very simple ODE model for cell
population dynamics in intestinal crypts

 An Individual-based model for the above

A multiscale model for vascularised
tumour growth



Colorectal Cancer

« Second leading cause of cancer deaths In
the US
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Cell population dynamics in the
colonic crypt

« Johnston, Edwards, Bodmer, PKM, Chapman,
PNAS, 104, 4008-4013 (2007)

* Crypt can be considered as 3-compartments:
Stem cells,
Semi-Differentiated (transit-amplifying) Cells,
Fully Differentiated Cells
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A previous mode|

 Tomlinson and Bodmer, PNAS, 92, 11130-
11134 (1995) — proposed cell cycle
synchrony and no feedback

 D’Onofrio, Tomlinson, JTB, 244, 367-374
(2006) — feedback, but still cell synchrony

* Both ignore the compounding effect of TA
cells cycling faster than stem cells




Continuous Model

* Interested on time scales greater than the
cell cycle time — continuous cell division






Steady States

* For both these models, non-trivial steady
states (corresponding to homeostatis) only

occur If the parameters take specific
values --- STRUCTURALLY UNSTABLE



Need Feedback

 Wodarz 2007 (mutations) — feedback In
stem cell compartment

e Boman et al 2001 — no feedback in stem
cells so they tend to zero

« Komarova — series on papers on
mutations



Model 1 — Linear Feedback

* Assume that when the population of stem
or TA cells increase, the per capita rate at

which they differentiate increases In
proportion
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Steady States

« Stem cells exhibit logistic growth — nice
bounded stable steady state solution

* For a very large region in parameter space
this model predicts homeostatis

* Only a genetic hit which removes the
feedback in the model will lead to
unbounded growth



Model 2 — Saturating Feedback

* Assume maximum per-capita rate of
differentiation
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Steady States

* Nice homeostatic steady state as long as
net linear growth rate of stem cells lies in a
certain region in parameter space. If a
mutation moves us out of this region then
the population grows unbounded, even In
the presence of feedback
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Region III:
Unbounded growth
driven by N

Region V:
Unbounded growth
driven by both

Ny and N,

(4)
Region I'V:

Unbounded growth
driven by N
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* Therefore the proportion of cancer-driving
cells may vary greatly from tumour to
tumour (Johnston, Edwards,Chapman,
PKM, Bodmer, JTB online 2010)

* Nature Reports Stem Cells:

« Cancer stem cells, becoming common, M.
Baker, 3/12/08



* Lander, Nie and Wan: olfactory
endothelium



Some bad things ®

« Continuum approximation — individual-
based model approach in IB

« Handling of mutations — properly including
mutant population



Conclusions

Developed a robust model for cell populations in the crypt

Shown that the key parameters are the net per-capita growth rates
of the stem cells and TA cells. So, the failure of programmed cell
death or differentiation could lead to tumour growth, as well as
Increased proliferation rate

Saturating feedback could explain the existence of benign tumours
before carcinogenesis takes over — early mutations could keep
parameters below their critical values, later stage mutations could
push them above their critical values.

Evidence suggests that nearly all colorectal cancers go through
benign stages, but not all develop into carcinomas



An Integrative computational model
for intestinal tissue renewal

* Van Leeuwen, Mirams, Walter, Fletcher,
Murray, Osbourne, Varma, Young,
Cooper, Pitt-Francis, Momtahan,
Pathmanathan, Whiteley, Chapman,
Gavaghan, Jensen, King, PKM, Waters,
Byrne (Cell Proliferation, 2009)



e Chaste — Cancer, Heart And Soft Tissue
Environment

 Modular






* Follow Meinke et al and use a cell-centred
approach — basically consider cells as
point masses connected by springs and
use Delauny triangularisation and Voronol
tesselation to determine nearest
neighbours and for visualisation.
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Colonic crypt organization and
umorigenesis

Adam Humphries and Nicholas A. Wright

@ 2008 Nature Publishing Group




PHYSICAL REVIEW E 80, 031912 {2009)

From a discrete to a continuum model of cell dynamics in one dimension

Philip J. h-lurrm-',] Carina M. Edwmda,E Marcus J. Tindﬂ]l,3 and Philip K. Maini™*

. (1)

where & i1s the spring constant, # 1s the cell viscosity, 7 15

time, and » 1s the spatial coordinate. We define the nonlinear

diffusion coefficient DNg)=k/ng-.
M. Alber. N, Chen., P. M. Lushnikowv, and S, A Newman, Phys.
Fev., Lett, 99, 168102 (200 7).




The effects of different individual
cell-based approaches

* (to appear in Phil Trans R Soc A)

A hybrid approach to

multiscale modelling of
cancer

J. M. Oshorne! ®, A. Walter®*. 8. K. Kershaw!. G. R. Mirams®. A. G. Fletcher®:®.
P. Pathmanathan®. D. {:':F.'i"r'-'-.'i,!:_:_':lli:'l.lll"rj.. 0. E. Jensen®. P. K. Maini*®, H. M. Byrne”







Cancer Growth

Tissue Level Signalling: (Tumour Angiogenesis Factors)
Oxygen etc

Cells:
Intracellular: Cell cycle,
Molecular elements



Tomas Alarcon
Markus Owen
Helen Byrne

James Murphy
Russel Bettridge
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Fig. 2. Initial conditions for the adaptation algorithm: all vessels have the same radius (10 um) and length (80 pm). In
the blood flow simulations, we have imposed no-flux conditions for all the vessels on the boundary of the domain except
at the ends marked in the figure as “incoming flow” and “outlet flow”, where a given value of the current has been
prescribed (see Alarcén et al., 2003a for further details). In all the figures hereafter, the numbers on the axis refer to the
position in the cellular automaton lattice which is a subset of Z2. One unit in this lattice corresponds to 20 um in real
tissue.




Vascular Adaptation

« Series of papers by Secomb and Pries
modelling vessels in the rat mesentry —
they conclude:

R(t) = radius at time t:

R(t+dt) = R(t) + R dt S



S=M+Me-s+C

M = mechanical stimulus (wall shear stress)
Me = metabolic demand

s = shrinkage

C= conducted stimuli: short-range (chemical release under
hypoxic stress?)

long-range (mediated through
membrane potential?)
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Fig. 4. Four snapshots showing wlations with vascular adaptation coupled to
FEGF released by hypoxi me in s from top to bottom. The lelt column




« By varying the strengths of the different
adaptation mechanisms we can hypothesise
how defects in vasculature lead to different types
of tumours: Conclude that losing the long range
stimuli looks a reasonable assumption

* Tim Secomb has shown this more convincingly
recently (PLoS Comp Biol 2009)



Potential uses of the model

* Chemotherapy

* Impact of cell crowding and active
movement

e Vessel normalisation
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Fig. 10. Simulation for systems whose vascular networks have different sparsity, i.e. we have varied the vascular
density, defined as the number of vessels per surface unit. In column (a) we have plotted the results for a system with
vascular density = 114 vessels/mm?, column (b) corresponds to vascular density = 24 vessels/mm?, and column (c)
corresponds to vascular density = 4 vessels/mm?. The results plotted in the first row corresponds to the evolution of the
size of cancer colony in time (where each iteration corresponds to 15 h, which is an estimation of the duplication time of
our cancer cells), the second row, to the stationary distribution of oxygen (pO, in dimensionless units), and the third
row, to the stationary cell distribution. In the middle set of fignres, the vertical axis is the oxygen concentration. In the
bottom panel of each column white spaces are occupied by cancer cells, whereas black spaces are either empty or
occupied by vessels.




Anglogenesis

* Recently, we have added in angiogenesis
(Owen, Alarcon, PKM and Byrne, J.Math.
Biol, 09)






* Movie — both2_mov



So what?

* Mark Lloyd (Moffitt) Is now doing
experiments on cancer angiogenesis In
mice to allow us to derive data for model

testing.



Conclusions and Criticisms

Simple multiscale model — gain some insight into why combination
therapies might work

Heterogeneities in environment play a key role

No matrix included! — Anderson has shown adhesivity could be
Important

Cellular automaton model — what about using Potts model, cell
centred, cell vertex models? — DOES IT MAKE A DIFFERENCE
(Murray et al, 2009; Byrne et al, 2010)

There are many other models and | have not referred to any of
them! (Jiang, Bauer, Chaplain, Anderson, Lowengrub, Drasdo,
Meyer-Hermann, Rieger, Cristini, Enderling, Meinke, Loeffler, TO
NAME BUT A FEW)
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